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Abstract
Differentially private synthetic data provide a powerful mechanism to enable data analysis while protecting

sensitive information about individuals. However, when the data lie in a high-dimensional space, the accuracy
of the synthetic data suffers from the curse of dimensionality. In this paper, we propose a differentially private
algorithm to generate low-dimensional synthetic data efficiently from a high-dimensional dataset with a utility
guarantee with respect to the Wasserstein distance. A key step of our algorithm is a private principal component
analysis (PCA) procedure with a near-optimal accuracy bound that circumvents the curse of dimensionality.
Different from the standard perturbation analysis using the Davis-Kahan theorem, our analysis of private PCA
works without assuming the spectral gap for the sample covariance matrix.

1. INTRODUCTION

As data sharing is increasingly locking horns with data privacy concerns, privacy-preserving data
analysis has emerged as a challenging task with far-reaching impact. Differential privacy (DP) has
emerged as a de facto standard for implementing privacy in various applications [18]. For instance,
DP has been adopted by several technology companies [16] and has also been used in connection
with the release of Census 2020 data [2, 1, 3].

The motivation behind the concept of differential privacy is the desire to protect an individual’s data
while publishing aggregate information about the database, as formalized in the following definition:

Definition 1.1 (Differential Privacy [18]). A randomized algorithm M gives ε-differential privacy if
for any neighboring datasets D and D′ and any measurable subset S ⊆ range(M), we have

P
{
M(D) ∈ S

}
≤ eε P

{
M(D′) ∈ S

}
,

where the probability is with respect to the randomness of M.

However, utility guarantees for DP are usually provided only for a fixed, a priori specified set
of queries. Moreover, utility guarantees are typically not available for more complex—but very
common—machine learning tasks such as clustering or classification.

Hence, it has been frequently recommended that differential privacy may be combined with syn-
thetic data to achieve more flexibility in private data sharing [21, 5]. Synthetic datasets are generated
from existing datasets and maintain the statistical properties of the original dataset. Ideally, synthetic
data contain no protected information; hence the datasets can be shared freely among investigators in
academia or industry, without security and privacy concerns.

Yet, the numerically efficient construction of accurate differentially private synthetic data is a rather
challenging task. Most research on private synthetic data has been concerned with counting queries,
range queries, or k-dimensional marginals, see e.g. [21, 37, 7, 38, 17, 36, 10]. Notable exceptions
are [41, 9, 14]. Specifically, [9] provides utility guarantees with respect to the 1-Wasserstein distance.
Invoking the Kantorovich-Rubinstein duality theorem, the choice of the 1-Wasserstein distance to
quantify accuracy ensures that all Lipschitz statistics are preserved uniformly. This provides data
analysts with a vastly increased toolbox of machine learning methods for which one can expect similar
outcomes for the original data and the synthetic data, respectively.
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For instance, for the special case of datasets living on the d-dimensional Boolean hypercube [0, 1]d

equipped with the Hamming distance, the results in [9] show that there exists an ε-DP algorithm with
an expected utility loss that scales like (

log(εn)
3
2 /(εn)

)1/d
, (1.1)

where n is the size of the dataset. While [24] succeeded in removing the logarithmic factor in (1.1),
it can be shown that the rate in (1.1) is otherwise tight. Consequently, the utility guarantees in [9, 24]
are only useful when d, the dimensionality of the data, is small (or if n is exponentially larger than
d). In other words, we are facing the curse of dimensionality.

In [14], the authors succeeded in constructing DP synthetic data with utility bounds where d in
(1.1) is replaced by (d′ + 1), assuming that the dataset lies in a certain d′-dimensional subspace.
However, the optimization step in their algorithm exhibits exponential time complexity. In this paper,
we present an efficient algorithm that does not rely on any assumptions about the true data. Notably,
we demonstrate that our approach enhances the utility bound from d to d′ in (1.1) when the dataset is
in a d′-dimensional affine subspace.

Specifically, we derive a DP algorithm to generate low-dimensional synthetic data from a high-
dimensional dataset with a utility guarantee with respect to the 1-Wasserstein distance that captures
the intrinsic dimensionality of the data.

