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Abstract

The protection of private information is of vital importance in data-driven research, business,
and government. The conflict between privacy and utility has triggered intensive research in
the computer science and statistics communities, who have developed a variety of methods for
privacy-preserving data release. Among the main concepts that have emerged are k-anonymity
(often implemented via microaggregation) and differential privacy. Today, another solution is
gaining traction, synthetic data. However, the road to privacy is paved with NP-hard prob-
lems. In this paper we focus on the NP-hard challenge to develop a synthetic data generation
method that is computationally efficient, comes with provable privacy guarantees, and rigorously
quantifies data utility. We solve a relaxed version of this problem by studying a fundamental,
but a first glance completely unrelated, problem in probability concerning the concept of co-
variance loss. Namely, we find a nearly optimal and constructive answer to the question how
much information is lost when we take conditional expectation. Surprisingly, this excursion
into theoretical probability produces mathematical techniques that allow us to derive construc-
tive, approximately optimal solutions to difficult applied problems concerning microaggregation,
privacy, and synthetic data.

1 Introduction

“Sharing is caring”, we are taught. But if we care about privacy, then we better think twice what
we share. As governments and companies are increasingly collecting vast amounts of personal
information (often without the consent or knowledge of the user [35]), it is crucial to ensure that
fundamental rights to privacy of the subjects the data refer to are guaranteed1. We are facing the
problem of how to release data that are useful to make accurate decisions and predictions without
disclosing sensitive information on specific identifiable individuals.

The conflict between privacy and utility has triggered intensive research in the computer science
and statistics communities, who have developed a variety of methods for privacy-preserving data
release. Among the main concepts that have emerged are anonymity and differential privacy [6].

1The importance of individual privacy is underscored by the fact that Article 12 of the Universal Declaration of
Human Rights is concerned with privacy.
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Today, another solution is gaining traction, synthetic data [4]. However, the road to privacy is paved
with NP-hard problems. For example, finding the optimal partition into k-anonymous groups is NP-
hard [21]. Optimal multivariate microaggregation is NP-hard [23, 31]. Making differentially private
synthetic data that preserves all two-dimensional marginals with accuracy o(1) is NP-hard [33].

No matter which privacy preserving strategy one pursues, in order to implement that strategy
the challenge is to navigate this NP-hard privacy jungle and develop a method that is computation-
ally efficient, comes with provable privacy guarantees, and rigorously quantifies data utility. This
is the main topic of our paper.

1.1 State of the art

Anonymity captures the understanding that it should not be possible to re-identify any individual
in the published data [6]. One of the most popular ways in trying to ensure anonymity is via the
concept of k-anonymity [29, 28]. A dataset has the k-anonymity property if the information for
each person contained in the dataset cannot be distinguished from at least k− 1 individuals whose
information also appear in the dataset. Although the privacy guarantees offered by k-anonymity
are limited, its simplicity has made it quite popular and it has become an important part of the
arsenal of privacy enhancing technologies, see e.g. [6, 9, 18, 13]. k-anonymity is often implemented
via the concept of microaggregation [7, 16, 27, 14, 6]. The principle of microaggregation is to
partition a data set into groups of at least k similar records and to replace the records in each
group by a prototypical record (e.g. the centroid).

Finding the optimal partition into k-anonymous groups is an NP-hard problem [21]. Several
practical algorithms exists that produce acceptable empirical results, albeit without any theoretical
bounds on the information loss [7, 6, 22]. In light of the popularity of k-anonymity, it is thus quite
surprising that is an open problem to design a computationally efficient algorithm for k-anonymity
that comes with theoretical utility guarantees.

Differential privacy formalizes the intuition that the presence or absence of any single indi-
vidual record in the database or data set should be unnoticeable when looking at the responses
returned for the queries [8]. Differential privacy is a popular and robust method that comes with
a rigorous mathematical framework and provable guarantees. It can protect aggregate informa-
tion, but not sensitive information in general. Differential privacy is usually implemented via noise
injection, where the noise level depends on the query sensitivity. However, the added noise will
negatively affect utility of the released data.

As pointed out in [6], microaggregation is a useful primitive to find bridges between privacy
models. It is a natural idea to combine microaggregation with differential privacy [27, 26] to address
some of the privacy limitations of k-anonymity. As before, the fundamental question is whether
there are computationally efficient methods to implement this scheme while also maintaining utility
guarantees.

Synthetic data are generated (typically via some randomized algorithm) from existing data
such that they maintain the statistical properties of the original data set, but do so without risk of
exposing sensitive information. Combining synthetic data with differential privacy is a promising
means to overcome key weaknesses of the latter [11, 4, 12, 17]. Clearly, we want the synthetic data
to be faithful to the original data, so as to preserve utility. To quantify the faithfulness, we need
some similarity metrics. A common and natural choice for tabular data is to try to (approximately)
preserve low-dimensional marginals [3, 32].

We model the true data x1, . . . , xn as a sequence of n points from the Boolean cube {0, 1}p,
which is a standard benchmark data model [3, 33, 11, 24]. For example, this can be n health
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records of patients, each containing p binary parameters (smoker/nonsmoker, etc.)2 We are seeking
to transform the true data into synthetic data y1, . . . , ym ∈ {0, 1}p that is both differentially private
and accurate.

As mentioned before, we measure accuracy by comparing the marginals of true and synthetic
data. A d-dimensional marginal of the true data has the form

1

n

n∑
i=1

xi(j1) · · ·xi(jd)

for some given indices j1, . . . , jd ∈ [p]. In other words, a low-dimensional marginal is the fraction
of the patients whose d given parameters all equal 1. The one-dimensional marginals encode the
means of the parameters, and the two-dimensional marginals encode the covariances.

The accuracy of the synthetic data for a given marginal can be defined as

E(j1, . . . , jd) :=
1

n

n∑
i=1

xi(j1) · · ·xi(jd)−
1

m

m∑
r=1

yr(j1) · · · yr(jd). (1.1)

Clearly, the accuracy is bounded by 1 in absolute value.

1.2 Our contributions

Our goal is to design a randomized algorithm that satisfies the following list of desiderata:

(i) (synthetic data): the algorithm outputs a list of vectors y1, . . . , ym ∈ {0, 1}p;
(ii) (efficiency): the algorithm requires only polynomial time in n and p;

(iii) (privacy): the algorithm is differentially private;

(iv) (accuracy): the low-dimensional marginals of y1, . . . , ym are close to those of x1, . . . , xn.

There are known algorithms that satisfy any three of the above four requirements if we restrict
the accuracy condition (iv) to two-dimensional marginals.

Indeed, if (i) is dropped, one can first compute the mean 1
n

∑n
k=1 xk and the covariance matrix

1
n

∑n
k=1 xkx

T
k−( 1

n

∑n
k=1 xk)(

1
n

∑n
k=1 xk)

T , add some noise to achieve differential privacy, and output
i.i.d. samples from the Gaussian distribution with the noisy mean and covariance.

Suppose (ii) is dropped. It suffices to construct a differentially private probability measure µ
on {0, 1}p so that

∫
{0,1}p x dµ(x) ≈ 1

n

∑n
k=1 xk and

∫
{0,1}p xx

T dµ(x) ≈ 1
n

∑n
k=1 xkx

T
k . After µ is

constructed, one can generate i.i.d. samples y1, . . . , ym from µ. The measure µ can be constructed
as follows: First add Laplace noises to 1

n

∑n
k=1 xk and 1

n

∑n
k=1 xkx

T
k (see Lemma 2.4 below) and

then set µ to be a probability measure on {0, 1}p that minimizes ‖
∫
{0,1}p x dµ(x) − ( 1

n

∑n
k=1 xk +

noise)‖∞+‖
∫
{0,1}p xx

T dµ(x)−( 1
n

∑n
k=1 xkx

T
k +noise)‖∞, where ‖ ‖∞ is the `∞ norm on Rp or Rp2 .

However, this requires exponential time in p, since the set of all probability measures on {0, 1}p
can be identified as a convex subset of R2p . See [3].

If (iii) or (iv) is dropped, the problem is trivial: in the former case, can output either the original
true data; in the latter, all zeros.

While there are known algorithms that satisfy (i)–(iii) with proofs and empircally satisfy (iv)
in simulations (see e.g., [19, 34, 15, 16]), the challenge is to develop an algorithm that provably
satisfies all four conditions.

2More generally, one can represent any categorical data (such as gender, occupation, etc.), genomic data, or
numerical data (by splitting them into intervals) on the Boolean cube via binary or one-hot encoding.
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Ullman and Vadhan [33] showed that one cannot achieve (i)–(iv) even for d = 2, if we require in
(iv) that all of the d-dimensional marginals be preserved accurately. More precisely, under standard
cryptographic assumptions, making differentially private synthetic data that preserves all of the
two-dimensional marginals with accuracy o(1) is NP-hard. This remarkable no-go result by Ullman
and Vadhan already could put an end to our quest for finding an algorithm that rigorously can
achieve conditions (i)–(iv).

Surprisingly, however, a slightly weaker interpretation of (iv) suffices to put our quest on a more
successful path. Indeed, we will show in this paper that one can achieve (i)–(iv), if we require in
(iv) that most of the d-dimensional marginals be preserved accurately. Remarkably, our result does
not only hold for two-dimensional marginals, but for marginals of any given degree.

Note that even if the differential privacy condition in (iii) is replaced by the weaker condition
of k-anonymity, it is still a challenging open problem to develop an algorithm that fulfills all
these desiderata. In this paper we will solve this problem by deriving a computationally efficient
microaggregation framework that comes with provable accuracy bounds.

Covariance loss. We approach the aforementioned goals by studying a fundamental, but a
first glance completely unrelated, problem in probability. This problem is concerned with the most
basic notion of probability: conditional expectation. We want to answer the fundamental question:

“How much information is lost when we take conditional expectation?”

The law of total variance shows that taking conditional expectation of a random variable un-
derestimates the variance. A similar phenomenon holds in higher dimensions: taking conditional
expectation of a random vector underestimates the covariance (in the positive-semidefinite order).
We may ask: how much covariance is lost? And what sigma-algebra of given complexity minimizes
the covariance loss?

Finding an answer to this fundamental probability question turns into a quest of finding among
all sigma-algebras of given complexity that one which minimizes the covariance loss. We will derive
a nearly optimal bound based on a careful explicit construction of a specific sigma-algebra. Amaz-
ingly, this excursion into theoretical probability produces mathematical techniques that are most
suitable to solve the previously discussed challenging practical problems concerning microaggrega-
tion and privacy.

1.3 Private, synthetic data?

Now that we described the spirit of our main results, let us introduce them in more detail.
As mentioned before, it is known from Ullman and Vadhan [33] that it is generally impossible

to make private synthetic data that accurately preserves all low-dimensional marginals. However,
as we will prove, it is possible to efficiently construct private synthetic data that preserves most of
the low-dimensional marginals.

To state our goal mathematically, we average the accuracy (in the L2 sense) over all
(
p
d

)
subsets

of indices {i1, . . . , id} ⊂ [p], then take the expectation over the randomness in the algorithm. In
other words, we would like to see

E
(
p

d

)−1 ∑
1≤i1<···<id≤p

E(i1, . . . , id)
2 ≤ δ2 (1.2)

for some small δ, where E(i1, . . . , id) is defined in (1.1). If this happens, we say that the synthetic
data is δ-accurate for d-dimensional marginals on average. Using Markov inequality, we can see
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that the synthetic data is o(1)-accurate for d-dimensional marginals on average if and only if with
high probability, most of the d-dimensional marginals are asymptotically accurate; more precisely,
with probability 1− o(1), a 1− o(1) fraction of the d-dimensional marginals of the synthetic data
is within o(1) of the corresponding marginals of the true data.

Let us state our result informally.

Theorem 1.1 (Private synthetic Boolean data). Let ε ∈ (0, 1) and n,m ∈ N. There exists an
ε-differentially private randomized algorithm that transforms input data x1, . . . , xn ∈ {0, 1}p into
output data y1, . . . , ym ∈ {0, 1}p. Moreover, if d = O(1), d ≤ p/2, n � (p/ε)2, m � 1, the
synthetic data is o(1)-accurate for d-dimensional marginals on average. The algorithm runs in
time polynomial in p, n and linear in m, and is independent of d.

