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Abstract. In a world where artificial intelligence and data science become omnipresent, data sharing is in-5
creasingly locking horns with data-privacy concerns. Differential privacy has emerged as a rigorous6
framework for protecting individual privacy in a statistical database, while releasing useful statistical7
information about the database. The standard way to implement differential privacy is to inject a8
sufficient amount of noise into the data. However, in addition to other limitations of differential9
privacy, this process of adding noise will affect data accuracy and utility. Another approach to10
enable privacy in data sharing is based on the concept of synthetic data. The goal of synthetic11
data is to create an as-realistic-as-possible dataset, one that not only maintains the nuances of the12
original data, but does so without risk of exposing sensitive information. The combination of dif-13
ferential privacy with synthetic data has been suggested as a best-of-both-worlds solutions. In this14
work, we propose the first noisefree method to construct differentially private synthetic data; we do15
this through a mechanism called “private sampling”. Using the Boolean cube as benchmark data16
model, we derive explicit bounds on accuracy and privacy of the constructed synthetic data. The key17
mathematical tools are hypercontractivity, duality, and empirical processes. A core ingredient of our18
private sampling mechanism is a rigorous “marginal correction” method, which has the remarkable19
property that importance reweighting can be utilized to exactly match the marginals of the sample20
to the marginals of the population.21

1. Introduction. In a world where artificial intelligence and data science are penetrating22

more and more aspects of our life, data sharing is increasingly locking horns with data-privacy23

concerns. This conflict is playing out around the globe, as private and public organizations24

are trying to find ways to share data without compromising sensitive personal information.25

There exist various attempts to protect sensitive information in data. Historically the26

way to share private information without betraying privacy was through anonymization [46],27

i.e., by stripping away enough identifying information from a dataset, so that the so-modified28

data could be shared freely. Anonymization, however, proved to be a fragile means to protect29

data privacy. In actuality, identifying individuals using seemingly non-unique identifiers is30

far easier than proponents of data anonymization expected. For instance, Netflix and AOL31

customers were all accurately identified from purportedly anonymized data. De-identification32

requires precise definitions of “unique identifiers”. Furthermore, de-identification suffers from33

an aging problem: it is already quite difficult enough to determine exactly what data identifies34

information that needs to be protected (say, the identity of individuals), but it is even more35
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difficult to accurately predict what potential auxiliary information could be available in the36

future. This leads to an arms race between de-identification and re-identification.37

The well-documented failures of anonymization have prompted aggressive research on38

data sanitization, ranging from k-anonymity [39, 5] to today’s highly acclaimed differential39

privacy [21]. The concept of k-anonymity was introduced to address the risk of re-identification40

of anonymized data through linkage to other datasets. The idea behind k-anonymity is to41

maintain privacy by guaranteeing that for every record in a database there are k of indistin-42

guishable copies.43

Differential privacy is a framework to quantify the extent to which individual privacy44

in a statistical database is preserved while releasing useful statistical information about the45

database [21]. Differential privacy is a popular and robust method that comes with a rigorous46

mathematical framework and provable guarantees. Differential privacy can protect aggregate47

information, but not sensitive information in general. Also, if enough identical queries are48

asked, the protection provided by differential privacy is diluted. Additionally, if the query49

being asked requires high specificity, then it is more difficult to uphold differential privacy.50

In any case, in all the aforementioned methods the basic tradeoff between utility and privacy51

represents a serious limitation.52

Synthetic data provide a promising concept to solve this conundrum [7]. The goal of53

synthetic data is to create an as-realistic-as-possible dataset, one that not only maintains54

the nuances of the original data, but does so without risk of exposing sensitive information.55

Synthetic datasets are generated from existing datasets and maintain the statistical properties56

of the original dataset. Since (ideally) synthetic data contain no protected information, the57

datasets can be shared freely among investigators in academia or industry, without security58

and privacy concerns.59

It has been frequently recommended that synthetic data may be combined with differential60

privacy to achieve a best-of-both-worlds scenario [23, 7, 27, 29, 10]. As observed in [7], “The61

most ideal data to use in any analysis will always be original data. But when that option is62

not available, synthetic data plus differential privacy offers a great compromise.” Synthetic63

data are not only a succinct way of representing the answers to large numbers of queries, but64

they also permit one to carry out other data analysis tasks, such as visualization or regression.65

On a high level, differential privacy is achieved via randomness. The standard way to66

introduce randomness in differential privacy is to add noise, either to the data queries, the67

data themselves, or in case of synthetic data during the data generation process. For a small68

sample of work see e.g. [21, 23, 24, 3, 29, 16]. Unfortunately, noise will negatively affect69

utility and can inject systematic errors—hence bias—into the data [37, 48, 22]. To illustrate70

these issues, assume the dataset under consideration consists of images, each depicting the71

face of a person. We can attempt to generate a differentially private synthetic dataset by72

adding a sufficient amount of noise to each image (e.g., by adding random noise [33] or by73

distorting or blurring the images [38, 45]), such that the persons in the images can no longer74

be identified. Ignoring for the moment the possibility of re-identifying a person by applying75

denoising or deblurring techniques to the distorted images, it is clear that utility of this dataset76

can decrease significantly during this process of adding noise, perhaps to the point that many77

of the nuances one might be interested in are no longer present.78

To illuminate the effect of introducing systematic error when adding noise to ensure dif-79
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ferential privacy, we just need to look at the issues reported with differentially private US80

Census 2020 demonstration data, which have resulted in diminished quality of statistics for81

small populations such as tribal nations [43, 37, 22].82

These considerations raise a fundamental question:83

Can we generate differentially private synthetic data without adding noise?

In this paper, we give a positive and constructive answer. Using the Boolean cube as our84

data model, we will develop a noiseless method to generate synthetic data, which approxi-85

mately preserve low-dimensional marginals of the original dataset. Our method is based on86

a private sampling framework and comes with explicit bounds on privacy and accuracy. The87

key mathematical tools are hypercontractivity, duality, and empirical processes. A core ingre-88

dient of our private sampling framework is a rigorous “marginal correction” method, which89

has the remarkable property that importance reweighting can be utilized to exactly match the90

marginals of the sample to the marginals of the population.91

There exist other methods to generate differentially private synthetic data without adding92

noise, such as those based on generative adversarial networks [30, 1, 12, 47, 17]. However, these93

methods are just empirical and do not come with any rigorous bounds regarding accuracy or94

privacy. Those deep learning based methods that do come with privacy guarantees—but still95

without any accuracy guarantees—require injecting noise into the synthetic data generation96

process [44, 26, 6].97

2. Synthetic data and differential privacy. Differential privacy has emerged as the de98

facto standard for guaranteeing privacy in data sharing. Recall the definition of differential99

privacy:100

Definition 2.1 (Differential Privacy [21]). A randomized mechanism M : SN → R satisfies
ε-differential privacy if for any two adjacent datasets X1, X2 ∈ SN differing by one element,
and any output subset O ∈ R it holds that

P[M(X1) ∈ O] ≤ eε · P[M(X2) ∈ O].

Numerous techniques have been proposed for generating privacy-preserving synthetic data101

(e.g. [2, 13, 1, 15, 32]), but without providing formal privacy guarantees. Almost all existing102

mechanisms to implement differential privacy inject some sort of noise into the data or the103

data queries, see e.g. the Laplacian mechanism [19]. This is also the case for differentially104

private synthetic data, see for instance [28, 4].105

Obviously, we want our synthetic data to be similar to the original data. To that end106

we need some metrics to measure similarity. A common and natural choice is to try to107

(approximately) preserve low-dimensional marginals [4, 40]. A marginal of the data X is the108

fraction of the elements xi with specified values of specified parameters. On the one hand,109

marginals are important in their own right as a tool of statistical analysis. On the other hand,110

if the synthetic data preserve e.g. two-dimensional marginals (i.e., covariance matrices) with111

sufficient accuracy, the synthetic dataset is expected to inherit other significant properties112

from the original dataset, such as similar behavior with respect to clustering, classification or113

regression1.114

1So far this expectation has only been verified empirically in various papers, while a rigorous mathematical
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However, we are immediately met with a remarkable no-go theorem due to Ullman and115

Vadhan [41]. They proved the surprising result that (under standard cryptographic as-116

sumptions) there is no polynomial-time differentially private algorithm that takes a dataset117

X ∈ ({0, 1}p)n and outputs a synthetic dataset Y ∈ ({0, 1}p)k such that all two-dimensional118

marginals of Y are approximately equal to those of X.119

There is an extensive literature on privately releasing answers to linear queries, but without120

producing synthetic data, see e.g. [4, 25, 24, 23, 40, 9, 34, 20] for a small sample. The paper [9]121

gives an ε-differentially private synthetic data algorithm whose accuracy scales logarithmically122

with the number of queries, but the complexity scales exponentially with p. In [4], Barak et123

al. derive a method for producing accurate and private synthetic Boolean data based on124

contingency table releases and linear programming; their method scales with 2p, and thus is125

exponential in p. In [24, 23] the authors propose methods for producing private synthetic126

data with an error bound of about Õ(
√
np1/4) per query. However, the associated algorithms127

have running time that is at least exponential in p. This computational inefficiency is not128

surprising in light of [41].129

Already a slightly relaxed formulation of the worst-case no-go result in [41] already leads130

to computationally feasible algorithms. For example, if we relax “all marginals” to “most131

marginals”, it is shown in [10] that there exists a polynomial-time differentially private algo-132

rithm generating synthetic data Y ∈ ({0, 1}p)k such that the error between the marginals of Y133

and X is small. Remarkably, the result does not only hold for two-dimensional marginals, but134

for marginals of all dimensions. The downside is that the guaranteed accuracy is rather low135

(although it is essentially optimal for microaggregation-based methods). If we relax “worst136

data” to “typical data”, generating accurate differentially private synthetic Boolean (or other137

domain constrained) data becomes tractable [29, 11].138

The paper [40] proposes an algorithm with complexity npO(
√
d) that returns ε-differentially139

private d-dimensional marginals under the assumption n ≥ pO(
√
d). However, that algorithm140

does not yield synthetic data, in contrast to the algorithm proposed in this paper.141

Another line of important work deals with with privacy-preserving data analysis in a142

statistical framework [18, 14], but they are also not concerned with synthetic data.143

Yet, in all of the aforementioned papers differential privacy is achieved by adding noise144

during the data generation process. In this paper we propose an alternative, noise-free,145

mechanism called private sampling.146

3. Main result. We model the true data X = (x1, . . . , xn) as a sequence of n points from147

the Boolean cube {0, 1}p, which is a standard benchmark data model [4, 41, 23, 36, 29, 8].148