Our approach revolves around a private principal component analysis (PCA) procedure with a near-
optimal accuracy bound that circumvents the curse of dimensionality. Unlike classical perturbation
analysis that utilizes the Davis-Kahan theorem [13] in the literature [11, 19], our accuracy analysis of
private PCA works without assuming the spectral gap for the sample covariance matrix.

Notation. In this paper, we work with data in the Euclidean space Rd. For convenience, the data
matrix X = [X1, . . . , Xn] ∈ Rd×n also indicates the dataset (X1, . . . , Xn). We use A to denote a
matrix and v,X as vectors. ∥ · ∥F is the Frobenius norm and ∥ · ∥ is the operator norm of a matrix,
respectively. Two sequences an, bn satisfies an ≲ bn if an ≤ Cbn for an absolute constant C > 0.

Organization of the paper. The rest of the paper is arranged as follows. In the remainder of Sec-
tion 1, we present our algorithm with an informal theorem for privacy and accuracy guarantees in
Section 1.1, followed by a discussion. A comparison to the state of the art is given in Section 1.2.
In Section 2, we provide useful lemmas and definitions. Next, we consider the Algorithm 1 step by
step. In Section 3, we discuss private PCA and noisy projection. In Section 4, we apply synthetic data
algorithms from [24] to the specific cases on the lower dimensional spaces. The precise privacy and
accuracy guarantee of Algorithm 1 is summarized in Section 5. Finally, since the case d′ = 1 is not
covered in Theorem 1.2, we discuss additional results under stronger assumptions in Section 6. All
the proofs can be found in the Supplementary Material.

1.1. Main results. The problem of generating private synthetic data can be defined as follows. Let
(Ω, ρ) be a metric space. Consider a dataset X = [X1, . . . , Xn] ∈ Ωn. Our goal is to construct an
efficient differentially private randomized algorithm that outputs synthetic data Y = [Y1, . . . , Yn] ∈
Ωm such that the two empirical measures

µX =
1

n

n∑
i=1

δXi and µY =
1

m

m∑
i=1

δYi

are close to each other. We measure the utility of the output by EW1(µX, µY), where the expectation
is taken over the randomness of the algorithm.

We assume that each vector in the original dataset X is inside [0, 1]d; our goal is to generate a
differentially private synthetic dataset Y in [0, 1]d, where each vector is close to a linear subspace of
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dimension d′, and the empirical measure of Y is close to X under the 1-Wasserstein distance. We
introduce Algorithm 1 as an efficient algorithm for this task. It can be summarized in the following 4
steps:

(1) Construct a private sample covariance matrix M̂. The private sample covariance is con-
structed by adding a Laplacian random matrix to a centered sample covariance matrix M.
This step is presented in Algorithm 2.

(2) Find a d′-dimensional subspace V̂d′ by taking the top d′ eigenvectors of M̂. Then project the
data onto a linear subspace. The new data obtained in this way are inside a d′-dimensional
ball. This step is summarized in Algorithm 3.

(3) Generate a private measure in the d′ dimensional ball following methods in [24]. This is
summarized in Algorithms 4 and 5.

(4) Add a private mean vector back to the dataset and metrically project back them to the hyper-
cube [0, 1]d. Output the resulting dataset Y. This step is summarized in the last two parts of
Algorithm 1.

The privacy and accuracy guarantees of Algorithm 1 are stated in the next informal theorem. More
detailed and precise statements are given in Section 5.

Theorem 1.2. Let Ω = [0, 1]d equipped with ℓ∞ metric and X = [X1, . . . , Xn] ∈ Ωn be a
dataset. For any 2 ≤ d′ ≤ d, Algorithm 1 outputs an ε-differentially private synthetic dataset
Y = [Y1, . . . , Ym] ∈ Ωm for some m ≥ 1 in polynomial time such that

EW1(µX, µY) ≲d

√∑
i>d′

σi(M) + (εn)−1/d′ , (1.2)

where ≲d means the right hand side of (1.2) hides factors that are polynomial in d, and σi(M) is the
i-th eigenvalue value of the sample covariance matrix of X.