Theorem 5.11 gives a formal and non-asymptotic version of this result.
Our method is not specific to Boolean data. It can be used to generate synthetic data with any

predefined convex constraints (Theorem 5.10). If we assume that the input data x1, . . . , xn lies in
some known convex set K ⊂ Rp, one can make private and accurate synthetic data y1, . . . , ym that
lies in the same set K.

1.4 Covariance loss

Our method is based on a new problem in probability theory, a problem that is interesting on its
own. It is about the most basic notion of probability: conditional expectation. And the question
is: how much information is lost when we take conditional expectation?

The law of total expectation states that for a random variable X and a sigma-algebra F , the
conditional expectation Y = E[X|F ] gives an unbiased estimate of the mean: EX = EY . The law
of total variance, which can be expressed as

Var(X)−Var(Y ) = EX2 − EY 2 = E(X − Y )2,

shows that taking conditional expectation underestimates the variance.
Heuristically, the simpler the sigma-algebra F is, the more variance gets lost. What is the best

sigma-algebra F with a given complexity? Among all sigma-algebras F that are generated by a
partition of the sample space into m subsets, which one achieves the smallest loss of variance, and
what is that loss?

If X is bounded, let us say |X| ≤ 1, we can decompose the interval [−1, 1] into k subintervals of
length 2/k each, take Fi to be the preimage of each interval under X, and let F = σ(F1, . . . , Fk) be
the sigma-algebra generated by these events. Since X and Y takes values in the same subinterval
a.s., we have |X − Y | ≤ 2/k a.s. Thus, the law of total variance gives

Var(X)−Var(Y ) ≤ 4

k2
. (1.3)

Let us try to generalize this question to higher dimensions. If X is a random vector taking
values in Rp, the law of total expectation holds unchanged. The law of total variance becomes the
law of total covariance:

ΣX − ΣY = EXXT − EY Y T = E(X − Y )(X − Y )T

where ΣX = E(X−EX)(X−EX)T denotes the covariance matrix of X, and similarly for ΣY (see
Lemma 3.1 below). Just like in the one-dimensional case, we see that taking conditional expectation
underestimates the covariance (in the positive-semidefinite order).
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However, if we naively attempt to bound the loss of covariance like we did to get (1.3), we would
face a curse of dimensionality. The unit Euclidean ball in Rp cannot be partitioned into k subsets of
diameter, let us say, 1/4, unless k is exponentially large in p (see e.g. [2]). The following theorem3

shows that a much better bound can be obtained that does not suffer the curse of dimensionality.

Theorem 1.2 (Covariance loss). Let X be a random vector in Rp such that ‖X‖2 ≤ 1 a.s. Then,
for every k ≥ 3, there exists a partition of the sample space into at most k sets such that for the
sigma-algebra F generated by this partition, the conditional expectation Y = E[X|F ] satisfies

‖ΣX − ΣY ‖2 ≤ C

√
log log k

log k
. (1.4)

Here C is an absolute constant. Moreover, if the probability space has no atoms, then the partition
can be made with exactly k sets, all of which have the same probability 1/k.

Remark 1.3 (Optimality). The rate in Theorem 1.2 is in general optimal up to a
√

log log k factor;
see Proposition 3.14.

Remark 1.4 (Higher moments). Theorem 1.2 can be automatically extended to higher moments
via the following tensorization principle (Theorem 3.10), which states that for all d ≥ 2,∥∥EX⊗d − EY ⊗d

∥∥
2
≤ 4d

∥∥EX⊗2 − EY ⊗2
∥∥

2
= 4d

∥∥ΣX − ΣY

∥∥
2
. (1.5)

Remark 1.5 (Hilbert spaces). The bound (1.4) is dimension-free. Indeed, Theorem 1.2 can be
extended to hold for infinite dimensional Hilbert spaces. Moreover, the rate in this theorem is in
general optimal up to a

√
log log k factor (Proposition 3.14).

1.5 Anonymity

Let us apply these abstract probability results to the problem of making synthetic data. As before,
denote the true data by x1, . . . , xn ∈ Rp. Let X(i) = xi be the random variable on the sample space
[n] equipped with uniform probability distribution. Obtain a partition [n] = I1 ∪ · · · ∪ Im from
the Covariance Loss Theorem 1.2, and let us assume for simplicity that all sets Ij have the same
cardinality

∣∣Ij∣∣ = n/k (this can be achieved whenever k divides n, a requirement that can easily be
dropped as we will discuss later). The conditional expectation Y = E[X|F ] on the sigma-algebra
F = σ(I1, . . . , Im) generated by this partition takes values

yj =
k

n

∑
i∈Ij

xi, j = 1, . . . , k. (1.6)

with probability 1/k each. In other words, the synthetic data y1, . . . , yk is obtained by taking local
averages, or by microaggregation of the input data x1, . . . , xn. The crucial point is that the synthetic
data is obviously (n/k)-anonymous. Here, we use the following formal definition of k-anonymity.

Definition 1.6. Let X denote the input (true) data. An algorithm A(X ) is k-anonymous if the
preimage A−1(Y) of any point Y under A has cardinality at least k.

3The `2 norm and the tensor notation used in this section are defined in Section 2.2.
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What about the accuracy? The law of total expectation EX = EY becomes 1
n

∑n
i=1 xi =

1
k

∑k
j=1 yj . As for higher moments, assume that ‖xi‖2 ≤ 1 for all i. Then Covariance Loss Theo-

rem 1.2 together with tensorization principle (1.5) yields∥∥∥∥ 1

n

n∑
i=1

x⊗di −
1

k

k∑
j=1

y⊗dj

∥∥∥∥
2

. 4d

√
log log k

log k
.

Thus, if k � 1 and d = O(1), the synthetic data is accurate in the sense of the L2-average of
marginals.

This general principle can be specialized to Boolean data. Doing appropriate rescaling, boot-
strapping (Section 4.2) and randomized rounding (Section 4.3), we can conclude the following:

Theorem 1.7 (Anonymous synthetic Boolean data). Suppose k divides n. There exists an (n/k)-
anonymous randomized algorithm that transforms input data x1, . . . , xn ∈ {0, 1}p into output data
y1, . . . , ym ∈ {0, 1}p. Moreover, if d = O(1), d ≤ p/2, k � 1, m � 1, the synthetic data is o(1)-
accurate for d-dimensional marginals on average. The algorithm runs in time polynomial in p, n
and linear in m, and is independent of d.

Theorem 4.6 gives a formal and non-asymptotic version of this result.

1.6 Differential privacy

How can we upgrade anonymity to differential privacy and establish Theorem 1.1? The microaggre-
gation mechanism by itself is not differentially private. However, it reduces sensitivity of synthetic
data. If a single input data point xi is changed, microaggregation (1.6) suppresses the effect of such
change on the synthetic data yj by the factor k/n. Once the data has low sensitivity, the classical
Laplacian mechanism can make it private: one has simply to add Laplacian noise.

This is the gist of the proof of Theorem 1.1. However, several issues arise. One is that we do
not know how to make all blocks Ij of the same size while preserving their privacy, so we allow
them to have arbitrary sizes in the application to privacy. However, small blocks Ij may cause
instability of microaggregation, and diminish its beneficial effect on sensitivity. We resolve this
issue by downplaying, or damping, the small blocks (Section 5.3). The second issue is that the
adding Laplacian noise to the vectors yi may move them outside the set K where the synthetic
data must lie (for Boolean data, K is the unit cube [0, 1]p.) We resolve this issue by metrically
projecting the perturbed vectors back onto K (Section 5.4).

1.7 Questions and further directions

Our results point to some further challenging problems. One question is about the sample complexity
of private covariance estimation (cf. [5]). How many samples n are needed to estimate covariance
of a p-dimensional distribution in a private way? Note that in asking this question, we are not
requiring the algorithm to create any synthetic data.

To achieve small error in Frobenius norm, n ∼ p2 is enough. This is probably known, and we
are reproving it here implicitly. In fact, this is the only reason we have the requirement n > (p/ε)2

in Theorem 1.1 (privacy) and not in Theorem 1.7 (anonymity). Surprisingly, no relation between
p and n is needed in the anonymity result! A better result on private covariance estimation should
lead to a stronger version of Theorem 1.1 (privacy).

Another open question concerns marginals and anonymity. From the no-go result of Ullman
and Vadhan [33] we know that we cannot make all marginals accurate while preserving differential
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privacy. (In this paper we show here how to preserve most marginals.) But what about anonymity?
Can we make all marginals accurate while preserving anonymity?

1.8 Outline of the paper

The rest of the paper is organized as follows. In Section 2 we provide basic notation and other
preliminaries. Section 3 is concerned with the concept of covariance loss. We give a constructive
and nearly optimal answer to the problem of how much information is lost when we take conditional
expectation. In Section 4 we use the tools developed for covariance loss to derive a computationally
efficient microaggregation framework that comes with provable accuracy bounds regarding low-
dimensional marginals. In Section 5 we upgrade these results to the framework of differential
privacy.

2 Preliminaries

2.1 Basic notation

The approximate inequality signs . hide absolute constant factors; thus a . b means that a ≤ Cb
for a suitable absolute constant C > 0. A list of elements ν1, . . . , νk of a metric space M is an
α-net, where α > 0, if every element of M has distance less than α from one of ν1, . . . , νk. For
p ∈ N, define

Bp
2 = {x ∈ Rp : ‖x‖2 ≤ 1}.

2.2 Tensors

The marginals of a random vector can be conveniently represented in tensor notation. A tensor is a
d-way array X ∈ Rp×···×p. In particular, 1-way tensors are vectors, and 2-way tensors are matrices.
A simple example of a tensor is the rank-one tensor x⊗d, which is constructed from a vector x ∈ Rp
by multiplying its entries:

x⊗d(i1, . . . , id) = x(i1) · · ·x(id), where i1, . . . , id ∈ [p].

In particular, the tensor x⊗2 is the same as the matrix xxT.
The `2 norm of a tensor X can be defined by regarding X as a vector in Rpd , thus

‖X‖22 :=
∑

i1,...id∈[p]

∣∣X(i1, . . . , id)
∣∣2 .

Note that when d = 2, the tensor X can be identified as a matrix and ‖X‖2 is the Frobenius norm
of X.

The errors of the marginals (1.1) can be thought of as the coefficients of the error tensor

E =
1

n

n∑
i=1

x⊗di −
1

m

m∑
i=1

y⊗di , (2.1)

A tensor X ∈ Rp×···×p is symmetric if the values of its entries are independent of the permutation
of the indices, i.e. if

X(i1, . . . , id) = X(iπ(1), . . . , iπ(d))
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for any permutation π of [p]. It often makes sense to count each distinct entry of a symmetric
tensor once instead of d! times. To make this formal, we may consider the restriction operator Psym

that preserves the
(
p
d

)
entries whose indices satisfy 1 ≤ i1 < · · · < id ≤ p, and zeroes out all other

entries. Thus ∥∥PsymX
∥∥2

2
=

∑
1≤i1<···<id≤p

X(i1, . . . , id)
2.

Thus, the goal we stated in (1.2) can be restated as follows: for the error tensor (2.1), we would
like to bound the quantity

E
(
p

d

)−1 ∑
1≤i1<···<id≤p

E(i1, . . . , id)
2 = E

(
p

d

)−1∥∥PsymE
∥∥2

2
. (2.2)

The operator Psym is related to another restriction operator Poff , which retains the
(
p
d

)
d! off-

diagonal entires, i.e. those for which all indices i1, . . . id are distinct, and zeroes out all other entries.
Thus,

‖PoffX‖22 =
∑

i1,...id∈[p] distinct

X(i1, . . . , id)
2 = d!

∥∥PsymX
∥∥2

2
, (2.3)

for all symmetric tensor X.

Lemma 2.1. If p ≥ 2d, we have(
p

d

)−1∥∥PsymX
∥∥2

2
≤
(2

p

)d
‖PoffX‖22 . (2.4)

Proof. According to (2.3), the left hand side of (2.4) equals
((
p
d

)
d!
)−1‖PoffX‖22, and

(
p
d

)
d! = p(p−

1) · · · (p− d+ 1) ≥ (p/2)d if p ≥ 2d. This yields the desired bound.