For example, X might represent the health records of n patients, where each health record149

consists of p parameters. These parameters are 0/1 numbers that represent the answers150

to the standard health history questionnaire, such as “does the patient smoke?”, “does the151

patient have diabetes?”. We can also represent categorical data (gender, occupation, etc.) or152

numerical data (by splitting them into intervals) on the Boolean cube via binary or one-hot153

encoding.154

We would like to manufacture a synthetic dataset Y = (y1, . . . , yk), another sequence of155

verification is an important open problem.
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k elements of the cube. Our two desiderata are privacy and accuracy. Specifically, we would156

like the synthetic data to be differentially private, and all low-dimensional marginals of Y to157

exactly or approximately match those of X.158

In our derivations it is more convenient to work on the Boolean cube {−1, 1}p instead of159

{0, 1}p. Note that it is straightforward to translate our results from one cube to the other.160

We recall that on the Boolean cube, a marginal of a function f : {−1, 1}p → R is defined as a161

sum of values of f on the points of the cube that have specified values of specified parameters.162

For example, a two-dimensional marginal of f is
∑

x∈{−1,1}p f(x)1{x(1)=x(2)=1}(x). If f is a163

density, a marginal can be interpreted as the probability that a random point Z drawn from164

the cube according to f has specified values of specified parameters; in the example below it is165

P
{
Z(1) = Z(2) = 1

}
. Marginals of the data X = (x1, . . . , xn) can be interpreted as marginals166

of the uniform density fn = 1
n

∑n
i=1 1xi onX. An example of a two-dimensional marginal is the167

fraction of elements xi whose first and second parameters equal 1, i.e. 1
n

∑n
i=1 1{xi(1)=xi(2)=1}.168

This could represent for example the number of patients who smoke and have diabetes.169

Here we explore a new noiseless approach: take a new sample S = (s1, . . . , sm) uniformly170

from the cube, reweight S to make the marginals match those of the true data X, and resample171

from the weighted sample S.172

But is this even possible? Let us assume the dataset X = (x1, . . . , xn) is drawn from173

the cube independently and according to some unknown density. Draw a new sample S =174

(s1, . . . , sm) according to some known density, for example uniformly from the cube2. Can we175

reweight S so that the reweighted sample has approximately the same marginals as X? Note176

that there are precisely
(
p
≤d
)

marginals of degree at most d, where
(
p
≤d
)

:=
(
p
0

)
+
(
p
1

)
+ · · ·+

(
p
d

)
.177

Surprisingly, we can even match all marginals exactly.178

Let us state it this result informally; a rigorous, non-asymptotic and more general state-179

ment is given in Theorem 8.1.180

Theorem 3.1 (Matching marginals). Consider two regularly varying densities3 on the cube181

{0, 1}p, and draw two independent samples X and S from the cube according to these two182

distributions. If min(|X| ,|S|) � e2d
(
p
≤d
)
, then with probability 1 − o(1) there exists a density183

on S that has exactly the same marginals up to dimension d as the uniform distribution on184

X.185

Remark 3.2. To match all
(
p
≤d
)

marginals of dimension at most d, it makes sense to have186

at least as many data points. This explains the requirement on n in the theorem heuristically187

(but not rigorously). The prefactor e2d is negligible compared to
(
p
≤d
)

if d� p.188

The path towards proving (a rigorous version of) Theorem 3.1 leads through Lemma 3.3,189

which introduces the concept of private sampling. The main technical challenges—which190

occupy most of this paper—is then to show that the assumptions of Lemma 3.3 can be191

satisfied under competitive conditions on the sample complexity, cardinality of X and S, and192

the number of queries, while still maintaining high accuracy.193

2Since the cardinality of S will be chosen to be smaller than that of the dataset X, we call S also the
reduced space.

3A density f is regularly varying if sup f(x)/f(y) = O(1) where the supremum is over all points x and y in
the cube. Our results are more general; as we will see shortly, the regularity assumption can be relaxed.
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As a “non-example” for Theorem 3.1, consider a probability measure supported on the194

set of patients whose first parameter equals 0, and a different probability measure supported195

on the set of patients whose first parameter equals 1. Then even a one-dimensional marginal196

– the distribution of the first parameter – will be different for X and Y , no matter how Y is197

reweighted. This example shows that some form of regularity assumption will be required in198

the theorem.199

The density h∗ on S that is guaranteed by Theorem 3.1 can be computed efficiently.200

Indeed, this task can be set up as a linear program with |S| variables (the values of the density201

on S),
(
p
≤d
)

linear equations (to match the marginals to those of X), and |S| linear inequalities202

(to ensure the density is nonnegative on S).203

Once this density h∗ is computed, we can generate synthetic data Y = (y1, . . . , yk) by204

drawing independent points from S according to the density h∗.205

3.1. Private sampling. Is such synthetic data Y private? Here is a general tool that206

basically says: yes, Y is private as long as the density h∗ has bounded sensitivity.207

Lemma 3.3 (Private sampling). Let Ω be a finite set. Let f be a mapping that takes a
dataset X as input and returns a probability mass function f(X) on Ω. Suppose ε > 0 and
k ∈ N are chosen so that ∥∥f(X1)/f(X2)

∥∥
∞ ≤ exp(ε/k)

for all datasets X1 and X2 that differ on a single element. Then the algorithm that takes X208

as input and returns a sample of k points drawn from Ω independently and according to the209

distribution f(X) is ε-differentially private.210

Proof. The probability that a given k-tuple of points ω1, . . . , ωk ∈ Ω is drawn when sam-211

pled from distribution f(X1) equals
∏k
i=1 f(X1)(ωi). Similarly, the probability that this same212

tuple is drawn when sampled from distribution f(X2) equals
∏k
i=1 f(X2)(ωi). If the databases213

X1 and X2 differ on a single element, the assumption implies that the ratio of these proba-214

bilities is bounded by
∏k
i=1 exp(ε/k) = exp(ε). This means that the sampling mechanism is215

ε-differentially private.216

3.2. Difficulties and their resolution. Unfortunately, the density h∗ guaranteed by The-217

orem 3.1 is too sensitive. Indeed, the sensitivity bound in Lemma 3.3 needs to be proved for218

arbitrary input data, while Theorem 3.1 only works with high probability. For some input219

data X, a suitable density exists, and for another input data Z, no suitable density exists.220

Moving from X toward Z by changing one data point at a time, we can find a pair of datasets221

X1 and X2 that differ in a single data point so that the algorithm succeeds to find a density222

for X1 and fails for X2. This means that the algorithm is non-private.223

The other issue is that there can be (and usually are) many suitable densities h∗. Which224

one to chose? How to devise a selection rule that upholds privacy?225

In other words, we need to work around the possible non-existence and non-uniqueness226

of the solution. We resolve both issues here. To ensure existence, we employ shrinking: we227

move the solution space (the set of all functions on S, possibly negative-valued, that have228

the same marginals as X) toward the uniform density on S until the resulting set contains a229

nonnegative function (thus a density). For the selection rule, we choose the closest solution230

to the uniform density on S in the L2 metric.231
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Furthermore, while S is chosen randomly, we do need S to be well-conditioned in a sense232

that will be discussed in detail in Section 9. At this point suffice it to say that (i) the well-233

conditionedness of S can be expressed in terms of a bound on the smallest singular value234

σmin(M) of the m×
(
p
≤d
)

matrix M with entries w(s), where s ∈ S and w is a Walsh function4235

of degree at most d; (ii) the well-conditionedness of M can be easily achieved and easily236

verified.237

This leads us to the algorithm outlined in the next subsection.238

3.3. Algorithm. We provide a high-level description of our proposed method in Algo-239

rithm 3.1. See Remark 12.1 regarding the computational complexity of this algorithm.240

Algorithm 3.1 Private sampling synthetic data algorithm

Input: a sequence X of n points in {−1, 1}p (true data); m: cardinality of S; d: the degree
of the marginals to be matched; parameters δ,∆ with ∆ > δ > 0.
1. Draw m points from {−1, 1}p independently and uniformly, and call this set S (reduced

space).
2. Form the m×

(
p
≤d
)

matrix M with entries w(s), where s ∈ S and w is a Walsh function

of degree at most d. If the smallest singular value of M is bounded below by
√
m/2ed,

call S well conditioned and proceed. Otherwise return “Failure” and stop.
3. Consider the affine space H consisting of all densities on S that have exactly the same

marginals up to dimension d as the true data X.
4. If necessary, shrink H toward the uniform density on S just so the resulting affine space
H̃ contains a density that is lower bounded by 2δ/m and upper bounded by (∆− δ)/m.

5. Among all densities in H̃ that are lower bounded by δ/m and upper bounded by ∆/m,
pick one closest to the uniform density in the L2 norm.

Output: a sequence Y of k points from S according to this density.

The well-conditionedness of S in Algorithm 3.1 defined via the condition σmin(M) >241 √
m/2ed essentially says that the subsampled Walsh basis is almost orthogonal. The scaling242 √
m is natural: the entries of M all have absolute value 1, hence the columns of M have243

Euclidean norm
√
m. If we had σmin(M) =

√
m, this would imply that the columns of M244

(the subsampled Walsh functions) are mutually orthogonal. We require a relaxed (by a factor245

2ed) version of this orthogonality.246

What if S fails the desired condition? We can simply resample S until it is well conditioned.247

But this is only a useful strategy if the chances of success are sufficiently high. Under some248

mild conditions (see Section 9) success happens with probability > 1/2, hence the expected249

number or trials until success is ≤ 2. This way Algorithm 3.1 succeeds deterministically, but250

its running time becomes random (albeit with the rather modest expected overhead time ≤ 2).251

Definition 3.4. We say that the synthetic dataset Y is δ-accurate if each of its marginals252

up to degree (or dimension) d is within δ from the corresponding marginal of the true dataset253

X.254

4See Section 4 for basic definitions related to Fourier analysis of the Boolean cube.

7

This manuscript is for review purposes only.