Algorithm 1 Low-dimensional Synthetic Data

Input: True data matrix X = [X1, . . . , Xn], Xi ∈ [0, 1]d and privacy parameter ε.
Private linear projection: Choose a parameter d′ based on a private covariance matrix con-

structed in Algorithm 2. Use Algorithm 3 to project X onto to a d′-dimensional linear sub-
space with privacy parameter ε/2.

Low-dimensional synthetic data: Use subroutine in Section 4 to generate ε/4-private synthetic
data X′ depending on d′ = 2 or d′ ≥ 3.

Adding the private mean vector: Let X be the mean value of the dataset and X ′′
i = X ′

i +X+
λ′, where λ′ is a random vector with i.i.d. components of Lap(4/(εn)).

Metric projection: Project each data to the nearest point in [0, 1]d. Define a function f : R →
[0, 1] that

f(x) =


0 if x < 0;

x if x ∈ [0, 1];

1 if x > 1.

Then for v ∈ Rd, we define f(v) to be the result of applying f to each coordinate of v. Take
Y = [f(X ′′

1 ), . . . , f(X
′′
n)].

Output: Synthetic data Y.
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Optimality. The accuracy rate in (1.2) is optimal up to a polynomial factor in d. The first term
matches the error from the best rank-d′ approximation of the covariance matrix M, and the second
term matches the lower bound in [9, Corollary 9.3] for generating d′-dimensional synthetic data in
[0, 1]d

′
.

Improved accuracy if X is low-dimensional. When the original dataset X lies in an affine d′-
dimensional subspace, it implies σi(M) = 0 for i > d′ and EW1(µX, µY) ≲d (εn)−1/d′ . This is
an improvement from the accuracy rate O((εn)−1/d) for unstructured data in [0, 1]d in [9, 24], which
overcomes the curse of high dimensionality.

Y is a low-dimensional representation of X. The synthetic dataset Y is close to a d′-dimensional
subspace under the 1-Wasserstein distance, as shown in Proposition 4.5.

Private and adaptive choice of d′. In fact, it is possible to choose the value of d′ adaptively yet
privately based on the private sample covariance matrix in Algorithm 2. A private and near-optimal
choice of d′ is given in Remark 5.4.

Algorithm efficiency. The private linear projection step has a running time O(d2n) using truncated
SVD [30]. The low-dimensional synthetic data subroutine has a running time polynomial in n for
d′ ≥ 3 and linear in n when d′ = 2 [24]. Therefore, the overall running time for Algorithm 1 is
linear in n when d′ = 2 and is polynomial in n when d′ ≥ 3. Although sub-optimal in the accuracy
guarantee in terms of the dependence on d, one can run Algorithm 1 in linear time by choosing PMM
(Algorithm 4) in the subroutine for all d′ ≥ 2.

1.2. Comparison to previous results. Private PCA is a commonly used technique for differentially
private low-rank approximation of the original dataset by adding noise to the true sample covariance
matrix1. Adding a Gaussian random matrix for this task has drawn significant interest [33, 11, 25,
19], but they only permit a weaker version of (ε, δ)-differential privacy. Alternatively, to achieve
ε-differential privacy, adding Laplacian random matrix perturbation to the sample covariance matrix
is also widely used in private PCA [27, 28, 43]. Instead of adding independent noise, the method of
exponential mechanism is also broadly studied [29], where the private covariance matrix is sampled
from a certain distribution, such as the matrix Bingham distribution [11] or the Wishart distribution
[27]. Besides working with the sample covariance matrix, another approach, called streaming PCA
[34, 26], which aims to compute the top eigenvector, can also be performed privately [22, 31].

The standard output of private PCA is a private d′-dimensional subspace V̂d′ that approximates
the top d′-dimensional subspace Vd′ produced by the standard PCA. The accuracy of private PCA is
usually measured by the distance between V̂d′ and Vd′ [19, 23, 33, 31]. To prove a utility guarantee,
the standard tool is the Davis-Kahan Theorem [6, 40, 42], which assumes that the sample covariance
matrix (centered or non-centered) has a spectral gap [11, 19, 22, 27, 31]. Alternatively, using the
projection error to evaluate accuracy is independent of the spectral gap [29, 32]. In our application of
private PCA, V̂d′ is not our final output and we project X onto V̂d′ afterwards. We instead directly
bound the Wasserstein distance between the projected dataset and X, which avoids the subspace
perturbation analysis, leading to a final accuracy bound independent of the spectral gap (see Lemma
3.2).