2.3 Differential privacy

We briefly review some basic facts about differential privacy. The interested reader may consult [8]
for details.

Definition 2.2 (Differential Privacy [8]). A randomized function M gives ε-differential privacy if
for all databases D1 and D2 differing on at most one element, and all measurable S ⊆ range(M),

P[M(D1) ∈ S] ≤ eε · P[M(D2) ∈ S],

where the probability is with respect to the randomness of M.

Almost all existing mechanisms to implement differential privacy are based on adding noise
to the data or the data queries, e.g. via the Laplacian mechanism [3]. Recall that a random
variable has the (centered) Laplacian distribution Lap(σ) if its probability density function at x is
1

2σ exp(−|x|/σ).

Definition 2.3. For f : D → Rd, the L1-sensitivity is

∆f := max
D1,D2

‖f(D1)− f(D2)‖1,

for all D1, D2 differing in at most one element.
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Lemma 2.4 (Laplace mechanism, Theorem 2 in [3]). For any f : D → Rd, the addition of Laplace
noise with variance 2σ2 preserves (∆f/σ)-differential privacy.

Lemma 2.5 (Composition, Theorem 3.14 in [8]). Suppose that and algorithm A1 : Rn×p → Y1 is
ε1-differentially private and an algorithm A2 : Rn×p × Y1 → Y2 is ε2-differentially private in the
first component in Rn×p. Assume that A1 and A2 are independent. Then the composition algorithm
A = A2( · ,A1(·)) is (ε1 + ε2)-differentially private.

Remark 2.6. As outlined in [3], any function applied to private data, without accessing the raw
data, is privacy-preserving.

The following observation is an easy consequence of the definition of differential privacy.

Lemma 2.7. Suppose the data Y1 and Y2 are independent with respect to the randomness of the
privacy-generating algorithm and that each is ε-differentially private, then (Y1, Y2) is 2ε-differentially
private.

3 Covariance loss

The goal of this section is to prove Theorem 1.2 and its higher-order version, Corollary 3.12. We
will establish the main part of Theorem 1.2 in Sections 3.1–3.4, the “moreover” part (equipartition)
in Sections 3.5–3.6, the tensorization principle (1.5) in Section 3.7, and then immediately yields
Corollary 3.12. Finally, we show optimality in Section 3.8.

3.1 Law of total covariance

Throughout this section, X is an arbitrary random vector in Rp, F is an arbitrary sigma-algebra
and Y = E[X|F ] is the conditional expectation.

Lemma 3.1 (Law of total covariance). We have

ΣX − ΣY = EXXT − EY Y T = E(X − Y )(X − Y )T.

In particular, ΣX � ΣY .

Proof. The covariance matrix can be expressed as

ΣX = E(X − EX)(X − EX)T = EXXT − (EX)(EX)T

and similarly for Y . Since EX = EY by the law of total expectation, we have ΣX − ΣY =
EXXT − EY Y T, proving the first equality in the lemma. Next, one can check that

E
[
XXT|F

]
− Y Y T = E

[
(X − Y )(X − Y )T|F

]
almost surely

by expanding the product in the right hand side and recalling that Y is F-measurable. Finally,
take expectation on both sides to complete the proof.

Lemma 3.2 (Decomposing the covariance loss). For any orthogonal projection P in Rp we have∥∥EXXT − EY Y T
∥∥

2
≤ E‖PX − PY ‖22 +

∥∥(I − P )(EXXT)(I − P )
∥∥

2
.

10



Proof. By the law of total covariance (Lemma 3.1), the matrix

A := EXXT − EY Y T = E(X − Y )(X − Y )T

is positive-semidefinite. Then we can use the following inequality, which holds for any positive-
semidefinite matrix A (see e.g. in [1, p.157]):

‖A‖2 ≤‖PAP‖2 +
∥∥(I − P )A(I − P )

∥∥
2
. (3.1)

Let us bound the two terms in the right hand side. Jensen’s inequality gives

‖PAP‖2 ≤ E
∥∥P (X − Y )(X − Y )TP

∥∥
2

= E‖PX − PY ‖22 .

Next, since the matrix EY Y T is positive-semidefinite, we have 0 � A � EXXT in the semidefinite
order, so 0 � (I − P )A(I − P ) � (I − P )(EXXT)(I − P ), which yields∥∥(I − P )A(I − P )

∥∥
2
≤
∥∥(I − P )(EXXT)(I − P )

∥∥
2
.

Substitute the previous two bounds into (3.1) to complete the proof.

3.2 Spectral projection

The two terms in Lemma 3.2 will be bounded separately. Let us start with the second term. It
simplifies if P is a spectral projection:

Lemma 3.3 (Spectral projection). Assume that ‖X‖2 ≤ 1 a.s. Let t ∈ N ∪ {0}. Let P be the
orthogonal projection in Rp onto the t leading eigenvectors of the second moment matrix S =
EXXT. Then ∥∥(I − P )S(I − P )

∥∥
2
≤ 1√

t
.

Proof. We have ∥∥(I − P )S(I − P )
∥∥2

2
=
∑
i>t

λi(S)2 (3.2)

where λi(S) denote the eigenvalues of S arranged in a non-increasing order. Using linearity of
expectation and trace, we get

p∑
i=1

λi(S) = E trXXT = E‖X‖22 ≤ 1.

It follows that at most t eigenvalues of S can be larger than 1/t. By monotonicity, this yields
λi(S) ≤ 1/t for all i > t. Combining this with the bound above, we conclude that∑

i>t

λi(S)2 ≤
∑
i>t

λi(S) · 1

t
≤ 1

t
. (3.3)

Substitute this bound into (3.2) to complete the proof.

11



3.3 Nearest-point partition

Next, we bound the first term in Lemma 3.2. This is the only step that does not hold generally
but for a specific sigma-algebra, which we generate by a nearest-point partition.

Definition 3.4 (Nearest-point partition). Let X be a random vector taking values in Rp, defined
on a probability space (Ω,Σ,P). A nearest-point partition {F1, . . . , Fs} of Ω with respect to a list
of points ν1, . . . , νs ∈ Rp is a partition {F1, . . . , Fs} of Ω such that

‖νj −X(ω)‖2 = min
1≤i≤m

‖νi −X(ω)‖2,

for all ω ∈ Fj . (Some of the Fj could be empty.)

Remark 3.5. A nearest-point partition can be constructed as follows: For each ω ∈ Ω, choose a
point νj nearest to X(ω) in the `2 metric and put ω into Fj . Break any ties arbitrarily.

Lemma 3.6 (Approximation). Let X be a random vector in Rp such that ‖X‖2 ≤ 1 a.s. Let P
be the orthogonal projection in Rp. Let ν1, . . . , νs ∈ Rp be an α-net of the unit Euclidean ball of
ran(P ). Let Ω = F1 ∪ · · · ∪ Fs be a nearest-point partition for X with respect to ν1, . . . , νs. Let
F = σ(F1, . . . , Fs) be the sigma-algebra generated by the partition. Then the conditional expectation
Y = E[X|F ] satisfies

‖PX − PY ‖2 ≤ 2α almost surely.

Proof. If ω ∈ Fj then, by definition of the nearest-point partition, ‖νj −X(ω)‖2 = min1≤i≤s ‖νi −
X(ω)‖2. Since all νi are in ran(P ), this implies that ‖νj − PX(ω)‖2 = min1≤i≤s ‖νi − PX(ω)‖2.
By definition of the α-net, we have

∥∥PX(ω)− νj
∥∥

2
≤ α. Hence, by the triangle inequality we have∥∥P (X(ω)−X(ω′))

∥∥
2
≤ 2α whenever ω, ω′ ∈ Fj . (3.4)

Furthermore, by definition of Y , we have

Y (ω) =
1

P(Fj)

∫
Fj

X(ω′) dP(ω′) whenever ω ∈ Fj .

Thus, for such ω we have

X(ω)− Y (ω) =
1

P(Fj)

∫
Fj

(
X(ω)−X(ω′)

)
dP(ω′).

Applying the projection P and taking norm on both sides, then using Jensen’s inequality, we
conclude that ∥∥PX(ω)− PY (ω)

∥∥
2

=
1

P(Fj)

∫
Fj

∥∥∥P (X(ω)−X(ω′)
)∥∥∥

2
dP(ω′) ≤ 2α,

where in the last step we used (3.4). Since the bound holds for each ω ∈ Fj and the events Fj form
a partition of Ω, it holds for all ω ∈ Ω. The proof is complete.
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3.4 Proof of the main part of Theorem 1.2

The following simple (and possibly known) observation will come handy to bound the cardinality
of an ε-net that we will need in the proof of Theorem 1.2.

Proposition 3.7 (Number of lattice points in a ball). For all α > 0 and t ∈ N,∣∣∣∣Bt
2 ∩

α√
t
Zt
∣∣∣∣ ≤ (( 1

α
+

1

2

)√
2eπ

)t
.

In particular, for any α ∈ (0, 1), it follows that∣∣∣∣Bt
2 ∩

α√
t
Zt
∣∣∣∣ ≤ ( 7

α

)t
.

Proof. The open cubes of side length α/
√
t that are centered at the points of the set N := Bt

2∩ α√
t
Zt

are all disjoint. Thus the total volume of these cubes equals |N | (α/
√
t)t.

On the other hand, since each such cube is contained in a ball of radius α/2 centered at some
point of N , the union of these cubes is contained in the ball (1 + α/2)Bt

2. So, comparing the
volumes, we obtain

|N | (α/
√
t)t ≤ (1 + α/2)t Vol(Bt

2),

or

|N | ≤
(( 1

α
+

1

2

)√
t

)t
Vol(Bt

2).

Now, it is well known that [20]

Vol(Bt
2) =

πt/2

Γ(t/2 + 1)
.

Using Stirling’s formula we have

Γ(x+ 1) ≥
√
π(x/e)x, x ≥ 0.

This gives
Vol(Bt

2) ≤ (2eπ/t)t/2.

Substitute this into the bound on |N | above to complete the proof.

It follows now from Proposition 3.7 that for every α ∈ (0, 1), there exists an α-net in the unit
Euclidean ball of dimension t of cardinality at most (7/α)t.

Fix an integer k ≥ 3 and choose

t :=

⌊
log k

log(7/α)

⌋
, α :=

( log log k

log k

)1/4
. (3.5)

The choice of t is made so that we can find an α-net of the unit Euclidean ball of ran(P ) of
cardinality at most (7/α)t ≤ k.

We decompose the covariance loss ΣX −ΣY in Lemma 3.1 into two terms as in Lemma 3.2 and
bound the two terms as in Lemma 3.3 and Lemma 3.6. This way we obtain

‖ΣX − ΣY ‖2 =
∥∥EXXT − EY Y T

∥∥
2
≤ 4α2 +

1√
t
.

√
log log k

log k
,

where the last bound follows from our choice of α and t. If t = 0 then k ≤ C, for some universal
constant C > 0, so ‖ΣX − ΣY ‖ is at most O(1) and

√
log log k/ log k = O(1). The main part of

Theorem 1.2 is proved.
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3.5 Monotonicity

Next, we are going to prove the “moreover” (equipartition) part of Theorem 1.2 for d = 2. This
part is crucial in the application for anonymity, but it can be skipped if the reader is only interested
in differential privacy.

Before we proceed, let us first note a simple monotonicity property:

Lemma 3.8 (Monotonicity). Conditioning on a larger sigma-algebra can only decrease the covari-
ance loss. Specifically, if Z is a random variable and B ⊂ G are sigma-algebras then∥∥ΣZ − ΣE[Z|G]

∥∥
2
≤
∥∥ΣZ − ΣE[Z|B]

∥∥
2
.

Proof. Denoting X = E[Z|G] and Y = E[Z|B], we see from the law of total expectation that
Y = E[X|B]. The law of total covariance (Lemma 3.1) then yields ΣZ � ΣX � ΣY , which we can
rewrite as 0 � ΣZ−ΣX � ΣZ−ΣY . From this relation, it follows that‖ΣZ − ΣX‖2 ≤‖ΣZ − ΣY ‖2,
as claimed.