The following theorem guarantees the accuracy and privacy of the algorithm. We state it255

informally here, and more accurately in Theorems 12.3 and 12.5.256

Theorem 3.5 (Privacy and accuracy). Let the size of the reduced space S satisfy m �257

e2d
(
p
≤d
)
.258

(a) Algorithm 3.1 succeeds (i.e. does not return “Failure”) with high probability.259

(b) If the size of the synthetic data satisfies k �
√
n/m, then Algorithm 3.1 is o(1)-differentially260

private.261

(c) Suppose n � e2d
(
p
≤d
)
, k � log

(
p
≤d
)
, and the true data points X are sampled independently262

from some density that is upper bounded by ∆/2p. Then, with high probability, the synthetic263

data generated via Algorithm 3.1 is o(1)-accurate up to dimension d.264

For a more formal presentation of Algorithm 3.1, see Algorithm 12.1 below. A formal ver-265

sion of part (a) of Theorem 3.5 is shown in Proposition 9.3; part (b) is shown in Theorem 12.3266

and Remark 12.4; part (c) is shown in Theorem 12.5. The mathematical techniques to prove267

these results revolve around Fourier analysis of Boolean functions and empirical processes, see268

Sections 4–7.269

In case the true data X is sampled form a regular density, the algorithm will not apply any270

shrinkage, since in this case Theorem 3.1 guarantees the existence of a solution. (We make271

this rigorous in Remark 12.6.) In this case, the private synthetic data Y will be sampled in272

an unbiased way from the density h∗ that has exactly the same marginals as the true data X.273

3.4. Further remarks. There is a one-sample version of Theorem 3.1. Let us state it here274

informally; a more accurate statement is given in Theorem 8.2.275

Theorem 3.6 (Marginal correction). Consider a regularly varying density f on the cube276

{0, 1}p and draw an independent sample S from the cube according to this distribution. If277

|S| � e2d
(
p
≤d
)
, then with probability 1 − o(1) there exists a density h on S that has exactly278

the same marginals as f up to dimension d. Moreover, h is within a 1 + o(1) factor of the279

uniform density on S.280

The law of large numbers tells us that the sample S must have approximately the same281

marginals as the density f from which S was drawn. Theorem 3.6 tells us that we can make282

the marginals exactly the same by a slight reweighting of S, i.e. by weights that are all 1+o(1).283

4. Fourier analysis. The proof of Theorem 3.1 is based on hypercontractivity, duality,284

and empirical processes.285

Let us start by recalling the basic Fourier analysis on the Boolean cube {−1, 1}p [35].286

The Walsh functions wJ : {−1, 1}p → {−1, 1} are indexed by subsets J ⊂ [p] and are287

defined as288

(4.1) wJ(x) =
∏
j∈J

x(j),289

with the convention w∅ = 1.290

The canonical inner product on the space of real-valued functions on {−1, 1}p is defined
as

〈f, g〉L2 =
1

2p

∑
x∈{−1,1}p

f(x) g(x).
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This inner product defines the space L2 = L2({−1, 1}p). More generally, for 1 ≤ q < ∞, the
Lq = Lq({−1, 1}p) is the space of real-valued functions on the cube with the norm

‖f‖Lq =
( 1

2p

∑
x∈{−1,1}p

∣∣f(x)
∣∣q )1/q

.

Walsh functions form an orthonormal basis of L2, so any function f : {−1, 1}p → R admits
a Fourier expansion

f =
∑
J⊂[p]

f̂JwJ , where f̂J = 〈f, wJ〉 are Fourier coefficients.

Thus, any function f on the cube can be orthogonally decomposed into low and high frequen-
cies:

f = f≤d + f>d,

where
f≤d =

∑
J⊂[p],|J |≤d

〈f, wJ〉wJ and f>d =
∑

J⊂[p],|J |>d

〈f, wJ〉wJ .

Clearly, the function f≤d is determined by the Fourier coefficients of f up to dimension d, and291

vice versa.292

We say that a function f on the cube has degree at most d if f = f≤d. Such functions
form the “low-frequency” space

W≤d =
{
f : f = f≤d

}
= span{wJ : |J | ≤ d},

and it has dimension
(
p
≤d
)
. The orthogonal complement to this subspace in L2 is the “high-

frequency” subspace

W>d =
{
f : f = f>d

}
= span{wJ : |J | > d}.

The following result is well known, see [35, Theorem 9.22]:293

Theorem 4.1 (Hypercontractivity). For any d ≤ p and any function f : {−1, 1}p → R of
degree at most d, we have

‖f‖L2 ≤ ed‖f‖L1 .

4.1. Connection to marginals. The low-degree Fourier coefficients of f : {−1, 1}p → R294

determine the low-dimensional marginals of f . More precisely, f≤d determines the values of295

all marginals of f up to dimension (or degree) d.296

To see this, consider the example of the two-dimensional marginal in which the first
parameter is set to 1 and the second is set fo −1. The value of such marginal of f is∑

x∈{−1,1}p f(x)1{x(1)=1, x(2)=−1}. Now,

1{x(1)=1, x(2)=−1}(x) = 1{x(1)=1}(x)1{x(2)=−1} =
(1 + x(1)

2

)(1− x(2)

2

)
,
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so expanding the right hand side and using the definition of Walsh functions, we see that

1{x(1)=1, x(2)=−1} =
1

4

(
w∅ + w{1} − w{2} − w{1,2}

)
.

Thus, the marginal can be written as∑
x∈{−1,1}p

f(x)1{x(1)=1, x(2)=−1} =
1

4

(
f̂∅ + f̂{1} − f̂{2} − f̂{1,2}

)
,

and so it depends only on the Fourier coefficients on f up to degree 2, or equivalently only on297

f≤2.298

5. Empirical processes. Let µ be a probability measure on {−1, 1}p, and let

µm =
1

m

m∑
i=1

δθi

be the corresponding (random) empirical measure, i.e., the uniform probability measure on the299

sample {θ1, . . . , θm} of points drawn from the cube independently according to the distribution300

µ. These two measures define the population and empirical Lq norms of functions on the cube:301

(5.1) ‖F‖qLq(µ)
:= E

∣∣F (θ1)
∣∣q ; ‖F‖qLq(µm)

:=
1

m

m∑
i=1

∣∣F (θi)
∣∣q .302

We clearly have E‖F‖L1(µm) = ‖F‖L1(µ). The following result provides a uniform deviation303

inequality.304

Proposition 5.1 (Deviation of the empirical L1 norm). Let µ be a probability measure on
{−1, 1}p and µm be the empirical counterpart. Then

E sup
F∈W≤d,‖F‖L2=1

∣∣∣‖F‖L1(µm) −‖F‖L1(µ)

∣∣∣ ≤ 2

√
1

m

(
p

≤ d

)
.

The L2 norm on the left side is with respect to the uniform probability measure on the305

cube.306

Proof. Any function F ∈W≤d is a linear combination of low-degree Walsh functions,

F =
∑
|J |≤d

aJwJ .

Without loss of generality (by rescaling) we can assume that307

(5.2) ‖F‖2L2 =
∑
|J |≤d

a2
J = 1.308
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By definition of the L1(µ) norm in (5.1), we have

‖F‖L1(µ) = E

∣∣∣∣∣∣
∑
|J |≤d

aJwJ(θ1)

∣∣∣∣∣∣ = E
∣∣〈w(θ1), a〉

∣∣ ,
where, for every θ in the cube, w(θ) :=

(
wJ(θ)

)
|J |≤d is a vector in R( p

≤d), and similarly a =

(aJ)|J |≤d denotes the coefficient vector in R( p
≤d). By (5.2), a is a unit vector, i.e. a ∈ S( p

≤d)−1
.

In a similar way, the definition of the empirical L1 norm in (5.1) yields

‖F‖L1(µm) =
1

m

m∑
i=1

∣∣∣∣∣∣
∑
|J |≤d

aJwJ(θi)

∣∣∣∣∣∣ =
1

m

m∑
i=1

∣∣〈w(θi), a〉
∣∣ .

Then309

E := E sup
F∈W≤d,‖F‖L2=1

∣∣∣‖F‖L1(µm) −‖F‖L1(µ)

∣∣∣310

= E sup

a∈S( p
≤d)−1

∣∣∣∣∣∣ 1

m

m∑
i=1

∣∣〈w(θi), a〉
∣∣− E

∣∣〈w(θ1), a〉
∣∣∣∣∣∣∣∣ .311

312

Applying a symmetrization inequality for empirical processes (see e.g. [42, Exercise 8.3.24]),
we get

E ≤ 2E sup

a∈S( p
≤d)−1

∣∣∣∣∣∣ 1

m

m∑
i=1

εi
∣∣〈w(θi), a〉

∣∣∣∣∣∣∣∣ ,
where (εi)

m
i=1 denote i.i.d. Rademacher random variables, which are independent of the sample313

points (θi)
m
i=1.314

The exterior absolute value can be removed using the symmetry of the Rademacher ran-315

dom variables, and the interior absolute values can be removed using Talagrand’s contraction316

principle, see [42, Exercise 6.7.7], thus continuing our bound as317

E ≤ 2E sup

a∈S( p
≤d)−1

1

m

m∑
i=1

εi〈w(θi), a〉318

= 2E
∥∥∥∥ 1

m

m∑
i=1

εiw(θi)

∥∥∥∥
2

≤ 2

m

(
E
∥∥∥∥ m∑
i=1

εiw(θi)

∥∥∥∥2

2

)1/2

=
2

m

(
m∑
i=1

E
∥∥w(θi)

∥∥2

2

)1/2

319

320

where the last step follows by conditioning on (θi). Since all
(
p
≤d
)

coordinates of all vectors321

w(θi) equal ±1, we have
∥∥w(θi)

∥∥2

2
=
(
p
≤d
)

deterministically. Substituting this bound, we322

complete the proof.323
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6. Enforcing a uniform bound and sparsity. We will now prove that for any function F on324

the Boolean cube, there is another function that simultaneously satisfies the three desiderata:325

(a) it has the same marginals (or Fourier coefficients) as F up to dimension d; (b) it is very326

sparse – in fact, it is supported on a random set of a given cardinality; and (c) it is uniformly327

bounded. The following result guarantees the existence of such function F − w.328

Theorem 6.1. Let µ be a probability measure on the cube {−1, 1}p whose density is bounded
below by α/2p, and let µm be the empirical counterpart. If m ≥ 16(αγ)−2e2d

(
p
≤d
)
, then the

following holds with probability at least 1− γ. For any function F : {−1, 1}p → R, we have

inf
{
‖F − w‖∞ : w ∈W>d, F − w ⊂ Sµm

}
≤ 2ed2p

αm

∥∥∥F≤d∥∥∥
L2

where Sµm denotes the set of the functions supported on supp(µm).329

Throughout the proof, let us denote

S := supp(µm).