We emphasize that working with the centered sample covariance matrix in the private PCA step
is essential to obtain the near-optimal accuracy in Theorem 1.2, as the centered sample covariance
matrix is of rank d′ if X lies in a d′-dimensional affine space, but 1

nXXT has rank (d′ + 1). The

1Note that a common choice of the sample covariance matrix for PCA is 1
n
XXT, which is different from the centered

sample covariance matrix we define in (3.1).
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centering step improves the accuracy rate from (εn)−1/(d′+1) to (εn)−1/d′ . However, it comes with
an additional task to protect the privacy of mean vectors (see the third step in Algotihm 1 and Algo-
rithm 3).

2. PRELIMINARIES

In this paper, we use Definition 1.1 on data matrix X ∈ Rd×n. We say two data matrices X,X′

are neighboring datasets if X and X′ differ on only one column.
Differentially private algorithms have a useful property that their sequential composition is also

differentially private [18, Theorem 3.16]. Moreover, the following result about adaptive composition
indicates that algorithms in a sequential composition may use the outputs in the previous steps:

Lemma 2.1. [15, Theorem 1] Suppose a randomized algorithm M1(x) : Ω
n → R1 is ε1-differentially

private, and M2(x, y) : Ω
n×R1 → R2 is ε2-differentially private with respect to the first component

for any fixed y. Then the sequential composition

x 7→ (M1(x),M2(x,M1(x)))

is (ε1 + ε2)-differentially private.

The formal definition of p-Wasserstein distance is given as follows:

Definition 2.2 (p-Wasserstein distance). Consider a metric space (Ω, ρ). The p-Wasserstein distance
(see e.g., [39] for more details) between two probability measures µ, ν is defined as

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
Ω×Ω

ρ(x, y)pdγ(x, y)

)1/p

,

where Γ(µ, ν) is the set of all couplings of µ and ν.

3. PRIVATE LINEAR PROJECTION

3.1. Private centered sample covariance matrix. We start with the first step: finding a d′ di-
mensional private linear affine subspace and projecting X onto it. Consider the d × n data matrix
X = [X1, . . . , Xn], where X1, . . . , Xn ∈ Rd. The rank of the sample covariance matrix 1

nXXT

measures the dimension of the linear subspace spanned by X1, . . . , Xn. If we subtract the mean
vector and consider the centered sample covariance matrix

M =
1

n− 1

n∑
i=1

(Xi −X)(Xi −X)T, where X =
1

n

n∑
i=1

Xi, (3.1)

then the rank of M indicates the dimension of the affine linear subspace that X lives in.
To guarantee the privacy of M, we add a symmetric Laplacian random matrix A to M to create a

private Hermitian matrix M̂ from Algorithm 2. The variance of entries in A is chosen such that the
following privacy guarantee holds:

Theorem 3.1. Algorithm 2 is ε-differentially private.
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Algorithm 2 Private Covariance Matrix

Input: Matrix X = [X1, . . . , Xn] where Xi ∈ [0, 1]d, and privacy parameter ε, variance parameter
σ = 3d2

εn .
Computing the sample covariance matrix: Compute the mean X = 1

n

∑n
i=1Xi and the cen-

tered sample covariance matrix M.
Generating a Laplacian random matrix: Generate i.i.d. independent random variables λij ∼

Lap(σ), i ≤ j. Define a symmetric matrix A such that

Aij =

{
λij if i < j;

2λii if i = j,

Output: The noisy covariance matrix M̂ = M+A.

Algorithm 3 Noisy Projection

Input: True data matrix X = [X1, . . . , Xn], Xi ∈ [0, 1]d, privacy parameter ε, and the output
dimension d′.