Passing to a smaller sigma-algebra may in general increase the covariance loss. The additional
covariance loss can be bounded as follows:

Lemma 3.9 (Merger). Let Z be a random vector in Rp such that ‖Z‖2 ≤ 1 a.s. If a sigma-
algebra is generated by a partition, merging elements of the partition may increase the covariance
loss by at most the total probability of the merged sets. Specifically, if G = σ(G1, . . . , Gm) and
B = σ(G1 ∪ · · · ∪Gr, Gr+1, . . . , Gm), then the random vectors X = E[Z|G] and Y = E[Z|B] satisfy

0 ≤‖ΣZ − ΣY ‖2 −‖ΣZ − ΣX‖2 ≤ P(G1 ∪ · · · ∪Gr).

Proof. The lower bound follows from monotonicity (Lemma 3.8). To prove the upper bound, we
have

‖ΣZ − ΣY ‖2 −‖ΣZ − ΣX‖2 ≤‖ΣX − ΣY ‖2 ≤ E‖X − Y ‖22 (3.6)

where the first bound follows by triangle inequality, and the second from Lemma 3.1 and Lemma 3.2
for P = I.

Denote by EG the conditional expectation on the set G = G1 ∪ · · · ∪Gr, i.e. EG[Z] = E[Z|G] =
P(G)−1 E[Z1G]. Then

Y (ω) =

{
EGX, ω ∈ G
X(ω), ω ∈ Gc

Indeed, to check the first case, note that since B ⊂ G, the law of total expectation yields Y = E[X|B];
then the case follows since G ∈ B. To check the second case, note that since the sets Gr+1, · · · , Gm
belong to both sigma-algebras G and B, so the conditional expectations X and Y must agree on
each of these sets and thus on their union Gc. Hence

E‖X − Y ‖22 = E‖X − Y ‖22 1G = P(G) · EG‖X − EGX‖22 ≤ P(G) · EG‖X‖22 ≤ P(G).

Here we bounded the variance by the second moment, and used the assumption that‖X‖2 ≤ 1 a.s.
Substitute this bound into (3.6) to complete the proof.
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3.6 Proof of equipartition (the “moreover” part of Theorem 1.2)

Let k′ = b
√
kc. Assume that k′ ≥ 3. (Otherwise k < 9 and the result is trivial by taking arbitrary

partition into k of the same probability.) Applying the first part of Theorem 1.2 for k′ instead of
k, we obtain a sigma-algebra F ′ generated by a partition of a sample space into at most k′ sets Fi,
and such that ∥∥∥ΣX − ΣE[X|F ′]

∥∥∥
2
.

√
log log k′

log k′
.

√
log log k

log k
.

Divide each set Fi into subsets with probability 1/k each using division with residual. Thus we
partition each Fi into a certain number of subsets (if any) of probability 1/k each and one residual
subset of probability less than 1/k. By Monotonicity Lemma 3.8, any partitioning can only reduce
the covariance loss.

This process results in the creation of a lot of good subsets – each having probability 1/k – and
at most k′ residual subsets that have probability less than 1/k each. Merge all residuals into one
new “residual subset”. While a merger may increase the covariance loss, Lemma 3.9 guarantees
that the additional loss is bounded by the probability of the set being merged. Since we chose
k′ = b

√
kc, the probability of the residual subset is less than k′ · (1/k) ≤ 1/

√
k. So the additional

covariance loss is bounded by 1/
√
k.

Finally, divide the residual subset into further subsets of probability 1/k each. By monotonicity,
any partitioning may not increase the covariance loss. At this point we partitioned the sample space
into subsets of probability 1/k each and one smaller residual subset. Since k is an integer, the
residual must have probability zero, and thus can be added to any other subset without affecting
the covariance loss.

Let us summarize. We partitioned the sample space into k subsets of equal probability such
that the covariance loss is bounded by

1√
k

+ C

√
log log k

log k
.

√
log log k

log k
.

The proof is complete.

3.7 Higher moments: tensorization

Recall that Theorem 1.2 provides a bound on the covariance loss4

ΣX − ΣY = EXXT − EY Y T = EX⊗2 − EY ⊗2. (3.7)

Perhaps counterintuitively, the bound on the covariance loss can automatically be lifted to higher
moments, at the cost of multiplying the error by at most 4d.

Theorem 3.10 (Tensorization). Let X be a random vector in Rp such that ‖X‖2 ≤ 1 a.s., let F be
a sigma-algebra, and let d ≥ 2 be an integer. Then the conditional expectation Y = E[X|F ] satisfies∥∥EX⊗d − EY ⊗d

∥∥
2
≤ 2d−2(2d − d− 1)

∥∥EX⊗2 − EY ⊗2
∥∥

2
.

For the proof, we need an elementary identity:

4Recall Lemma 3.1 for the first identity, and refer to Section 2.2 for the tensor notation.
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Lemma 3.11. Let U and V be independent and identically distributed random vectors in Rp. Then

E〈U, V 〉2 =
∥∥EUUT

∥∥2

2
.

Proof. We have

E〈U, V 〉2 = E(V TU)(UTV ) = E trV TUUTV

= E trUUTV V T (cyclic property of trace)

= trEUUTV V T (linearity)

= trE[UUT] E[V V T] (independence)

= tr(EUUT)2 (identical distribution)

=
∥∥EUUT

∥∥2

2
(the matrix EUUT is symmetric).

Proof of Theorem 3.10. Step 1: binomial decomposition. Denoting

X0 = Y, X1 = X − Y,

we can represent

X⊗d = (X0 +X1)⊗d =
∑

i1,...,id∈{0,1}

Xi1 ⊗ · · · ⊗Xid .

Since Y ⊗d = X0 ⊗ · · · ⊗X0, it follows that

X⊗d − Y ⊗d =
∑

i1,...,id∈{0,1}
i1+···+id≥1

Xi1 ⊗ · · · ⊗Xid .

Taking expectation on both sides and using triangle inequality, we obtain∥∥EX⊗d − EY ⊗d
∥∥

2
≤

∑
i1,...,id∈{0,1}
i1+···+id≥1

∥∥EXi1 ⊗ · · · ⊗Xid

∥∥
2
. (3.8)

Let us look at each summand on the right hand side separately.

Step 2: Dropping trivial terms. First, let us check that all summands for which i1 + · · ·+ id = 1
vanish. Indeed, in this case exactly one term in the product Xi1 ⊗ · · · ⊗ Xid is X1, while all
other terms are X0. Let EF denote conditional expectation with respect to F . Since EF X1 =
EF [X − EF X] = 0 and X0 = Y = EF X is F-measurable, it follows that EF Xi1 ⊗ · · · ⊗Xid = 0.
Thus, EXi1 ⊗ · · · ⊗Xid = 0 as we claimed.

Step 3: Bounding nontrivial terms. Next, we bound the terms for which r = i1+· · ·+id ≥ 2. Let
(X ′0, X

′
1) be an independent copy of the pair of random variables (X0, X1). Then EXi1⊗· · ·⊗Xid =

EX ′i1 ⊗ · · · ⊗X
′
id

, so∥∥EXi1 ⊗ · · · ⊗Xid

∥∥2

2
= 〈EXi1 ⊗ · · · ⊗Xid ,EX

′
i1 ⊗ · · · ⊗X

′
id
〉

= E〈Xi1 ⊗ · · · ⊗Xid , X
′
i1 ⊗ · · · ⊗X

′
id
〉 (by independence)

= E〈Xi1 , X
′
i1〉 · · · 〈Xid , X

′
id
〉

= E〈X0, X
′
0〉d−r〈X1, X

′
1〉r.
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By assumption, we have ‖X‖2 ≤ 1 a.s., which implies by Jensen’s inequality that ‖X0‖2 =
‖EF X‖2 ≤ EF‖X‖2 ≤ 1 a.s. These bounds imply by the triangle inequality that ‖X1‖2 =
‖X −X0‖2 ≤ 2 a.s. By identical distribution, we also have

∥∥X ′0∥∥2
≤ 1 and

∥∥X ′1∥∥2
≤ 2 a.s. Hence,∣∣〈X0, X

′
0〉
∣∣ ≤ 1,

∣∣〈X1, X
′
1〉
∣∣ ≤ 4 a.s.

Returning to the term we need to bound, this yields∥∥EXi1 ⊗ · · · ⊗Xid

∥∥2

2
≤ 4r−2 E〈X1, X

′
1〉2

≤ 4d−2
∥∥EX1X

T
1

∥∥2

2
(by Lemma 3.11)

= 4d−2
∥∥E(X − Y )(X − Y )T

∥∥2

2

= 4d−2
∥∥EX⊗2 − EY ⊗2

∥∥2

2
(by Lemma 3.1).

Step 4: Conclusion. Let us summarize. The sum on the right side of (3.8) has 2d−1 terms. The
d terms corresponding to i1 + · · ·+ id = 1 vanish. The remaining 2d − d− 1 terms are bounded by
K := 2d−2

∥∥EX⊗2 − EY ⊗2
∥∥

2
each. Hence the entire sum is bounded by (2d− d− 1)K, as claimed.

The theorem is proved.

Combining the Covariance Loss Theorem 1.2 with Theorem 3.10 in view of (3.7), we conclude:

Corollary 3.12 (Tensorization). Let X be a random vector in Rp such that ‖X‖2 ≤ 1 a.s. Then,
for every k ≥ 3, there exists a partition of the sample space into at most k sets such that for the
sigma-algebra F generated by this partition, the conditional expectation Y = E[X|F ] satisfies for
all d ∈ N, ∥∥EX⊗d − EY ⊗d

∥∥
2
. 4d

√
log log k

log k
.

Moreover, if the probability space has no atoms, then the partition can be made with exactly k sets,
all of which have the same probability 1/k.

Remark 3.13. A similar bound can be deduced for the higher-order version of covariance matrix,

Σ
(d)
X := E(X −EX)⊗d. Indeed, applying Theorem 1.2 and Theorem 3.10 for X −EX instead of X

(and so for Y − EY instead of Y ), we conclude that

∥∥Σ
(d)
X − Σ

(d)
Y

∥∥
2
≤ 8d

∥∥Σ
(2)
X − Σ

(2)
Y

∥∥
2
. 8d

√
log log k

log k
.

(The extra 2d factor appears because from ‖X‖2 ≤ 1 we can only conclude that ‖X − EX‖2 ≤ 2,
so the bound needs to be normalized accordingly.)

3.8 Optimality

The following result shows that the rate in Theorem 1.2 is in general optimal up to a
√

log log k
factor.

Proposition 3.14 (Optimality). Let p > 16 ln(2k). Then there exists a random vector X in Rp
such that ‖X‖2 ≤ 1 a.s. and for any sigma-algebra F generated by a partition of a sample space
into at most k sets, the conditional expectation Y = E[X|F ] satisfies

‖ΣX − ΣY ‖2 ≥
1

80
√

ln(2k)
.
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We will makeX uniformly distributed on a well-separated subset of the Boolean cube p−1/2{0, 1}p
of cardinality n = 2k. The following well known lemma states that such a subset exists:

Lemma 3.15 (A separated subset). Let p > 16 lnn. Then there exist points x1, . . . , xn ∈ p−1/2{0, 1}p
such that ∥∥xi − xj∥∥2

>
1

2
for all distinct i, j ∈ [n].

Proof. Let X and X ′ be independent random vectors uniformly distributed on {0, 1}p. Then∥∥X −X ′∥∥2

2
=
∑p

r=1(X(r) − X ′(r))2 is a sum of i.i.d. Bernoulli random variables with parameter
1/2. Then Hoeffding’s inequality [10] yields

P
{∥∥X −X ′∥∥2

2
≤ p/4

}
≤ e−p/8.

Let X1, . . . , Xn be independent random vectors uniformly distributed on {0, 1}p. Applying the
above inequality for each pair of them and then taking the union bound, we conclude that

P
{
∃i, j ∈ [n] distinct :

∥∥Xi −Xj

∥∥2

2
≤ p/4

}
≤ n2e−p/8 < 1

due to the condition on n. Therefore, there exists a realization of these random vectors that satisfies∥∥Xi −Xj

∥∥
2
>

√
p

2
for all distinct i, j ∈ [n].

Divide both sides by
√
p to complete the proof.