The L1 norm of any function F : {−1, 1}p → R naturally decomposes as

‖F‖L1 =‖F1S‖L1 +‖F1Sc‖L1 ,

where 1S denotes the indicator function of S. Given δ > 0, consider the weighted space L1
δ

where the norm is defined by

‖F‖L1
δ

:=‖F1S‖L1 + δ‖F1Sc‖L1 .

Lemma 6.2. Consider the subspace (W≤d, ‖ ‖L1
δ
) of L1

δ. With probability at least 1− γ, for
every δ > 0 we have ∥∥∥Id : (W≤d, ‖ ‖L1

δ
)→ L2

∥∥∥ ≤ 2ed2p

αm
.

Proof. Proposition 5.1 combined with Markov’s inequality and rescaling implies that, with
probability 1− γ, the following holds for all F ∈W≤d:∣∣∣‖F‖L1(µ) −‖F‖L1(µm)

∣∣∣ ≤ 2

γ

√
1

m

(
p

≤ d

)
‖F‖L2 ≤

α

2ed
‖F‖L2 ,

where in the last step we used the assumption on m.330

Applying hypercontractivity (Theorem 4.1), the regularity assumption of µ, and the bound
above, we obtain

1

ed
‖F‖L2 ≤‖F‖L1 ≤

1

α
‖F‖L1(µ) ≤

1

α
‖F‖L1(µm) +

1

2ed
‖F‖L2 .

Rearranging the terms, we obtain

1

2ed
‖F‖L2 ≤

1

α
‖F‖L1(µm) =

2p

αm
‖F1S‖L1 ≤

2p

αm
‖F‖L1

δ

where in the middle step we used the definitions of S and of the norms in L1(µ) and L1(µm).331

Multiplying both sides by 2ed completes the proof.332
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Proof of Theorem 6.1. Let us dualize Lemma 6.2 with respect to the inner product on L2.
The identity operator is self-adjoint, and the adjoint operator has the same norm. So, with
probability at least 1− γ, for every δ > 0 we have∥∥∥Id :

(
L2
)∗ → (

W≤d, ‖ ‖L1
δ

)∗∥∥∥ ≤ 2ed2p

αm
=: B.

The Hilbert space L2 is self-dual. The dual to the weighted space L1
δ is the weighted space333

L∞1/δ defined as334

(6.1) ‖F‖L∞
1/δ

:=‖F1S‖L∞ ∨
1

δ
‖F1Sc‖L∞ .335

The dual of a subspace is a quotient space of the dual:(
W≤d, ‖ ‖L1

δ

)∗
=
(
L1
δ

)∗
/(W≤d)⊥ = L∞δ /W

>d.

Putting these considerations together, we get∥∥∥Id : L2 → L∞δ /W
>d
∥∥∥ ≤ B.

By definition of the quotient norm, this bound means that for every function F : {−1, 1}p → R
there exists w ∈W>d such that

‖F − w‖L∞δ ≤ B‖F‖L2 .

By definition (6.1) of the weighted norm, this means that336

(6.2)
∥∥(F − w)1S

∥∥
∞ ≤ B‖F‖L2 and

∥∥(F − w)1Sc
∥∥
∞ ≤ δB‖F‖L2 .337

Since the second bound holds for arbitrary δ > 0, it follows that
∥∥(F − w)1Sc

∥∥
∞ = 0, i.e.

supp(F − w) ⊂ S

as claimed in the theorem. Together with the first bound in (6.2), this proves that

‖F − w‖∞ ≤ B‖F‖L2 .

Thus, we showed every function F : {−1, 1}p → R satisfies

inf
{
‖F − w‖∞ : w ∈W>d, F − w ⊂ Sµm

}
≤ B‖F‖L2

Finally, note that the term ‖F‖L2 on the right hand side can automatically be improved to338 ∥∥F≤d∥∥
L2 . To see this, apply the above bound for F≤d and absorb the term F>d into w.339

Theorem 6.1 is proved.340
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7. Low-degree projections of empirical measures. Consider two probability measures ν
and µ on {−1, 1}p, and let f and g denote their densities (or probability mass functions):

f(z) = ν({z}) and g(z) = µ({z}), z ∈ {−1, 1}p.

The densities of the empirical probability measures νn and µm are341

(7.1) fn =
1

n

n∑
i=1

1xi and gm =
1

m

m∑
i=1

1yi342

where x1, . . . , xn and y1, . . . , ym are i.i.d. points drawn from the cube according to the densities
f and g, respectively. The functions fn and gm provide unbiased estimators of f and g:

E fn = f, E gm = g.

Assume that f(z) = 0 whenever g(z) = 0. Consider the function343

(7.2) g̃m := (f/g)gm.344

Although g̃m is supported on the sample drawn from density g, it provides an unbiased
estimator of f :

E g̃m = (f/g)E gm = (f/g)g = f.

This property will be crucial in the proof of Theorem 3.1.345

Let us look at the low-degree projections of fn and g̃m and try to bound their mean346

magnitude and deviation from the mean. Toward this end, note that347

(7.3) ∀x ∈ {−1, 1}p,
∥∥(1x)≤d

∥∥
L2 =

(
p

≤ d

)1/2 1

2p
.348

Indeed, to see this, use Parseval’s identity∥∥(1x)≤d
∥∥2

L2 =
∑
|J |≤d

〈1x, wJ〉2L2 =
∑
|J |≤d

( 1

2p
wJ(x)

)2

and recall that the Walsh function wJ takes ±1 values. Furthermore, by definition of fn and349

the triangle inequality, (7.3) yields350

(7.4)
∥∥(fn)≤d

∥∥
L2 ≤

(
p

≤ d

)1/2 1

2p
deterministically.351

Lemma 7.1 (Deviation). We have(
E
∥∥(fn − f)≤d

∥∥2

L2

)1/2
≤
(
p

≤ d

)1/2 1√
n2p

.

Moreover, if
∥∥f/g∥∥

L2 ≤ κ then we have

(
E
∥∥(g̃m − f)≤d

∥∥
L2

)1/2
≤
(
p

≤ d

)1/2 κ√
m2p

.
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Proof. By Parseval’s identity,352

(7.5)
∥∥(fn − f)≤d

∥∥2

L2 =
∑
|J |≤d

〈fn − f, wJ〉2L2 .353

By definition (7.1) of fn, each term of this sum can be expressed as

〈fn − f, wJ〉L2 =
1

n

n∑
i=1

〈1xi − f, wJ〉L2 .

The terms on the right hand side are i.i.d. mean zero random variables, so354

E〈fn − f, wJ〉2L2 =
1

n
E〈1x1 − f, wJ〉2L2355

≤ 1

n
E〈1x1 , wJ〉2L2 (the variance is bounded by the second moment)356

=
1

n
E
( 1

2p
wJ(x1)

)2
=

1

n22p
,357

358

since the Walsh function wJ takes ±1 values. Substitute this bound into Parseval’s identity
(7.5) to get

E
∥∥(fn − f)≤d

∥∥2

L2 ≤
(
p

≤ d

)
· 1

n22p
.

This proves the first part of the lemma.359

The second part of the lemma can be derived similarly. Indeed,360

(7.6)
∥∥(g̃m − f)≤d

∥∥2

L2 =
∑
|J |≤d

〈g̃m − f, wJ〉2L2 .361

By definition (7.1) of gm and (7.2) of g̃m, each term of this sum can be expressed as

〈g̃m − f, wJ〉L2 =
1

m

m∑
i=1

〈f(yi)

g(yi)
· 1yi − f, wJ

〉
L2
.

The terms on the right hand side are i.i.d. mean zero random variables, so362

E〈g̃m − f, wJ〉2L2 =
1

m
E
〈f(y1)

g(y1)
· 1y1 − f, wJ

〉2

L2
363

≤ 1

m
E
〈f(y1)

g(y1)
· 1y1 , wJ

〉2

L2
(the variance is bounded by the second moment)364

=
1

m
E
( 1

2p
f(y1)

g(y1)
wJ(y1)

)2
365

=
1

m22p

∥∥f/g∥∥2

L2 ≤
κ2

m22p
,366

367

where in the last line we used the fact that the Walsh function wJ takes ±1 values and the
assumption on f/g. Substitute this bound into Parseval’s identity (7.6) to get

E
∥∥(g̃m − f)≤d

∥∥2

L2 ≤
(
p

≤ d

)
· κ2

m22p
.

This proves the second part of the lemma.368
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8. Proof of Theorem 3.1. The following master theorem is a more general version of369

Theorem 3.1, as we will see shortly. Recall that gm, µm, g̃m are defined in (7.1).370

Theorem 8.1. Let f and g be densities on the cube {−1, 1}p, and let fn and gm be their371

empirical counterparts. Assume that
∥∥f/g∥∥

L2 ≤ κ for some κ ≥ 1 and that g is bounded below372

by α/2p. If373

(8.1) n ≥ 16(αδ)−2γ−1e2d

(
p

≤ d

)
and m ≥ 16(αδ)−2γ−1κ2e2d

(
p

≤ d

)
,374

then the following holds with probability 1− 2γ. There exists h : {−1, 1}p → R that satisfies

h≤d = f≤dn , supp(h) ⊂ supp(gm),
∥∥h− (f/g)gm

∥∥
∞ ≤

δ

m
.

Proof. Let g̃m = (f/g)gm and apply Theorem 6.1 for the function F = fn − g̃m. With375

probability 1− γ, there exists w ∈W>d such that376

(8.2) fn − g̃m − w ∈ Sµm and ‖fn − g̃m − w‖∞ ≤
2ed2p

αm

∥∥(fn − g̃m)≤d
∥∥
L2 .377

Set
h = fn − w.

Since w ∈W>d, we have h≤d = f≤dn as claimed. Since both g̃m and h− g̃m = fn − g̃m −w lie378

in Sµm , so does h, as claimed.379

Furthermore, combining both bounds of Lemma 7.1 via the Minkowski inequality, we get(
E
∥∥(fn − g̃m)≤d

∥∥2

L2

)1/2
≤
(
p

≤ d

)1/2( 1√
n

+
κ√
m

) 1

2p
.

By Chebyshev’s inequality, with probability at least 1− γ we have

∥∥(fn − g̃m)≤d
∥∥
L2 ≤ γ−1/2

(
p

≤ d

)1/2( 1√
n

+
κ√
m

) 1

2p
.