We will also need a high-dimensional version of the identity Var(X) = 1
2 E(X −X ′)2 where X

and X ′ are independent and identically distributed random variables. The following generalization
is straightforward:

Lemma 3.16. Let X and X ′ be independent and identically distributed random vectors taking
values in Rp. Then

E‖X − EX‖22 =
1

2
E
∥∥X −X ′∥∥2

2
.

Proof of Proposition 3.14. Let n = 2k. Consider the sample space [n] equipped with uniform
probability and the sigma-algebra that consists of all subsets of [n]. Define the random variable X
by

X(i) = xi, i ∈ [n]

where {x1, . . . , xn} is the (1/2)-separated subset of p−1/2{0, 1}p from Lemma 3.15. Hence, X is
uniformly distributed on the set {x1, . . . , xn}.

Now, if F is the sigma-algebra generated by a partition {F1, . . . , Fk0} of [n] with k0 ≤ k, then

√
p‖ΣX − ΣY ‖2 ≥ tr(ΣX − ΣY )

= trE(X − Y )(X − Y )T (by Lemma 3.1 again)

= E tr(X − Y )(X − Y )T = E‖X − Y ‖22
= E

[
EF‖X − EF X‖22

]
(where EF denotes conditional expectation)

=

k0∑
j=1

P(Fj) E
∥∥Xj − EXj

∥∥2

2
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where the random variable Xj is uniformly distributed on the set {xi}i∈Fj .

=
1

2

k0∑
j=1

P(Fj) E
∥∥Xj −X ′j

∥∥2

2

where X ′j is an independent copy of Xj , by Lemma 3.16. Since the Xj and X ′j are independent

and uniformly distributed on the set of
∣∣Fj∣∣ points,

∥∥Xj −X ′j
∥∥

2
can either be zero (if both random

vectors hit the same point, which happens with probability 1/
∣∣Fj∣∣) or it is greater than 1/2 by

separation. Hence

E
∥∥Xj −X ′j

∥∥2

2
≥ 1

4

(
1− 1∣∣Fj∣∣

)
.

Moreover, P(Fj) =
∣∣Fj∣∣ /n, so substituting in the bound above yields

√
p‖ΣX − ΣY ‖2 ≥

1

2

k0∑
j=1

∣∣Fj∣∣
n
· 1

4

(
1− 1∣∣Fj∣∣

)
=

1

8n
(n− k0) ≥ 1

16
,

where we used that the sets Fj form a partition of [n] so their cardinalities sum to n, our choice of
n = 2k and the fact that k0 ≤ k.

We proved that

‖ΣX − ΣY ‖2 ≥
1

16
√
p
.

If p ≤ 25 lnn, this quantity is further bounded below by 1/(80
√

lnn) = 1/(80
√

ln(2k)), completing
the proof in this range. For larger p, the result follows by appending enough zeros to X and thus
embedding it into higher dimension. Such embedding obviously does not change ‖ΣX − ΣY ‖2.

4 Anonymity

In this section, we use our results on the covariance loss to make anonymous and accurate synthetic
data by microaggregation. To this end, we can interpret microaggregation probabilistically as
conditional expectation (Section 4.1) and deduce a general result on anonymous microaggregation
(Theorem 4.1). We then show how to make unlimited synthetic data by bootstrapping (Section 4.2)
and Boolean synthetic data by randomized rounding (Section 4.3).

4.1 Microaggregation as conditional expectation

For discrete probability distributions, conditional expectation can be interpreted as microaggrega-
tion, or local averaging.

Consider a finite sequence of points x1, . . . , xn ∈ Rp, which we can think of as true data. Define
the random variable X on the sample space [n] equipped with the uniform probability distribution
by setting

X(i) = xi, i ∈ [n].

Now, if F = σ(I1, . . . , Ik) is the sigma-algebra generated by some partition [n] = I1 ∪ · · · ∪ Ik, the
conditional expectation Y = E[X|F ] must take a constant value on each set Ij , and that value is
the average of X on that set. In other words, Y takes values yj with probability wj , where

wj =

∣∣Ij∣∣
n
, yj =

1∣∣Ij∣∣ ∑i∈Ij xi, j = 1, . . . , k. (4.1)
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The law of total expectation EX = EY in our case states that

1

n

n∑
i=1

xi =

k∑
j=1

wjyj . (4.2)

Higher moments are handled using Corollary 3.12. This way, we obtain an effective anonymous
algorithm that creates synthetic data while accurately preserving most marginals:

Theorem 4.1 (Anonymous microaggregation). Suppose k divides n. There exists an algorithm
that takes input data x1, . . . , xn ∈ Rp such that ‖xi‖2 ≤ 1 for all i, and computes a partition
[n] = I1 ∪ · · · ∪ Ik with

∣∣Ij∣∣ = n/k for all j, such that the microaggregated vectors

yj =
k

n

∑
i∈Ij

xi, j = 1, . . . , k,

satisfy for all d ∈ N, ∥∥∥∥ 1

n

n∑
i=1

x⊗di −
1

k

k∑
j=1

y⊗dj

∥∥∥∥
2

. 4d

√
log log k

log k
.

The algorithm is (n/k)-anonymous, and runs in time polynomial in p and n, and is independent
of d.

Proof. Most of the statement follows straightforward from Corollary 3.12 in light of the discussion
above. However, the “moreover” part of Corollary 3.12 requires the probability space to be atomless,
while our probability space [n] does have atoms. Nevertheless, if the sample space consists of n
atoms of probability 1/n each, and k divides n, then it is obvious that the divide-and-merge
argument explained in Section 3.6 works, and so the “moreover” part of Corollary 3.12 also holds
in this case. Thus, we obtain the (n/k)-anonymity from the microaggregation procedure. It is also
clear that the algorithm (which is independent of d) runs in time polynomial in p and n. See the
Microaggregation part of Algorithm 1.

Remark 4.2. The requirement that k divides n appearing in Theorem 4.1 as well as in other theo-
rems makes it possible to partition [n] into k sets of exactly the same cardinality. While convenient
for proof purposes, this assumption is not strictly necessary. One can drop this assumption and
make one set slightly larger than others. The corresponding modifications are left to the reader.

The use of spectral projection in combination with microaggregation has also been proposed
in [22], although without any theoretical analysis regarding privacy or utility.

4.2 Unlimited synthetic data: bootstrapping

A seeming drawback of Theorem 4.1 is that the anonymity strength n/k and the cardinality k of the
output data y1, . . . , yk are tied to each other. To produce synthetic data of arbitrary size, we can
use the classical technique of bootstrapping, which consists of sampling new data u1, . . . , um from
the data y1, . . . , yk independently and with replacement. The following general lemma establishes
the accuracy of resampling:
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Lemma 4.3 (Bootstrapping). Let Y be a random vector in Rp such that ‖Y ‖2 ≤ 1 a.s. Let
Y1, . . . , Ym be independent copies of Y . Then for all d ∈ N we have

E
∥∥∥∥ 1

m

m∑
i=1

Y ⊗di − EY ⊗d
∥∥∥∥2

2

≤ 1

m
.

Proof. We have

E
∥∥∥∥ 1

m

m∑
i=1

Y ⊗di − EY ⊗d
∥∥∥∥2

2

=
1

m2

m∑
i=1

E
∥∥Y ⊗di − EY ⊗d

∥∥2

2
(by independence and zero mean)

=
1

m
E
∥∥Y ⊗d − EY ⊗d

∥∥2

2
(by identical distribution)

=
1

m

(
E
∥∥Y ⊗d∥∥2

2
−
∥∥EY ⊗d∥∥2

2

)
≤ 1

m
E
∥∥Y ⊗d∥∥2

2
=

1

m
E‖Y ‖2d2 .

Using the assumption ‖Y ‖2 ≤ 1 a.s., we complete the proof.

Going back to the data y1, . . . , yk produced by Theorem 4.1, let us consider a random vector
Y that takes values yj with probability 1/k each. Then obviously EY ⊗d = 1

k

∑k
j=1 y

⊗d
j . Moreover,

the assumption that ‖xi‖2 ≤ 1 for all i implies that
∥∥yj∥∥2

≤ 1 for all j, so we have ‖Y ‖2 ≤ 1 as
required in Bootstrapping Lemma 4.3. Applying this lemma, we get

E
∥∥∥∥ 1

m

m∑
i=1

Y ⊗di − 1

k

k∑
j=1

y⊗dj

∥∥∥∥
2

2

≤ 1

m
.

Combining this with the bound in Theorem 4.1, we obtain:

Theorem 4.4 (Anonymous microaggregation: unlimited data). Suppose k divides n. Let m ∈ N.
There exists a (n/k)-anonymous randomized algorithm that transforms input data x1, . . . , xn ∈ Bp

2

to the output data u1, . . . , um ∈ Bp
2 in such a way that for all d ∈ N,

E
∥∥∥∥ 1

n

n∑
i=1

x⊗di −
1

m

m∑
i=1

u⊗di

∥∥∥∥2

2

. 16d
log log k

log k
+

1

m
.

The algorithm consists of microaggregation (described in Theorem 4.1) followed by bootstrapping
(described above). It runs in time polynomial in p and n, and is independent of d.

Remark 4.5 (Convexity). Microaggregation respects convexity. If the input data x1, . . . , xn lies
in some given convex set K, the output data u1, . . . , um will lie in K, too. This can be useful
in applications where one often needs to preserve some natural constraints on the data, such as
positivity.

4.3 Boolean data: randomized rounding

Let us now specialize to Boolean data. Suppose the input data x1, . . . , xn is taken from {0, 1}p.
We can use Theorem 4.4 (and obvious renormalization by the factor ‖xi‖2 =

√
p) to make (n/k)-

anonymous synthetic data u1, . . . , um that satisfies

E p−d
∥∥∥∥ 1

n

n∑
i=1

x⊗di −
1

m

k∑
i=1

u⊗di

∥∥∥∥
2

2

. 16d
log log k

log k
+

1

m
. (4.3)
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According to Remark 4.5, the output data u1, . . . , um lies in the cube K = [0, 1]p. In order
to transform the vectors ui into Boolean vectors, i.e. points in {0, 1}p, we can apply the known
technique of randomized rounding [25]. We define the randomized rounding of a number x ∈ [0, 1] as
a random variable r(x) ∼ Ber(x). Thus, to compute r(x), we flip a coin that comes up heads with
probability x and output 1 for a head and 0 for a tail. It is convenient to think of r : [0, 1]→ {0, 1} as
a random function. The randomized rounding r(x) of a vector x ∈ [0, 1]p is obtained by randomized
rounding on each of the p coordinates of x independently.

Theorem 4.6 (Anonymous synthetic Boolean data). Suppose k divides n. There exists an (n/k)-
anonymous randomized algorithm that transforms input data x1, . . . , xn ∈ {0, 1}p into output data
z1, . . . , zm ∈ {0, 1}p in such a way that the error E = 1

n

∑n
i=1 x

⊗d
i −

1
m

∑m
i=1 z

⊗d
i satisfies

E
(
p

d

)−1 ∑
1≤i1<···<id≤p

E(i1, . . . , id)
2 . 32d

( log log k

log k
+

1

m

)
for all d ≤ p/2. The algorithm consists of microaggregation and bootstrapping (as in Theorem 4.4)
followed by independent randomized rounding of all coordinates of all points. It runs in time poly-
nomial in p, n and linear in m, and is independent of d.

For convenience of the reader, Algorithm 1 below gives a pseudocode description of the algorithm
described in Theorem 4.6.

To prove Theorem 4.6, first note:5

Lemma 4.7 (Randomized rounding is unbiased). For any x ∈ [0, 1]p and d ∈ N, all off-diagonal
entries of the tensors E r(x)⊗d and x⊗d match:

Poff

(
E r(x)⊗d − x⊗d

)
= 0,

where Poff is the orthogonal projection onto the subspace of tensors supported on the off-diagonal
entries.

Proof. For any tuple of distinct indices i1, . . . , id ∈ [p], the definition of randomized rounding implies
that r(x)i1 , . . . , r(x)id are independent Ber(xi1), . . . ,Ber(xid) random variables. Thus

E r(x)i1 · · · r(x)id = xi1 · · ·xid ,

completing the proof.

Proof of Theorem 4.6. Condition on the data u1, . . . , um obtained in Theorem 4.4. The output
data of our algorithm can be written as zi = ri(ui), where the index i in ri indicates that we
perform randomized rounding on each point ui independently. Let us bound the error introduced
by randomized rounding, which is

a := E p−d
∥∥∥∥Poff

( 1

m

m∑
i=1

z⊗di −
1

m

m∑
i=1

u⊗di

)∥∥∥∥2

2

=
p−d

m2
E
∥∥∥∥ m∑
i=1

Zi

∥∥∥∥2

2

5This may be a good time for the reader to refer to Section 2.2 for definitions of restriction operators on tensors.
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Algorithm 1 Boolean n/k-anonymous synthetic data via microaggregation

Input: a sequence of points x1, . . . , xn in the cube {0, 1}p (true data); k ≥ 9, where k divides n;
m ∈ N (number of points in the synthetic data).
Microaggregation

1. Compute the second-moment matrix S = 1
n

∑n
i=1 xix

T
i .

2. Let k′ = b
√
kc. Let t :=

⌊
log k′

log(7/α)

⌋
and α :=

(
log log k′

log k′

)1/4
.

3. Let P : Rd → Rd be the orthogonal projection onto the span of the eigenvectors associated
with the t largest eigenvalues of S.

4. Choose an α-net ν1, . . . , νs ∈ Rp of the unit Euclidean ball of the subspace ran(P ). This is
done by enumerating Bt

2 ∩ (α/
√
t)Zt and mapping it into ran(P ) using any linear isometry.

5. Construct a nearest-point partition [n] = F1∪· · ·∪Fs for x1, . . . , xn with respect to ν1, . . . , νs
as follows. For each ` ∈ [n], choose a point νj nearest to x` in the `2 metric and put ` into
Fj . Break any ties arbitrarily.

6. Transform the partition [n] = F1 ∪ · · · ∪ Fs into the equipartition [n] = I1 ∪ · · · ∪ Ik with∣∣Ij∣∣ = n
k ∀j following the steps in Section 3.6: Divide each non-empty set Fi into subsets

with probability 1/k each using division with residual, then merge all residuals into one new
residual subset and divide the residual subset into further subsets of probability 1/k each,
again using division with residual.

7. Perform microaggregation: compute yj = k
n

∑
i∈Ij xi, j = 1, . . . , k.

Bootstrapping creates new data u1, . . . , um by sampling (independently and with replacement)
m points from the data y1, . . . , yk.
Randomized rounding maps the data {u`}m`=1 ∈ [0, 1]p to data {zj}mj=1 ∈ {0, 1}p.
Output: a sequence of points z1, . . . , zm in the cube {0, 1}p (synthetic data) that satisfy the
properties outlined in Theorem 4.6.

where Zi := Poff

(
ri(ui)

⊗d − u⊗di
)

are independent mean zero random variables due to Lemma 4.7.
Therefore,

a =
p−d

m2

m∑
i=1

E‖Zi‖22 .

Since the variance is bounded by the second moment, we have

E‖Zi‖22 ≤ E
∥∥∥Poff

(
ri(ui)

⊗d)∥∥∥2

2
≤ E

∥∥∥ri(ui)⊗d∥∥∥2

2
= E

∥∥ri(ui)∥∥2d

2
≤ pd

since ri(ui) ∈ {0, 1}p. Hence

a ≤ 1

m
.

Lifting the conditional expectation (i.e. taking expectation with respect to u1, . . . , um) and com-
bining this with (4.3) via triangle inequality, we obtain

E p−d
∥∥∥∥Poff

( 1

n

n∑
i=1

x⊗di −
1

m

m∑
i=1

z⊗di

)∥∥∥∥2

2

. 16d
log log k

log k
+

2

m
.
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Finally, we can replace the off-diagonal norm by the symmetric norm using Lemma 2.1. If p ≥ 2d,
it yields

E
(
p

d

)−1∥∥∥∥Psym

( 1

n

n∑
i=1

x⊗di −
1

m

m∑
i=1

z⊗di

)∥∥∥∥2

2

. 2d
(

16d
log log k

log k
+

2

m

)
.

In view of (2.2), the proof is complete.

5 Differential Privacy

Here we upgrade anonymity to differential privacy by noisy microaggregation. In Sections 5.1–5.5,
we show that the microaggregation is sufficiently stable with respect to additive noise, as long as we
damp small blocks Fj (Section 5.3) and project the weights wj and the vectors yj back to the unit
simplex and the convex set K, respectively (Section 5.4). We then establish differential privacy in
Section 5.6 and accuracy in Section 5.5, with Theorem 5.9 being the most general result on private
synthetic data. Just like we did for anonymity, we then show how to make unlimited synthetic data
by bootstrapping (Section 5.8) and Boolean synthetic data by randomized rounding (Section 5.9).

5.1 Microaggregation with more control

We will protect privacy by adding noise to the microaggregation mechanism. To make this happen,
we will need a version of Theorem 4.1 with more control.

We adapt the microaggregation mechanism from (4.1) to the current setting. Given a nearest-
point partition [n] = F1 ∪ · · · ∪ Fs of (xi), we define for non-empty Fj

wj =

∣∣Fj∣∣
n
, yj =

1∣∣Fj∣∣ ∑i∈Fj

xi; j = 1, . . . , s. (5.1)

and when Fj is empty, set wj = 0 and yj to be an arbitrary point.

Theorem 5.1 (Microaggregation with noisy second moment). Let x1, . . . , xn ∈ Rp be such that
‖xi‖2 ≤ 1 for all i. Let P be the orthogonal projection in Rp onto the t leading eigenvectors of S+R
where S = 1

n

∑n
i=1 xix

T
i and R is a p × p symmetric matrix. Let ν1, . . . , νs ∈ Rp be an α-net of

the unit Euclidean ball of ran(P ). Let [n] = F1 ∪ · · · ∪ Fs be a nearest-point partition of (xi) with
respect to ν1, . . . , νs. Then the weights wj and vectors yj defined in (5.1) satisfy for all d ∈ N:∥∥∥∥ 1

n

n∑
i=1

x⊗di −
s∑
j=1

wjy
⊗d
j

∥∥∥∥
2

≤ 4d
(

4α2 +
1√
t

+ 2‖R‖2
)
. (5.2)

To prove the theorem, we need a noisy version of Lemma 3.3:

Lemma 5.2 (Noisy spectral projection). Assume that ‖X‖2 ≤ 1 a.s. Let P be the orthogonal
projection in Rp onto the t leading eigenvectors of S + R where S = EXXT and R is a p × p
symmetric matrix. Then ∥∥(I − P )S(I − P )

∥∥
2
≤ 1√

t
+ 2‖R‖2 .

Proof. To control the effect of the noise R, we use the Wielandt-Hoffman inequality, which states
that for any two p× p symmetric matrices S and R, we have

n∑
i=1

(
λi(S +R)− λi(S)

)2 ≤ n∑
i=1

λi(R)2
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(see e.g. [30, Exercise 6]). When we drop some terms on the left side and sum only over i > t, take
the square root on both sides, and use the Minkowski inequality, we get(∑

i>t

λi(S +R)2
)1/2

≤
(∑
i>t

λi(S)2
)1/2

+
( n∑
i=1

λi(R)2
)1/2

. (5.3)

With this tool, we get∥∥(I − P )S(I − P )
∥∥

2
≤
∥∥(I − P )(S +R)(I − P )

∥∥
2

+
∥∥(I − P )R(I − P )

∥∥
2

(triangle inequality)

≤
(∑
i>t

λi(S +R)2
)1/2

+‖R‖2 (by definition of P )

≤
(∑
i>t

λi(S)2
)1/2

+ 2‖R‖2 (using (5.3) for p = 2).

It remains to use the bound
∑

i>t λi(S)2 ≤ 1/t, which we established in (3.3), and which holds in
our situation as well.

Proof of Theorem 5.1. We explained in Section 4.1 how to realize microaggregation probabilistically
as conditional expectation. To reiterate, we consider the sample space [n] equipped with the uniform
probability distribution and define a random variable X on [n] by setting X(i) = xi for i = 1, . . . , n.
If F = σ(F1, . . . , Fs) is the sigma-algebra generated by some partition [n] = F1 ∪ · · · ∪ Fk, the
conditional expectation Y = E[X|F ] is a random vector that takes values yj with probability wj
as defined in (5.1). Then the left hand side of (5.2) equals∥∥EX⊗d − EY ⊗d

∥∥
2
≤ 4d

∥∥EXXT − EY Y T
∥∥

2
(by the Higher Moment Theorem 3.10)

≤ 4d
(
E‖PX − PY ‖22 +

∥∥(I − P )S(I − P )
∥∥

2

)
(by Lemma 3.2).

Use Lemmas 3.6 and 5.2 to complete the proof.

5.2 Perturbing the weights and vectors

Theorem 5.1 makes the first step towards noisy microaggregation: it allows one to add noise to
the second moment matrix. Next, we will add noise to the weights (wj) and vectors (yj) obtained
by microaggregation. To control the effect of such noise on the accuracy, the following two simple
bounds will be useful.

Lemma 5.3. Let u, v ∈ Rn be such that ‖u‖2 ≤ 1 and ‖v‖2 ≤ 1. Then, for every d ∈ N,∥∥u⊗d − v⊗d∥∥
2
≤ d‖u− v‖2 .

Proof. For d = 1 the result is trivial. For d ≥ 2, we can represent the difference as a telescopic sum

u⊗d − v⊗d =
d−1∑
k=0

(
u⊗(d−k) ⊗ v⊗k − u⊗(d−k−1) ⊗ v⊗(k+1)

)
=

d−1∑
k=0

u⊗(d−k−1) ⊗ (u− v)⊗ v⊗k.

Then, by triangle inequality,

∥∥u⊗d − b⊗d∥∥
2
≤

d−1∑
k=0

‖u‖d−k−1
2 ‖u− v‖2‖v‖

k
2 ≤ d‖u− v‖2 ,

where we used the assumption on the norms of u and v in the last step. The lemma is proved.
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Lemma 5.4. Consider numbers λj , µj ∈ R and vectors uj , vj ∈ Rp such that
∥∥uj∥∥2

≤ 1 and∥∥vj∥∥2
≤ 1 for all j = 1, . . . ,m. Then, for every d ∈ N,∥∥∥∥∑

j

(
λju

⊗d
j − µjv

⊗d
j

)∥∥∥∥
2

≤ d
∑
j

∣∣λj∣∣∥∥uj − vj∥∥2
+
∑
j

∣∣λj − µj∣∣ . (5.4)

Proof. Adding and subtracting the cross term
∑

j λjv
⊗d
j and using triangle inequality, we can bound

the left side of (5.4) by∥∥∥∥∑
j

λj

(
u⊗dj − v

⊗d
j

)∥∥∥∥
2

+

∥∥∥∥∑
j

(λj − µj)v⊗dj

∥∥∥∥
2

≤
∑
j

∣∣λj∣∣∥∥u⊗dj − v⊗dj ∥∥2
+
∑
j

∣∣λj − µj∣∣∥∥v⊗dj ∥∥2
.

It remains to use Lemma 5.3 and note that
∥∥v⊗dj ∥∥2

=
∥∥vj∥∥d2.

5.3 Damping

At this point, we have gathered the tools to prove that the microaggregation mechanism (5.1)
is stable with respect to additive noise: whether it is the noise in the second moment matrix
(Section 5.1), the weights wj or the vectors yj (Section 5.2). However, two issues need to be
resolved.

The first issue is the potential instability of the microaggregation mechanism (5.1) for small
blocks Fj . For example, if

∣∣Fj∣∣ = 1, the microaggregation does not do anything for that block and
returns the original input vector yj = xi. To protect the privacy of such vector, a lot of noise is
needed, which might be harmful to the accuracy.

One may wonder why can we not make all blocks Fj of the same size like we did in Theorem 4.1.
Indeed, in Section 3.6 we showed how to transform a potentially imbalanced partition [n] = F1 ∪
· · · ∪ Fs into an equipartition (where all Fj have the same cardinality) using a divide-an-merge
procedure; could we not apply it here? Unfortunately, an equipartition might be too sensitive6 to
changes even in a single data point xi. The original partition F1, . . . , Fs, on the other hand, is
sufficiently stable.