We substitute this into (8.2) and get

‖h− g̃m‖L∞(νm) ≤
2ed2p

αm
· γ−1/2

(
p

≤ d

)1/2( 1√
n

+
κ√
m

) 1

2p
≤ δ

m
,

where we used the assumption on n and m in the last bound.380

8.1. Proof of Theorem 3.1. Let us explain how Theorem 8.1 is a more general form381

of Theorem 3.1. Let f and g be the densities of the two distributions in the statement of382

Theorem 3.1, X = (x1, . . . , xn) and S = (y1, . . . , ym) be the samples drawn according to383

these densities, and fn = 1
n

∑n
i=1 1xi and gm = 1

m

∑m
i=1 1yi be the empirical densities. The384

regularity assumption implies that385

(8.3) f/g � 1 pointwise,386
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and in particular the requirement
∥∥f/g∥∥

L2 = O(1) holds in Theorem 8.1. The function h we
obtain from that result is supported on S = supp(gm) and satisfies

h ≥ (f/g)gm −
δ

m
&

1

m
everywhere on S.

(In the last step we used (8.3) that gm = 1
m

∑m
i=1 1yi is lower bounded by 1/m on S.) In387

particular, h is positive on S. The condition h≤d = f≤dn means that h has exactly the same388

marginals up to dimension d as fn, the uniform probability distribution on X. Since fn is a389

density, the sum of all of its values equals 1. The same must be true for h, since the sum of390

the values can be expressed as the zero-dimensional marginal, which must be the same for h391

and fn. In other words, h must be a density, too. Theorem 3.1 is proved.392

8.2. A one-sample version. Here is a one-sample version of Theorem 8.1. It is a rigorous393

version of Theorem 3.6 we stated informally in the introduction.394

Theorem 8.2. Let f be a density on the cube {−1, 1}p that is bounded below by α/2p, and
let fm be its empirical counterpart. If m ≥ 16(αδ)−2γ−1e2d

(
p
≤d
)

then the following holds with
probability 1− 2γ. There exists a density h on supp(fm) that satisfies

h≤d = f≤d, ‖h− fm‖∞ ≤
δ

m
.

Proof. The proof is similar to that of Theorem 3.1 above. Choose g = f , n = m, hence395

g̃m = (f/g)gm = fm, and use F = f − g̃m. Apply only the first bound in Lemma 7.1.396

Note that the bound in the conclusion and the fact that fm = 1/m on its support implies397

that h ≥ 1/m− δ/m > 0 on supp(fm), and thus h is a density.398

We leave the details to the reader.399

9. Solution space. Our next focus is on proving Theorem 3.5, which gives guarantees for400

privacy and accuracy of the synthetic data created by Algorithm 3.1.401

Let us formally introduce the solution space – the space of all functions on the reduced402

sample space S that have the same marginals as a given function u.403

Definition 9.1 (Solution space). Let µ be a probability measure on the cube {−1, 1}p, and
µm be its empirical counterpart. For any function u : {−1, 1}p → R, consider the affine
subspace H(u) of all functions supported on supp(µm) and that have the same marginals up
to dimension d as the function u, i.e.

H(u) :=
{
h ∈ Sµm : h≤d = u≤d

}
=
(
u−W>d

)
∩ Sµm ,

where Sµm, as before, denotes the linear space of all functions supported on the reduced space404

S = supp(µm).405

9.1. Success with high probability. The Algorithm 3.1 succeeds, i.e. does not return406

“Failure”, when the reduced space S = {θ1, . . . , θm} is well conditioned. By definition, this407

happens if408

(9.1) smin(M) ≥
√
m

2ed
409
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where smin denotes the smallest singular value, and M is the m×
(
p
≤d
)

matrix whose entries410

are wJ(θi) for |J | ≤ d, i.e. the matrix whose rows are indexed by the points θi ∈ S, and whose411

columns are indexed by Walsh functions wJ of degree at most d.412

Let us reformulate the condition (9.1) in the dual form, and then deduce from Theorem 6.1413

that that it holds with high probability.414

Lemma 9.2 (Well conditioned reduced space). The reduced space S is well conditioned if415

and only if any function F : {−1, 1}p → R satisfies416

(9.2) inf
{
‖F − w‖L2(µm) : w ∈W>d, F − w ∈ Sµm

}
≤ 2ed2p

m

∥∥∥F≤d∥∥∥
L2
.417

Proof. Decomposing F = F≤d +F>d we see that F≤d in the right hand side of (9.2) may418

be replaced by F without loss of generality. Furthermore, since‖f‖L2(µm) =
√

2p/m‖f‖L2 for419

any f ∈ Sµm , we can rewrite condition (9.2) equivalently as420

(9.3) inf
{
‖F − w‖L2 : w ∈W>d, F − w ∈ Sµm

}
≤ B‖F‖L2421

where

B = 2ed
√

2p

m
.

We will employ a duality argument similar to the one we used in the proof of Theorem 6.1.
Given δ > 0, consider the weighted Hilbert space L2

δ where the norm is defined by

‖F‖2L2
δ

:=‖F1S‖2L2 + δ‖F1Sc‖2L2 .

where 1S denotes the indicator function of S. Then (9.3) is equivalent to

inf

{
‖F − w‖L2

1/δ
: w ∈W>d

}
≤ B‖F‖L2 ∀δ > 0.

(To see this, note that taking δ → 0+ enforces F − w1Sc = 0, or equivalently F − w ∈ Sµm .)
This can be interpreted as a bound on the norm of the quotient map Q:∥∥∥Q : L2 → L2

1/δ/W
>d
∥∥∥ ≤ B ∀δ > 0.

Let us dualize this bound. The adjoint operator has the same norm, so∥∥∥Q∗ :
(
L2
)∗ → (

L2
1/δ/W

>d
)∗∥∥∥ ≤ B ∀δ > 0.

The adjoint of the quotient map is the canonical (identity) embedding; the Hilbert space L2

is self-dual, and the dual of a quotient space is a subspace of the dual, i.e.(
L2

1/δ/W
>d
)∗

= ((W>d)⊥, ‖ ‖(L2
1/δ

)∗) = (W≤d, ‖ ‖L2
δ
).

Thus, the bound is equivalent to∥∥∥Id : (W≤d, ‖ ‖L2
δ
)→ L2

∥∥∥ ≤ B ∀δ > 0.
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By definition of the operator norm and the norm in L2
δ , this bound is equivalent to saying

that
‖F‖2L2 ≤ B2

(
‖F1S‖2L2 + δ‖F1Sc‖2L2

)
∀F ∈W≤d, ∀δ > 0.

Taking δ → 0+, we see that this is equivalent to

‖F‖2L2 ≤ B2‖F1S‖2L2 =
B2

2p
‖F1S‖2`2 =

4e2d

m
‖F1S‖2`2 ∀F ∈W≤d.

Expressing F through its orthogonal decomposition F =
∑
|J |≤d aJwJ , we can rewrite the

latter condition as∑
|J |≤d

a2
J ≤

4e2d

m

∥∥∥∥∑
|J |≤d

aJwJ1S

∥∥∥∥2

`2

=
4e2d

m

m∑
i=1

( ∑
|J |≤d

aJwJ(θi)
)2

∀ choice of coefficients aJ .

This in turn is equivalent to

‖a‖2`2 ≤
4e2d

m
‖Ma‖2`2 ,

which is finally equivalent to (9.1).422

Proposition 9.3 (Success with high probability). If m ≥ 16γ−2e2d
(
p
≤d
)
, then Algorithm 3.1423

succeeds (i.e. does not return “Failure”) with probability at least 1− γ.424

Proof. By definition, Algorithm 3.1 succeeds if the reduced space S is well conditioned.425

Then the conclusion immediately follows from Theorem 6.1 for the uniform density µ, Lemma 9.2426

and the fact that the L2(µm) norm is bounded by the sup-norm.427

9.2. All solution spaces are translates of each other. First let us show that with high428

probability in µm, all solution spaces H(u) are nonempty and are translates of each other.429

The following elementary lemma will help us.430

Proposition 9.4. If the reduced space S is well conditioned, the solution spaces H(u) for all431

u : {−1, 1}p → R are nonempty and are translates of each other.432

Proof. Let F : {−1, 1}p → R be an arbitrary function. If S is well conditioned, Lemma 9.2
for F = u yields the existence of w ∈ W>d and s ∈ Sµm such that u = s + w. This implies
that u−W>d = s−W>d. Hence

H(u) =
(
u−W>d

)
∩ Sµm =

(
s−W>d

)
∩ Sµm = s−

(
W>d ∩ Sµm

)
.

The linear subspace W>d ∩ Sµm is nonempty as it contains the origin. Therefore, all solution433

spaces H(u) are translates of this linear space, and thus of each other.434

9.3. Sensitivity of the solution space. Next, we will check that the map u 7→ H(u) is
Lipschitz in the Hausdorff metric. Recall that the Hausdorff distance between two subsets A
and B of a normed space X is defined as

dX(A,B) = max

{
sup
a∈A

inf
b∈B
‖a− b‖X , sup

b∈B
inf
a∈A
‖a− b‖X

}
.
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When A and B are affine subspaces that are translates of each other, we have

dX(A,B) = inf
b∈B
‖a− b‖X = distX(a,B) for any a ∈ A.

When the norm is clear from the context, we skip the subscript X. When X = Lq we simply435

write dq(A,B).436

Lemma 9.5 (Sensitivity of the solution space). If the reduced space S is well conditioned,437

then any pair of functions u1, u2 : {−1, 1}p → R satisfies438

(9.4) d∞
(
H(u1), H(u2)

)
≤ 2ed2p√

m

∥∥(u1 − u2)≤d
∥∥
L2 .439

Proof. Since, by Proposition 9.4, the affine subspaces H(u1) and H(u2) are translates of440

each other, it suffices to bound infs2∈H(u2)‖s1 − s2‖∞ for any s1 ∈ H(u1).441

Pick any s1 ∈ H(u1). Since H(u1) = (u1 −W>d)∩ Sµm , there exists w1 ∈W>d such that442

s1 = u1−w1 ∈ Sµm . Apply the bound in Lemma 9.2 for F = s1−u2. There exists w2 ∈W>d443

such that s1 − u2 − w2 ∈ Sµm and444

(9.5) ‖s1 − u2 − w2‖∞ ≤
√
m‖s1 − u2 − w2‖L2(µm) ≤

2ed2p√
m

∥∥(s1 − u2 − w2)≤d
∥∥
L2 .445

Since both s1 and s1−u2−w2 lie in the linear subspace Sµm , it must be that s2 := u2+w2 ∈ Sµm446

as well. Since w2 ∈W>d, it follows that s2 ∈ (u2 +W>d) ∩ Sµm = H(u2).447

Furthermore,

(s1 − u2 − w2)≤d = (u1 − w1 − u2 − w2)≤d = (u1 − u2)≤d.

(In the last step, we used that w1 and w2 are in W>d and so (w1)≤d = (w2)≤d = 0.)448

Therefore, we can rewrite (9.5) as

‖s1 − s2‖∞ ≤
2ed2p√
m

∥∥(u1 − u2)≤d
∥∥
L2 .

The proof is complete.449

9.4. Changing a single data point. The Sensitivity Lemma 9.5 will be applied in the450

situation where u1 and u2 are the uniform densities on the two datasets X1 and X2 that are451

different by a single element. Let us specialize the bound (9.4) to this case.452

Suppose X1 = (x1, . . . , xn) and X2 = (x1, . . . , xn, xn+1). Here, in our discussion of privacy,
we allow xi be arbitrary points drawn from {−1, 1}p; they do not need to be random. The
corresponding densities are

fn =
1

n

n∑
i=1

1xi and fn+1 =
1

n+ 1

n+1∑
i=1

1xi .

A direct calculation yields

fn+1 − fn =
1

n+ 1

(
1xn+1 − fn

)
.
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Using triangle inequality and then (7.3) and (7.4), we get453

(9.6)
∥∥(fn+1 − fn)≤d

∥∥
L2 ≤

1

n+ 1

(∥∥(1xn+1)≤d
∥∥
L2 +

∥∥(fn)≤d
∥∥
L2

)
≤ 2

n

(
p

≤ d

)1/2 1

2p
.454

10. Selection rule. Next, we want to extend sensitivity to the selection rule. Can we pick455

one point from a solution space in such a way that a small change in the solution space always456

leads to a small change in the selected point?457

10.1. L2 sensitivity. We do not know the best selection rule in the L∞ metric. The458

problem is simpler for the L2 metric: the proximal point (to a given reference point) is a good459

selection rule.460

Lemma 10.1 (Sensitivity of the closest point in the Hilbert space). Consider a Hilbert space
X and a reference point r ∈ X. Let x(K) denote a point in a nonempty closed set K ⊂ X
that is closest to r, i.e.

xr(K) = argmin
{
‖x− r‖ : x ∈ K

}
.

Then, for any two nonempty closed convex sets K1,K2 ⊂ X, we have∥∥xr(K1)− xr(K2)
∥∥2 ≤ 4 max

(
dist(r,K1),dist(r,K2)

)
· d(K1,K2).

In order to prove this lemma, we first observe:461

Lemma 10.2. Suppose that K is a nonempty closed convex subset of a Hilbert space X.
Let r ∈ X. Let x0 = argmin

{
‖x− r‖ : x ∈ K

}
. Then

‖x0 − y‖2 ≤ 2
(
‖y − r‖2 − ‖x0 − r‖2

)
for all y ∈ K.462

Proof. Without loss of generality, assume that r = 0. Let y ∈ K. Since x0+y
2 ∈ K, we463

have
∥∥∥x0+y

2

∥∥∥ ≥ ‖x0‖, so464

∥∥∥∥x0 − y
2

∥∥∥∥2

+ ‖x0‖2 ≤
∥∥∥∥x0 − y

2

∥∥∥∥2

+

∥∥∥∥x0 + y

2

∥∥∥∥2

=
1

2
(‖x0‖2 + ‖y‖2).465

Thus, ‖x0 − y‖2 ≤ 2(‖y‖2 − ‖x0‖2).466

Proof of Lemma 10.1. If d(K1,K2) ≥ d(r,K1) + d(r,K2), then we are done, since467

‖xr(K1)− xr(K2)‖ ≤ ‖xr(K1)− r‖+ ‖xr(K2)− r‖468

= d(r,K1) + d(r,K2) ≤
√

(d(r,K1) + d(r,K2))d(K1,K2).469

Thus, we may assume that d(K1,K2) ≤ d(r,K1) + d(r,K2). Without loss of generality, we470

may also assume that d(r,K2) ≤ d(r,K1). By Lemma 10.2,471

‖xr(K1)− y‖2 ≤ 2(‖y − r‖2 − d(r,K1)2),472
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for all y ∈ K1. Note that we can write xr(K2) = y + d(K1,K2)z for some y ∈ K1 and z ∈ X473

with ‖z‖ ≤ 1. Since474

‖y − r‖ ≤ ‖xr(K2)− r‖+ d(K1,K2) = d(r,K2) + d(K1,K2),475

it follows that476

‖xr(K1)− y‖2477

≤2[(d(r,K2) + d(K1,K2))2 − d(r,K1)2]478

=2[d(r,K2) + d(K1,K2) + d(r,K1)][d(r,K2) + d(K1,K2)− d(r,K1)]479

≤2[d(r,K2) + d(K1,K2) + d(r,K1)]d(K1,K2)480

≤4(d(r,K1) + d(r,K2))d(K1,K2),481482

where the second inequality follows from the assumption that d(r,K2) ≤ d(r,K1) and the last483

inequality follows from the assumption that d(K1,K2) ≤ d(r,K1) + d(r,K2).484

10.2. Restriction onto the cube. Functions that comprise the solution space H(u) may485

take negative values, hence not all of H(u) consists of densities. So, our next goal is to restrict486

the affine space H(u) to the positive orthant [0,∞)m and check that sensitivity still holds.487

Our Algorithm 3.1 makes a more aggressive restriction onto the cube [2δ/m, (∆ − δ)/m]m.488

This is what we will analyze now.489

Lemma 10.3 (Restriction onto a cube). Let H1 and H2 be a pair of parallel affine subspaces
of Rm with equal dimensions. Assume that for some scalars a < b, we have

Hi ∩ [a, b]m 6= ∅, i = 1, 2.

Fix any λ > 0 and consider the cube Q = [a− λ, b+ λ]m. Then

d∞ (H1 ∩Q, H2 ∩Q) ≤
(b− a

λ
+ 2
)
d∞ (H1, H2) .

Proof. Due to symmetry, it is enough to bound the quantity

sup
h1∈H1∩Q

inf
h2∈H2∩Q

‖h1 − h2‖∞ .

So let us fix any h1 ∈ H1 ∩ Q and find h2 ∈ H2 ∩ Q for which ‖h1 − h2‖∞ is small. To this490

end, fix a vector491

(10.1) x1 ∈ H1 ∩ [a, b]m,492

which exists by assumption. Due to the definition of Hausdorff distance, we can find x2 ∈ H2493

such that494

(10.2) ‖x2 − x1‖∞ ≤ d∞(H1, H2) =: δ.495

Consider the vector

y := x1 +
λ

δ
(x2 − x1)
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and set h2 to be the following convex combination of h1 and y:

h2 :=
(

1− δ

λ

)
h1 +

δ

λ
y.

(Here we assume that δ ≤ λ. Otherwise, the result follows immediately, since the diameter of496

Q in L∞-norm is b− a+ 2λ.) Figure 1 might help to visualize our construction.497

Figure 1: Construction in the proof of Lemma 10.3.

Let us check that the vector h2 constructed this way satisfies all the required properties.
First, we claim that

y ∈ Q.
Indeed, the definition of y combined with (10.1) and (10.2) yields

y ∈ [a, b]m +
λ

δ
[−δ, δ]m = [a− λ, b+ λ]m = Q.

We claim that
h2 ∈ H2.

Indeed, substituting the definition of y into the expression for h2, we get498

(10.3) h2 =
(

1− δ

λ

)(
h1 − x1

)
+ x2499

By the assumption, H1 and H2 are translates of the same linear subspace. This linear subspace500

can be expressed as H1 − x1 or, equivalently, as H2 − x2 since x1 ∈ H1 and x2 ∈ H2. In501

particular, we have t(H1−x1) = H2−x2 for any t ∈ R, or equivalently H2 = t(H1−x1) +x2.502

Since h1 ∈ H1, it follows from (10.3) that h2 ∈ H2 as claimed.503

Next, since both h1 and y lie in Q, their convex combination must lie there, too, so

h2 ∈ Q.

Finally, using the definition of h2 and recalling that h1 and y lie in Q, we get

h1 − h2 =
δ

λ
(h1 − y) ∈ δ

λ
(Q−Q) =

δ

λ

[
−(b− a+ 2λ), b− a+ 2λ

]m
.

Thus

‖h1 − h2‖∞ ≤
δ

λ
(b− a+ 2λ) =

(b− a
λ

+ 2
)
δ.

The proof if complete.504
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10.3. L∞ sensitivity of the selection rule. We are ready to analyze the sensitivity of the505

L2-proximal selection rule:506

Lemma 10.4 (L∞ sensitivity of the selection rule). Let 0 < a < c < (a+ b)/2. Let H1 and
H2 be a pair of parallel affine subspaces of Rm with equal dimensions. Assume that

Hi ∩ [a, b]m 6= ∅, i = 1, 2.

Let
hi = argmin

{
‖x− c · 1m‖2 : x ∈ Hi ∩ [a− λ, b+ λ]m

}
, i = 1, 2.

Then

‖h1 − h2‖2∞ ≤ 4m(b− c)
(b− a

λ
+ 2
)
d∞ (H1, H2) .

Proof. Lemma 10.3 gives507

(10.4) d∞(K1,K2) ≤
(b− a

λ
+ 2
)
d∞ (H1, H2)508

where Ki = Hi ∩ [a− λ, b+ λ]m. Let us apply Lemma 10.1 for r = c · 1m and the L2 norm on
Rm. Note that

distL2(r,Ki) ≤ max
h∈[a,b]m

‖r − h‖L2 ≤ max
h∈[a,b]m

‖r − h‖∞ = max
{
|a− c| ,|c− b|

}
= b− c.

Thus, Lemma 10.1 yields

‖h1 − h2‖2L2 ≤ 4(b− c) · dL2(K1,K2) ≤ 4(b− c) · d∞(K1,K2).

To complete the proof, use (10.4) and note that ‖h1 − h2‖2∞ ≤ m‖h1 − h2‖2L2 .509

11. Shrinkage. Another step of Algorithm 3.1 we need to control is shrinkage. We will510

check here that shrinkage onto a cube is Lipschitz in the L∞-Hausdorff metric. Let us start511

with a general observation:512

Lemma 11.1 (Shrinkage). Let X be a normed space and z ∈ X be a point such that
‖z‖ ≤ 1− β for some β ∈ (0, 1). Let r : X → X be the retraction map onto the unit ball of X
toward z, i.e.

r(x) = (1− λ)x+ λz

where λ = λ(x) is the minimal number in [0, 1] such that
∥∥r(x)

∥∥ ≤ 1. Then the Lipschitz norm513

of the map λ(·) is at most 1/β, and the Lipschitz norm of the map r(·) is at most 2/β.514

Proof. Fix any pair of vectors x1, x2 ∈ X and denote

λ1 = λ(x1), λ2 = λ(x2), µ =‖x1 − x2‖ /β.