We resolve this issue by suppressing, or damping, the blocks Fj that are too small. When-
ever the cardinality of Fj drops below a predefined level b, we divide by b rather than

∣∣Fj∣∣ in
(5.1). In other words, instead of vanilla microaggregation (5.1), we consider the following damped
microaggregation:

wj =

∣∣Fj∣∣
n
, ỹj =

1∣∣Fj∣∣ ∨ b ∑i∈Fj

xi, j = 1, . . . , s. (5.5)

6The divide-and-merge procedure described in Section 3.6/Proof of Theorem 4.1 for producing the I blocks
from the F blocks is sensitive to even a change in a single data point xi. For example, suppose that one block
F1 = {x1, . . . , xn} contains all the points and it is divided into I1 = {x1, . . . , xn/k},· · · , Ik = {xn−n/k+1, . . . , xn}.
If x1 is changed to another point so that it becomes a new point in another block F2, then the new I blocks could
become I1 = {x2, . . . , xn/k+1},· · · , Ik−1 = {xn−2n/k+2, . . . , xn−n/k+1}, Ik = {xn−n/k+2, . . . , xn, x1} and so every I
block is changed by two points.
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5.4 Metric projection

And here is the second issue. Recall that the numbers wj returned by microaggregation (5.5) are
probability weights: the weight vector w = (wj)

s
j=1 belongs to the unit simplex

∆ :=
{
a = (a1, . . . , as) :

s∑
i=1

ai = 1; ai ≥ 0 ∀i
}
.

This feature may be lost if we add noise to wj . Similarly, if the input vectors xj are taken from
a given convex set K (for Boolean data, this is K = [0, 1]p), we would like the synthetic data
to belong to K, too. Microaggregation mechanism (5.1) respects this feature: by convexity, the
vectors yj do belong to K. However, this property may be lost if we add noise to yj .

We resolve this issue by projecting the perturbed weights and vectors back onto the unit simplex
∆ and the convex set K, respectively. For this purpose, we utilize metric projections mappings
that return a proximal point in a given set. Formally, we let

π∆,1(w) := argmin
w̄∈∆

‖w̄ − w‖1 ; πK,2(y) := argmin
ȳ∈K

‖ȳ − y‖2 .

(If the minimum is not unique, break the tie arbitrarily. One valid choice of π∆,1(w) can be defined
by setting all the negative entries of w to be 0 and then normalize it so that it is in ∆. In the case
when all entries of w are negative, set π∆,1(w) to be any point in ∆.)

Thus, here is our plan: given input data (xi)
s
i=1, we apply damped microaggregation (5.5) to

compute weights and vectors (wj , ỹj)
s
j=1, add noise, and project the noisy vectors back to the unit

simplex ∆ and the convex set K respectively. In other words, we compute

w̄ = π∆,1 (w + ρ) , ȳj = πK,2
(
ỹj + rj

)
, (5.6)

where ρ ∈ Rs and rj ∈ Rp are noise vectors (which we will set to be random Laplacian noise in the
future).

5.5 The accuracy guarantee

Here is the accuracy guarantee of our procedure. This is a version of Theorem 5.1 with noise,
damping, and metric projection:

Theorem 5.5 (Accuracy of damped, noisy microaggregation). Let K be a convex set in Rp that
lies in the unit Euclidean ball Bp

2 . Let x1, . . . , xn ∈ K. Let P be the orthogonal projection in Rp
onto the t leading eigenvectors of S+R where S = 1

n

∑n
i=1 xix

T
i and R is a p×p symmetric matrix.

Let ν1, . . . , νs ∈ Rp be an α-net of the unit Euclidean ball of ran(P ). Let [n] = F1 ∪ · · · ∪ Fs be a
nearest-point partition of (xi) with respect to ν1, . . . , νs. Then the weights w̄j and vectors ȳj defined
in (5.6) satisfy for all d ∈ N:∥∥∥∥ 1

n

n∑
i=1

x⊗di −
s∑
j=1

w̄j ȳ
⊗d
j

∥∥∥∥
2

≤ 4d
(

4α2 +
1√
t

+ 2‖R‖2
)

+
2dsb

n
+ 2‖ρ‖1 + 2d

s∑
j=1

wj
∥∥rj∥∥2

. (5.7)

Proof. Adding and subtracting the cross term
∑
wjy

⊗d
j and using triangle inequality, we can bound

the left hand side of (5.7) by∥∥∥∥ 1

n

n∑
i=1

x⊗di −
s∑
j=1

wjy
⊗d
j

∥∥∥∥
2

+

∥∥∥∥ s∑
j=1

(
wjy

⊗d
j − w̄j ȳ

⊗d
j

)∥∥∥∥
2

(5.8)

27



The first term can be bounded by Theorem 5.1. For the second term we can use Lemma 5.4 and
note that ∥∥yj∥∥2

≤ 1,
∥∥ȳj∥∥2

≤ 1 for all j ∈ [s]. (5.9)

Indeed, definition (5.1) of yj and the assumption that xi lie in the convex set K imply that yj ∈ K.
Also, definition (5.6) implies that ȳj ∈ K as well. Now the bounds in (5.9) follow from the
assumption that K ⊂ Bp

2 . So, applying Theorem 5.1 and Lemma 5.4, we see that the quantity in
(5.8) is bounded by

4d
(

4α2 +
1√
t

+ 2‖R‖2
)

+ d
s∑
j=1

wj
∥∥yj − ȳj∥∥2

+
s∑
j=1

∣∣wj − w̄j∣∣ . (5.10)

We bound the two sums in this expression separately.
Let us start with the sum involving yj and ȳj . We will handle large and small blocks differently.

For a large block, one for which
∣∣Fj∣∣ ≥ b, by (5.5) we have ỹj =

∣∣Fj∣∣−1∑
i∈Fj

xi = yj ∈ K. By

definition (5.6), ȳj is the closest point in K to yj + r2. Since yj ∈ K, we have∥∥yj − ȳj∥∥2
≤
∥∥yj + rj − ȳj

∥∥
2

+
∥∥rj∥∥2

(by triangle inequality)

≤
∥∥yj + rj − yj

∥∥
2

+
∥∥rj∥∥2

(by minimality property of ȳj)

= 2
∥∥rj∥∥2

.

Hence ∑
j∈[s]: |Fj|≥b

wj
∥∥yj − ȳj∥∥2

≤ 2
s∑
j=1

wj
∥∥rj∥∥2

.

Now let us handle small blocks. By (5.9) we have
∥∥yj − ȳj∥∥2

≤ 2, so

∑
j∈[s]: |Fj|<b

wj
∥∥yj − ȳj∥∥2

≤
∑

j∈[s]: |Fj|<b

∣∣Fj∣∣
n
· 2 ≤ 2sb

n
.

Combining our bounds for large and small blocks, we conclude that

s∑
j=1

wj
∥∥yj − ȳj∥∥2

≤ 2
s∑
j=1

wj
∥∥rj∥∥2

+
2sb

n
. (5.11)

Finally, let us bound the last sum in (5.10). By definition (5.6), w̄ is a closest point in the unit
simplex ∆ to w + ρ in the `1 metric. Since w ∈ ∆, we have

s∑
j=1

∣∣wj − w̄j∣∣ =‖w − w̄‖1

≤‖w + ρ− w̄‖1 +‖ρ‖1 (by triangle inequality)

≤‖w + ρ− w‖1 +‖ρ‖1 (by minimality property of w̄)

= 2‖ρ‖1 . (5.12)

Substitute (5.11) and (5.12) into (5.10) to complete the proof.
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5.6 Privacy

Now that we analyzed the accuracy of the synthetic data, we prove differential privacy. To that
end, we will use Laplacian mechanism, so we need to bound the sensitivity of microaggregation.

Lemma 5.6 (Sensitivity of damped microaggregation). Let ‖·‖ be a norm on Rp. Consider vectors
x1, . . . , xn ∈ Rp. Let I and I ′ be subsets of [n] that differ in exactly one element. Then, for any
b > 0, we have ∥∥∥∥ 1

|I| ∨ b
∑
i∈I

xi −
1

|I ′| ∨ b
∑
i∈I′

xi

∥∥∥∥ ≤ 2

b
max
i∈[n]
‖xi‖ . (5.13)

Proof. Without loss of generality, we can assume that I ′ = I \ {n0} for some n0 ∈ I.

Case 1: |I| ≥ b+ 1

In this case,
∣∣I ′∣∣ = |I| − 1 ≥ b. Denoting by ξ the difference vector whose norm we are estimating

in (5.13), we have

ξ =
1

|I|
∑
i∈I

xi −
1

|I| − 1

∑
i∈I\{n0}

xi =
1

|I|
(
|I| − 1

) ∑
i∈I\{n0}

(xn0 − xi).

The sum in the right hand side consists of |I| − 1 terms, each satisfying
∥∥xn0 − xi

∥∥ ≤ 2 maxi‖xi‖.
This yields ‖ξ‖ ≤ (2/|I|) maxi‖xi‖. Since |I| ≥ b + 1 by assumption, we get even a better bound
than we need in this case.

Case 2: |I| ≤ b

In this case,
∣∣I ′∣∣ = |I| − 1 < b. Hence the difference vector of interest equals

ξ =
1

b

∑
i∈I

xi −
1

b

∑
i∈I\{n0}

xi =
xn0

b
.

Therefore, ‖ξ‖ ≤ (1/b) maxi‖xi‖. The lemma is proved.

Lemma 5.7 (Sensitivity of damped microaggregation II). Let ‖·‖ be a norm on Rp. Let I be a
subset of [n] and let n0 ∈ I. Consider vectors x1, . . . , xn ∈ Rp and x′1, . . . , x

′
n ∈ Rp such that xi = x′i

for all i 6= n0. Then, for any b > 0, we have∥∥∥∥ 1

|I| ∨ b
∑
i∈I

xi −
1

|I| ∨ b
∑
i∈I

x′i

∥∥∥∥ ≤ 1

b

∥∥xn0 − x′n0

∥∥ .
Proof. ∥∥∥∥ 1

|I| ∨ b
∑
i∈I

xi −
1

|I| ∨ b
∑
i∈I

x′i

∥∥∥∥ =

∥∥∥∥ 1

|I| ∨ b
(xn0 − x′n0

)

∥∥∥∥ ≤ 1

b

∥∥xn0 − x′n0

∥∥ .

Theorem 5.8 (Privacy). In the situation of Theorem 5.5, suppose that all coordinates of the matrix
R and the vectors ρ and rj are independent Laplacian random variables, namely

Rij ∼ Lap
(6p

nε

)
for i ≤ j in [p]; ρi ∼ Lap

( 6

nε

)
for i ∈ [s];
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rji ∼ Lap
(12
√
p

bε

)
for i ∈ [p], j ∈ [s].

Then the output data (w̄j , ȳj)
s
j=1 is ε-differentially private in the input data (xi)

n
i=1.

Proof. First we check that the matrix S +R is private. To do this, let us bound sensitivity of the
second moment matrix S = 1

n

∑n
i=1 xi⊗xi. Consider two input data (xi)

n
i=1 and (x′i)

n
i=1 that differ

in exactly one element, i.e. xi = x′i for all i except some i = n0. Then the corresponding matrices
S and S′ satisfy ∥∥S − S′∥∥

1
=

1

n

∥∥xn0 ⊗ xn0 − x′n0
⊗ x′n0

∥∥
1

≤ 1

n

(∥∥xn0

∥∥2

1
+
∥∥x′n0

∥∥2

1

)
(by triangle inequality)

≤ p

n

(∥∥xn0

∥∥2

2
+
∥∥x′n0

∥∥2

2

)
≤ 2p

n
(since all xi ∈ K ⊂ Bp

2),

where ‖ ‖1 is the `1 norm on Rp2 . Due to the choice of R, it follows from Lemma 2.4 that S +R is
(ε/3)-differentially private.

Due to Lemma 2.5, it suffices to prove that for any fixed matrix D = S + R, the output
data (w̄j , ȳj)

s
j=1 is (2ε/3)-differentially private in the input data (xi)

n
i=1. Fixing D fixes also the

projection P and the net (νj)
s
j=1.