The claim about the Lipschitz norm of λ(·) can be stated as |λ1 − λ2| ≤ µ. By symmetry, it515

suffices to show that516

(11.1) λ1 ≤ λ2 + µ.517
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This bound is trivial if λ2 + µ > 1 since we always have λ1 ≤ 1. So we can assume from now518

on that λ2 + µ ∈ [0, 1].519

Due to the minimality property in the definition of λ1 = λ(x1), in order to prove (11.1) it520

suffices to show that521

(11.2)
∥∥(1− λ2 − µ)x1 + (λ2 + µ)z

∥∥ ≤ 1.522

By triangle inequality, the left hand side is bounded by ‖A‖+‖B‖ where

A = (1− λ2 − µ)x2 + (λ2 + µ)z, B = (1− λ2 − µ)(x1 − x2).

Rearranging the terms, we can rewrite

A = (1− a)
[
(1− λ2)x2 + λ2z

]
+ az where a =

µ

1− λ2
.

By assumption, a ∈ [0, 1]. Then A is a convex combination of the vector (1 − λ2)x2 + λ2z
whose norm is bounded by 1 by definition of λ2 = λ(x2) and the vector z whose norm is
bounded by 1− β by assumption. Hence, by triangle inequality and definition of a and µ, we
have

‖A‖ ≤ (1− a) · 1 + a · (1− β) = 1− aβ ≤ 1− µβ = 1−‖x1 − x2‖ .

Furthermore, the assumption 1− λ2 − µ ∈ [0, 1] yields

‖B‖ ≤‖x1 − x2‖ .

Hence we showed that ‖A‖+‖B‖ ≤ 1, establishing (11.2) and completing the first part of the523

proof (about the Lipschitz norm of λ).524

To prove the second part of the lemma, we need to show that525

(11.3)
∥∥r(x1)− r(x2)

∥∥ ≤ (2/β)‖x1 − x2‖ .526

Let us first prove this inequality assuming that ‖x1‖ ≤ 1 or ‖x2‖ ≤ 1. Without loss of527

generality, assume ‖x1‖ ≤ 1. Denoting µ1 = 1 − λ1 and µ2 = 1 − λ2 and using triangle528

inequality, we obtain529

(11.4)
∥∥r(x1)− r(x2)

∥∥ =‖µ1x1 + λ1z − µ2x2 − λ2z‖ ≤‖µ1x1 − µ2x2‖+|λ1 − λ2|‖z‖530

By the first part of the lemma and since ‖z‖ ≤ 1− β, we have531

(11.5) |λ1 − λ2|‖z‖ ≤
1

β
‖x1 − x2‖ (1− β) = (1/β − 1)‖x1 − x2‖ .532

Furthermore, adding and subtracting the cross term µ2x1 and using triangle inequality, we
get

‖µ1x1 − µ2x2‖ ≤|µ1 − µ2| ‖x1‖+ µ2 ‖x1 − x2‖ .

Now, |µ1 − µ2| = |λ1 − λ2| ≤ ‖x1 − x2‖ /β by the first part of the lemma; ‖x1‖ ≤ 1 by the533

standing assumption, and µ2 ≤ 1. Hence534

(11.6) ‖µ1x1 − µ2x2‖ ≤ (1/β + 1)‖x1 − x2‖ .535

25

This manuscript is for review purposes only.



Substitute (11.5) and (11.6) into (11.4), we conclude the claim (11.3).536

Finally, consider the remaining case where both ‖x1‖ ≥ 1 and ‖x2‖ ≥ 1. Without loss of
generality, λ1 ≤ λ2, so the vectors

x̃1 := (1− λ1)x1 + λ1z and x̃2 := (1− λ1)x2 + λ1z

satisfy

‖x̃1‖ = 1 and ‖x̃2‖ ≥ 1.

Definition of retraction yields r(x̃1) = r(x1) and r(x̃2) = r(x2). Thus, applying (11.3) for x̃1537

and x̃2, we get538 ∥∥r(x1)− r(x2)
∥∥ =

∥∥r(x̃1)− r(x̃2)
∥∥ ≤ (2/β)‖x̃1 − x̃2‖

= (2/β)(1− λ1)‖x1 − x2‖ ≤ (2/β)‖x1 − x2‖ .
539

The lemma is proved.540

Now we extend our analysis of shrinkage for affine subspaces:541

Lemma 11.2 (Shrinkage for subspaces). Let K be the unit ball of a finite dimensional
normed space X. Let z, z0 ∈ X be points such that z ∈ z0 + (1 − β)K for some β ∈ (0, 1).
Given an affine subspace H in X, define the affine subspace H̃ by moving H toward z until it
intersects the ball z0 +K, i.e.

H̃ = (1− λ)H + λz

where λ = λ(H) is the minimal number in [0, 1] such that H̃ ∩ (z0 +K) 6= ∅. Then for any two
affine subspaces H1 and H2 that are translates of each other, the Hausdorff distance satisfies

dX(H̃1, H̃2) ≤ 2

β
dX(H1, H2).

Proof. By translation, we can assume without loss of generality that z0 = 0. The affine542

subspaces H1 and H2 are translates of some common linear subspace H0. Apply Lemma 11.1543

for the quotient space X/H0 instead of X and for Hz := z +H0 instead of z.544

The requirement of that lemma is satisfied since545

(11.7) ‖Hz‖X/H0
= inf

h∈Hz
‖h‖X ≤‖z‖X ≤ 1− β.546

Indeed, the equality here is the definition of the norm in the quotient space, the first inequality547

holds since z ∈ Hz, and the last inequality is an equivalent form of the assumption z ∈548

(1− β)K.549

We claim that the retraction map r(·) in Lemma 11.1 satisfies

r(H) = H̃ for any translate H of H0.

Indeed, by definition we have

r(H) = (1− λ)H + λHz

26

This manuscript is for review purposes only.



where λ is the minimal number in [0, 1] such that
∥∥r(H)

∥∥
X/H0

≤ 1. Since ‖Hz‖X/H0
< 1 by

(11.7), continuity shows that λ < 1 and hence

r(H) = (1− λ)H + λz.

Moreover, the condition that
∥∥r(H)

∥∥
X/H0

≤ 1 is equivalent to r(H) ∩ K 6= ∅. Hence the550

definitions of r(H) and H̃ are equivalent as we claimed.551

Lemma 11.1 yields ∥∥H̃1 − H̃2

∥∥
X/H0

≤ 2

β
‖H1 −H2‖X/H0

.

It remains to note that, by definition,

‖H1 −H2‖X/H0
= inf

h1∈H1, h2∈H2

‖h1 − h2‖X = dX(H1, H2),

and similarly for the distance between H̃1 and H̃2. The proof is complete.552

Finally, we specialize our analysis to the shrinkage onto the cube:553

Lemma 11.3 (Shrinkage onto a cube). Let 0 < a < c < (a+b)/2. Given an affine subspace
H in Rm, define the affine subspace H̃ by moving H toward d1m until it intersects the cube
[a, b]m, i.e.

H̃ = (1− λ)H + λ · c1m
where λ = λ(H) is the minimal number in [0, 1] such that H̃ ∩ [a, b]m 6= ∅. Then for any two
affine subspaces H1 and H2 that are translates of each other, the Hausdorff distance in the
L∞ norm satisfies

d∞(H̃1, H̃2) ≤ b− a
c− a

d∞(H1, H2).

Proof. Apply Lemma 11.2 for

z = c1m, z0 =
a+ b

2
1m, K =

[
− b− a

2
,
b− a

2

]m
.

so that z0 is the center of the cube [a, b]m, K is the centered cube, and z0 +K = [a, b]m.554

Now,

z − z0 =
(
c− a+ b

2

)
1m

and

0 ≤ a+ b

2
− c = (1− β)

b− a
2

for β =
2(c− a)

b− a
,

so z − z0 ∈ (1− β)K as required in Lemma 11.2. The conclusion of this lemma is that

dX(H̃1, H̃2) ≤ 2

β
dX(H1, H2).

Since the unit ball K of X is the cube [−1, 1]m scaled by the factor (b − a)/2, the norm in555

X is the L∞-norm scaled by that factor. Therefore, the conclusion holds for the L∞ norm as556

well.557
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12. Privacy and accuracy of the algorithm. We are ready to analyze the privacy and558

accuracy of Algorithm 3.1.559

12.1. Algorithm. For convenience we rewrite Algorithm 3.1, see Algorithm 12.1 below.560

Note that in Step 5 of Algorithm 12.1, the L2(S)-norm is defined as‖h‖2L2(S) = 1
m

∑m
i=1 h(si)

2.561

Algorithm 12.1 Private sampling synthetic data algorithm

Input: a sequence X of n points in {−1, 1}p (true data); m: cardinality of S; d: the
degree of the marginals to be matched; parameters δ,∆ with ∆ > δ > 0.
1. Draw a sequence S = (θ1, . . . , θm) of m points in the cube independently and uniformly

(reduced space).
2. Form the m×

(
p
≤d
)

matrix M with entries wJ(θi), i.e. the matrix whose rows are indexed
by the points of the reduced space S and whose columns are indexed by the Walsh
functions of degree at most d. If the smallest singular value of M is bounded below by√
m/2ed, call S well conditioned and proceed. Otherwise return “Failure” and stop.

3. Let fn be the uniform density on true data: fn = 1
n

∑n
i=1 1xi . Consider the solution

space

H = H(fn) =
{
h : {−1, 1}p → R : supp(h) ⊂ S, h≤d = (fn)≤d

}
,

4. Shrink H toward the uniform density um = 1
m

∑m
i=1 1si on S: let

H̃ = (1− λ)H + λum

where λ ∈ [0, 1] is the minimal number such that H̃ ∩ [2δ/m, (∆− δ)/m]S 6= ∅.
5. Pick a proximal point

h∗ = argmin
{∥∥h̃− um∥∥L2(S)

: h̃ ∈ H̃ ∩ [δ/m,∆/m]S
}
.

Output: a sequence Y = (y1, . . . , yk) of k independent points drawn from S according to
density h∗.

Remark 12.1. The computational complexity of Algorithm 12.1 is governed by the linear562

program in Step 3 to compute the density h on S that is guaranteed by Theorem 8.1, which563

dominates the cost of the simple “line-search” optimization in Step 4 and the linear least564

squares problem in Step 5. The associated linear program has |S| ≤ m variables (the values of565

the density on S),
(
p
≤d
)

linear equations (to match the marginals to those of X), and |S| ≤ m566

linear inequalities (to ensure the density is nonnegative on S), where m ≥ e2d
(
p
≤d
)
. The567

complexity of solving general linear programs is polynomial in the number of variables, see568

e.g. [31]. Hence (for fixed d) the complexity of Algorithm 12.1 is polynomial in p.569

As already discussed in Section 3.3, if S fails the well-condionedness condition in Step 2,570

we can simply resample S until it is well conditioned. Since the expected number or trials until571

success is ≤ 2 (under some mild conditions), Algorithm 3.1 succeeds deterministically, but its572

running time becomes random (with expected overhead time ≤ 2).573

The standing assumption in this section is that the reduced space S = (s1, . . . , sm) is574
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random, and consists of points si drawn independently and uniformly from the cube. We575

would like to show that with high probability over S, the algorithm is differentially private.576

12.2. Sensitivity of density. The privacy guarantee will be achieved via Private Sampling577

Lemma 3.3. To apply it, we need to bound the sensitivity of the density h∗ computed by the578

algorithm.579

Lemma 12.2. Suppose the reduced space S is well conditioned. Then, for any pair of input
datasets X1 and X2 that consist of at least n elements each and differ from each other by a
single element, the densities h∗1 and h∗2 computed by the algorithm satisfy

∥∥h∗1 − h∗2∥∥∞ ≤ 4
√

2∆3/2ed/2√
δnm1/4

(
p

≤ d

)1/4

.

Proof. By Proposition 9.4, the solution subspaces

H1 = H(fn) and H2 = H(fn+1)

are translates of each other. The ambient space consists of all functions supported on an
m-element set S, and thus can be identified with Rm. Let H̃i be the result of shrinkage of the
subspaces Hi toward the uniform distribution as specified in the algorithm, i.e. the shrinkage
onto the cube [δ/m,∆/m]m and toward the uniform distribution um. The selection rule for
h∗ specified in the algorithm is stable in the L∞ metric. Indeed, Lemma 10.4 applied for the
subspaces H̃i and for

a =
2δ

m
, b =

∆− δ
m

, c =
1

m
, λ =

δ

m

yields ∥∥h∗1 − h∗2∥∥2

∞ ≤
4∆2

δ
· d∞(H̃1, H̃2).

Next, recall that the shrinkage map is stable. Indeed, Lemma 11.3 applied for the same a, b, c
yields

d∞(H̃1, H̃2) ≤ 2∆ · d∞(H1, H2).

Furthermore, the solution space is stable. Indeed, Lemma 9.5 for the uniform density µ on
the cube yields

d∞(H1, H2) ≤ 2ed2p√
m

∥∥(fn − fn+1)≤d
∥∥
L2 .

Finally, recall from (9.6) that

∥∥(fn+1 − fn)≤d
∥∥
L2 ≤

2

n

(
p

≤ d

)1/2 1

2p
.

Combining all these bounds, we conclude that

∥∥h∗1 − h∗2∥∥2

∞ ≤
4∆2

δ
· 2∆ · 2ed2p√

m
· 2

n

(
p

≤ d

)1/2 1

2p
≤ 32∆3ed

δn
√
m

(
p

≤ d

)1/2

.

The proof is complete.580
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12.3. Privacy guarantee. Finally, we are ready to give the privacy guarantee of our581

algorithm:582

Theorem 12.3 (Privacy). If k ≤ 1
4
√

2
ε
(
δ
∆

)3/2
e−d/2

(
p
≤d
)−1/4√

n/m3/4, then Algorithm 12.1583

is ε-differentially private.584

Proof. Since the reduced space S is drawn independently of the input data X, we can585

condition on S. If S is ill conditioned, the algorithm returns “Failure” regardless of the input586

data, so the privacy holds trivially. Suppose S is well conditioned.587

Let X1 and X2 be a pair of datasets that consist of at least n elements each and differ
from each other by a single element. By the choice made in the algorithm and by sensitivity
of density (Lemma 12.2), we have

h∗2 ≥
δ

m
and

∣∣h∗1 − h∗2∣∣ ≤ 4
√

2∆3/2ed/2√
δnm1/4

(
p

≤ d

)1/4

=: η

pointwise. Therefore ∣∣h∗1/h∗2∣∣ ≤ 1 +
ηm

δ
≤ exp

(ηm
δ

)
≤ exp

( ε
k

)
pointwise, where the last inequality indeed holds due to our assumption on k. Private Sampling588

Lemma 3.3 completes the proof.589

Remark 12.4. Suppose we chose the size m of the reduced space S so that m � e2d
(
p
≤d
)
.590

Simplifying the condition in Theorem 12.3, we conclude that if k �
√
n/m, then Algo-591

rithm 12.1 is o(1)-differentially private.592

12.4. Accuracy guarantee. The following is the accuracy guarantee of our algorithm:593

Theorem 12.5 (Accuracy). Assume the true data X = (x1, . . . , xn) is drawn independently594

from the cube according to some density f , which satisfies ‖f‖∞ ≤ ∆/2p. Assume that n ≥595

16δ−2γ−1e2d
(
p
≤d
)
, 16δ−2γ−1∆2e2d

(
p
≤d
)
≤ m ≤ 2p/4, and k ≥ 4δ−2(log(2/γ) + log

(
p
≤d
)
). Then,596

with probability at least 1−4γ− 1√
2p

, the algorithm succeeds, and all marginals of the synthetic597

data Y up to dimension d are within 4δ from the corresponding marginals of the true data X.598

Proof. Proposition 9.3 and the choice of m guarantee that the algorithm succeeds with599

probability at least 1− γ.600

Furthermore, the uniform density on the cube g = 2−p satisfies
∥∥f/g∥∥

L2 ≤
∥∥f/g∥∥∞ =601

‖f‖∞ · 2p ≤ ∆. Therefore, Theorem 8.1 implies that with probability at least 1 − 2γ, there602

exists h ∈ H = H(fn) such that603

(12.1)
∥∥h− (f/g)gm

∥∥
∞ ≤

δ

m
.604

Since (f/g)gm is a nonnegative function, it follows that

h ≥ − δ

m
pointwise.

The assumption m ≤ 2p/4 implies that with probability 1 − 1√
2p

there are no repetitions605

in y1, . . . , ym, which in turn implies that with probability 1 − 1√
2p

we have ‖gm‖∞ ≤ 1/m606

(otherwise ‖gm‖∞ would scale with the number of repetitions in y1, . . . , ym).607
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In the following we condition on the event that there are no repetitions in y1, . . . , ym.
Since

∥∥f/g∥∥∞ ≤ ∆ by above and ‖gm‖∞ ≤ 1/m, we have
∥∥(f/g)gm

∥∥
∞ ≤ ∆/m, so

h ≤ ∆ + δ

m
pointwise.

A combination of these two bounds on h implies that

2δ

m
≤ (1− 3δ)h+

3δ

m
≤ ∆− δ

m
pointwise,

as long as ∆ ≥ 5/3. Since h ∈ H, it follows that the affine subspace (1 − 3δ)H + 3δum608

has a nonempty intersection with [2δ/m, (∆ − δ)/m]m. The minimality property of λ in the609

algorithm yields610

(12.2) λ ≤ 3δ.611

Recall that a marginal of a function f : {−1, 1}p → R that corresponds to a subset J ⊂ [p]
of parameters and values θj ∈ {−1, 1} for j ∈ J , is defined as

P (f) =
∑

x∈{−1,1}p
f(x)v(x)

where v(x) = 1{x(j)=θj ∀j∈J}.612

Recall that the solution h∗ of the algorithm satisfies

h∗ ∈ H̃ = (1− λ)H + λum

and, by definition of H, all members of H have the same marginals up to dimension d as fn.
This and linearity implies that for any marginal up to dimension d,

P (h∗) = (1− λ)P (fn) + λP (um)

Hence ∣∣P (h∗)− P (fn)
∣∣ ≤ λ∣∣P (um)− P (fn)

∣∣
Since um and fn are densities, all of their marginals must be within [0, 1], so

∣∣P (um)− P (fn)
∣∣ ≤613

1. Combining this with (12.2), we get614

(12.3)
∣∣P (h∗)− P (fn)

∣∣ ≤ 3δ,615

for all marginals up to dimension d, with probability at least 1− 2γ.616

Now we compare the marginals of the density h∗ and its empirical counterpart h∗k. We
can express

P (h∗k)− P (h∗) =
1

k

k∑
i=1

(
v(Yi)− E v(Yi)

)
31

This manuscript is for review purposes only.



where Yi are i.i.d. random variables drawn according to the density h∗. Thus, we have a
normalized and centered sum of i.i.d. Bernoulli random variables, so Bernstein’s inequality
(see e.g. [42, Theorem 2.8.4]) yields

P
{∣∣P (h∗k)− P (h∗)

∣∣ > δ
}
≤ 2 exp(−δ2k/4) ≤ γ

(
p

≤ d

)−1

if k ≥ 4δ−2(log(2/γ) + log
(
p
≤d
)
). Thus, by a union bound, we have∣∣P (h∗k)− P (h∗)

∣∣ ≤ δ,
simultaneously for all marginals up to dimension d, with probability at least 1− γ.617

Combining this with (12.3) via the triangle inequality, we conclude that∣∣P (h∗k)− P (fn)
∣∣ ≤ 4δ,

for all marginals up to dimension d, with probability at least 1 − 3γ. Recalling that we618

conditioned on an event with probability 1− 1/
√
p and applying the union bound completes619

the proof.620

Remark 12.6 (No shrinkage for regular densities). If the density f from which the true data621

X is drawn is regular, specifically if 3δ/2p ≤ f ≤ (∆ − 2δ)/2p pointwise for some positive622

numbers δ and ∆, the algorithm does not apply any shrinkage. Indeed, in this case we have623

3δ/m ≤ (f/g)gm ≤ (∆− 2δ)m, so it follows from (12.1) that 2δ/m ≤ h ≤ (∆− δ)m, and thus624

H has a nonempty intersection with [2δ/m, (∆− δ)m]S, hence λ = 0.625
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