Consider what happens if we change exactly one vector in the input data (xi)
n
i=1. The effect

of that change on the nearest-point partition [n] = F1 ∪ · · · ∪ Fs is minimal: at most one of the
indices can move from one block Fj to another block (thereby changing the cardinalities of those
two blocks by 1 each) or to another point in the same block, and the rest of the blocks stay the
same. Thus, the weight vector w = (wj)

s
j=1, wj =

∣∣Fj∣∣ /n, can change by at most 2/n in the `1

norm. Due to the choice of ρ, it follows by Lemma 2.4 that w + ρ is (ε/3)-differentially private.
For the same reason, all vectors ỹj defined in (5.5), except for at most two, stay the same.

Moreover, by Lemma 5.6 and Lemma 5.7, the change of each of these two vectors in the `1 norm
is bounded by

2

b
max
i∈[n]
‖xi‖1 ≤

2
√
p

b
max
i∈[n]
‖xi‖2 ≤

2
√
p

b

since all xi ∈ K ⊂ Bp
2 . Hence, the change of the tuple (ỹ1, . . . , ỹs) ∈ Rps in the `1 norm is bounded

by 4
√
p/b. Due to the choice of rj , it follows by Lemma 2.4 that (ỹj + rj)

s
j=1 is (ε/3)-differentially

private.
Since ρ and rj are all independent vectors, it follows by Lemma 2.7 that the pair (w + ρ, (ỹj +

rj)
s
j=1) is (2ε/3)-differentially private. The output data (w̄j , ȳj)

s
j=1 is a function of that pair, so

it follows by Remark 2.6 that for any fixed matrix D = S + R, that the output data must be
(2ε/3)-differentially private. Applying Lemma 2.5, the result follows.

5.7 Accuracy

We are ready to combine privacy and accuracy guarantees provided by Theorem 5.8 and Theo-
rem 5.5.

Choose the noise R ∈ Rp×p, ρ ∈ Rs, and rj ∈ Rp as in the Privacy Theorem 5.8; then(
E‖R‖22

)1/2
.
p2

nε
;
(
E‖ρ‖21

)1/2
.

s

nε
;
(
E
∥∥rj∥∥2

2

)1/2
.

p

bε
for all j ∈ [s].
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The first and third bounds follow from summing the variances of the Laplace distribution over all
entries. To check the middle bound, use triangle inequality as follows:(

E‖ρ‖21
)1/2

=
∥∥|ρ1|+ · · ·+|ρs|

∥∥
L2 ≤‖ρ1‖L2 + · · ·+‖ρs‖L2

which is the sum of the standard deviations of the Laplacian distribution.
Choose the accuracy α of the net and its dimension t as follows:

t :=

⌊
log
√
n

log(7/α)

⌋
; α =

1

(log n)1/4
. (5.14)

By Proposition 3.7, there exists an α-net in a unit ball of dimension t of cardinality s, where

s ≤
( 7

α

)t
≤ n1/2. (5.15)

Apply the Accuracy Theorem 5.5 for this choice of parameters, square both sides and take
expectation. Since the weights wj =

∣∣Fj∣∣ /n satisfy
∑s

j=1wj = 1, the error bound in the theorem
becomes

E :=

E
∥∥∥∥ 1

n

n∑
i=1

x⊗di −
s∑
j=1

w̄j ȳ
⊗d
j

∥∥∥∥2

2

1/2

. 4d

 1√
log n

+

√
log log n

log n
+
p2

nε

+
db√
n

+
1√
nε

+
dp

bε
.

If t = 0 then n ≤ C, for some universal constant C > 0, so the left hand side is at most O(1)
and the right hand side is at least O(1).

Optimizing b leads to the following choice:

b =

√
p
√
n

ε
, (5.16)

and with this choice we can simplify the error bound as follows:

E . 4d

√ log log n

log n
+
p2

nε

+ d

√
p√
nε

+
1√
nε
.

In the range where n ≥ (p/ε)2 for ε ∈ (0, 1), the error can finally be simplified to

E . 4d

√ log logn

log n
+

√
p√
nε

 .

Note that in the complement range where n < (p/ε)2, the second term is greater than one, so
such error is trivial to achieve by outputting ȳj to be an arbitrary point in K for all j. Thus we
proved:

Theorem 5.9 (Privacy and accuracy). Let K be a convex set in Rp that lies in the unit ball Bp
2 , and

ε ∈ (0, 1). There exists an ε-differentially private randomized algorithm that transforms input data
(xi)

n
i=1 where all xi ∈ K into the output data (w̄j , ȳj)

s
j=1 where s ≤ n1/2, all w̄j ≥ 0,

∑
j w̄j = 1,

and all ȳj ∈ K, in such a way that for all d ∈ N:

E
∥∥∥∥ 1

n

n∑
i=1

x⊗di −
s∑
j=1

w̄j ȳ
⊗d
j

∥∥∥∥2

2

. 16d
(

log logn

log n
+

p√
nε

)
.

The algorithm runs in time polynomial in p, n and linear in the time to compute the metric pro-
jection onto K, and it is independent of d.
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5.8 Bootstrapping

To get rid of the weights w̄j and make an unlimited number of points in the synthetic data, we can
use bootstrapping introduced in Section 4.2, i.e., we can sample new data u1, . . . , um independently
and with replacement by choosing ȳj with probability w̄j at every step.

Thus, we consider the random vector Y that takes value ȳj with probability w̄j . Let Y1, . . . , Ym
be independent copies of Y . Then obviously EY ⊗d =

∑s
j=1 w̄j ȳ

⊗d
j , so Bootstrapping Lemma 4.3

yields

E
∥∥∥∥ 1

m

m∑
i=1

Y ⊗di −
s∑
j=1

w̄j ȳ
⊗d
j

∥∥∥∥2

2

≤ 1

m
.

Combining this with the bound in Theorem 5.9, we obtain:

Theorem 5.10 (Privacy and accuracy: unlimited data). Let K be a convex set in Rp that lies in
the unit ball Bp

2 , and ε ∈ (0, 1). There exists an ε-differentially private randomized algorithm that
transforms input data x1, . . . , xn ∈ K into the output data u1, . . . , um ∈ K, in such a way that for
all d ∈ N:

E
∥∥∥∥ 1

n

n∑
i=1

x⊗di −
1

m

m∑
i=1

u⊗di

∥∥∥∥2

2

. 16d
(

log logn

log n
+

p√
nε

)
+

1

m
.

The algorithm runs in time polynomial in p, n and linear in m and the time to compute the metric
projection onto K, and it is independent of d.

5.9 Boolean data: randomized rounding

Now we specialize to Boolean data, i.e., data from {0, 1}p. If the input data x1, . . . , xn is Boolean,
the output data u1, . . . , um is in [0, 1]p (for technical reasons we may need to rescale the data by√
p because Theorem 5.10 requires K to be in Bp

2). To transform it to Boolean data, we can
use randomized rounding as described in Section 4.3. Thus, each coefficient of each vector ui is
independently and randomly rounded to 1 with probability equal to that coefficient, (and to 0 with
the complementary probability). Exactly the same analysis as we did in Section 4.3 applies here,
and we conclude:

Theorem 5.11 (Boolean private synthetic data). Let ε ∈ (0, 1). There exists an ε-differentially
private randomized algorithm that transforms input data x1, . . . , xn ∈ {0, 1}p into the output data
z1, . . . , zm ∈ {0, 1}p in such a way that the error E = 1

n

∑n
i=1 x

⊗d
i −

1
m

∑m
i=1 z

⊗d
i satisfies

E
(
p

d

)−1 ∑
1≤i1<···<id≤p

E(i1, . . . , id)
2 . 32d

( log log n

log n
+

p√
nε

+
1

m

)
for all d ≤ p/2. The algorithm runs in time polynomial in p, n and linear in m, and is independent
of d.

A pseudocode description is given in Algorithm 2 below.
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Algorithm 2 Differentially private Boolean synthetic data via microaggregation

Input: a sequence of points x1, . . . , xn in the cube {0, 1}p (true data); ε ∈ (0, 1) (privacy); m ∈ N
(number of points in the synthetic data).
Damped microaggregation

1. Redefine xi = 1√
pxi for i = 1, . . . , n.

2. Compute the second-moment matrix S = 1
n

∑n
i=1 xix

T
i .

3. Let t :=
⌈

log
√
n

log(7/α)

⌉
and α := 1

(logn)1/4
.

4. Generate a symmetric noise matrix R ∈ Rp×p with Rij ∼ Lap
(

6p
nε

)
for i ≤ j.

5. Let P : Rd → Rd be the orthogonal projection onto the span of the eigenvectors associated
with the t largest eigenvalues of S +R.

6. Choose an α-net ν1, . . . , νs ∈ Rp of the unit Euclidean ball of the subspace ran(P ).

7. Construct the nearest-point partition [n] = F1 ∪ · · · ∪ Fs for x1, . . . , xn with respect to
ν1, . . . , νs as follows. For each ` ∈ [n], choose a point νj nearest to x` in the `2 metric and
put ` into Fj . Break any ties arbitrarily.

8. Let b =

√
p
√
n
ε .

9. Perform damped microaggregation: compute wj =
|Fj |
n and ỹj = 1

|Fj |∨b
∑

i∈Fj
xi ∈ Rp, j =

1, . . . , s.

10. Generate an independent noise vector ρ ∈ Rk with ρi ∼ Lap
(

6
nε

)
for i = 1, . . . , s.

11. For each j = 1, . . . , s, generate noise vectors rj ∈ Rp with rji ∼ Lap
(

12
√
p

bε

)
for i = 1, . . . , p.

12. Consider the simplex ∆ =
{
a = (a1, . . . , as) :

∑s
i=1 ai = 1; ai ≥ 0 ∀i

}
and cube K =

1√
p [0, 1]p.

13. Compute the metric projections w = π∆,1(w + ρ) and yj = πK,2(ỹj + rj), j = 1, . . . , s.

Bootstrapping creates new data u1, . . . , um by sampling from the points y1, . . . , ys with weights
w1, . . . , ws, respectively.
Randomized rounding maps the data {√pu`}m`=1 ∈ [0, 1]p to data {zj}mj=1 ∈ {0, 1}p.
Output: a sequence of points z1, . . . , zm in the cube {0, 1}p (synthetic data) that satisfy the
properties outlined in Theorem 5.11.
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[31] Florian Thaeter and Rüdiger Reischuk. Hardness of k-anonymous microaggregation. Discrete
Applied Mathematics, 2020.

[32] Justin Thaler, Jonathan Ullman, and Salil Vadhan. Faster algorithms for privately releasing
marginals. In International Colloquium on Automata, Languages, and Programming, pages
810–821. Springer, 2012.

[33] Jonathan Ullman and Salil Vadhan. PCPs and the hardness of generating private synthetic
data. In Theory of Cryptography Conference, pages 400–416. Springer, 2011.

35

https://terrytao.wordpress.com/2010/01/12/
https://terrytao.wordpress.com/2010/01/12/


[34] Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xiaokui Xiao.
Privbayes: Private data release via bayesian networks. ACM Transactions on Database Systems
(TODS), 42(4):1–41, 2017.

[35] Shoshana Zuboff. The Age of Surveillance Capitalism: The Fight for the Future at the New
Frontier of Power. PublicAffairs, 2019.

36


	Introduction
	State of the art
	Our contributions
	Private, synthetic data?
	Covariance loss
	Anonymity
	Differential privacy
	Questions and further directions
	Outline of the paper

	Preliminaries
	Basic notation
	Tensors
	Differential privacy

	Covariance loss
	Law of total covariance
	Spectral projection
	Nearest-point partition
	Proof of the main part of Theorem 1.2
	Monotonicity
	Proof of equipartition (the ``moreover'' part of Theorem 1.2)
	Higher moments: tensorization
	Optimality

	Anonymity
	Microaggregation as conditional expectation
	Unlimited synthetic data: bootstrapping
	Boolean data: randomized rounding

	Differential Privacy
	Microaggregation with more control
	Perturbing the weights and vectors
	Damping
	Metric projection
	The accuracy guarantee
	Privacy
	Accuracy
	Bootstrapping
	Boolean data: randomized rounding