Private covariance matrix: Apply Algorithm 2 for to X with privacy parameter ε to obtain a
private covariance matrix M̂.

Singular value decomposition: Compute the truncated SVD M̂ =
∑d′

j=1 σ̂j v̂j v̂
T
j , where σ̂1 ≥

σ̂2 ≥ · · · ≥ σ̂d′ are the eigenvalues of M and V̂d′ = [v̂1, . . . , v̂d′ ] are corresponding orthonor-
mal eigenvectors.

Private centering: Compute X = 1
n

∑n
i=1Xi. Let λ ∈ Rd be a random vector with i.i.d.

components of Lap(1/(εn)). Shift each Xi to Xi − (X + λ) for i ∈ [n].
Projection: Project {Xi − (X + λ)}ni=1 onto the linear subspace spanned by v̂1, . . . , v̂d′ . The

projected data X̂i is given by X̂i =
∑d′

j=1

〈
Xi − (X + λ), v̂j

〉
v̂j .

Output: The data matrix after projection X̂ = [X̂1 . . . X̂n].

3.2. Noisy projection. The private sample covariance matrix M̂ induces private subspaces spanned
by eigenvectors of M̂. We then perform a truncated SVD on M̂ to find a private d′-dimensional
subspace V̂d′ and project original data onto V̂d′ . Here the matrix V̂d′ also indicates the subspace
generated by its orthonormal columns. The full steps are summarized in Algorithm 3.

Note that Algorithm 3 only guarantees private basis v̂1, . . . , v̂d′ for each X̂i, but the coordinates
of X̂i in terms of v̂1, . . . , v̂d′ are not private. For different choice of d′, Algorithms 4 and 5 in the
next stage will output synthetic data on the private subspace V̂d′ based on X̂. The privacy analysis
combines the two stages based on Lemma 2.1, and we state the results in Section 4.

3.3. Accuracy guarantee for noisy projection. The data matrix X̂ corresponds to an empirical
measure µ

X̂
supported on the subspace V̂d. In this subsection, we characterize the 1-Wasserstein

distance between the empirical measure µ
X̂

and the empirical measure of the centered dataset X −
X1T, where 1 ∈ Rn is the all-1 vector. This problem can be formulated as the stability of a low-rank
projection based on a sample covariance matrix with additive noise. We first provide the following
useful deterministic lemma.

Lemma 3.2 (Stability of noisy projection). Let X be a d×n matrix and A be a d×d Hermitian matrix.
Let M = 1

nXXT, with the singular value decomposition (SVD) M =
∑d

j=1 σjvjv
T
j , where σ1 ≥
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σ2 ≥ · · · ≥ σd are the eigenvalues of M and v1 . . . vd are corresponding orthonormal eigenvectors.
Let M̂ = 1

nXXT+A, V̂d′ be a d×d′ matrix whose columns are the first d′ orthonormal eigenvectors
of M̂, and Y = V̂d′V̂

T
d′X. Let µX and µY be the empirical measures of column vectors of X and

Y, respectively. Then

W 2
2 (µX, µY) ≤ 1

n
∥X−Y∥2F ≤

∑
i>d′

σi + 2d′∥A∥. (3.2)

Inequality (3.2) holds without any spectral gap assumption on M. When M̂ is an empirical sample
covariance matrix, a similar bound without a spectral gap condition is derived in [35, Proposition
2.2]. In Lemma 3.2, we do not assume M̂ is positive semidefinite. Lemma 3.2 has a similar flavor
to [4, Theorem 5] in the context of low-rank matrix approximation of a rectangular matrix under
perturbation, and our proof is inspired by Parseval’s identity used in [4].

With Lemma 3.2, we derive Wasserstein distance bounds between the centered dataset X −X1T

and the dataset X̂.

Theorem 3.3. For input data X and output data X̂ in Algorithm 3, let M be the sample covariance
matrix defined in (3.1). Then for an absolute constant C > 0,

EW1(µX−X1T , µX̂
) ≤

(
EW 2

2 (µX−X1T , µX̂
)
)1/2

≤
√
2
∑
i>d′

σi(M) +

√
Cd′d2.5

εn
.

4. SYNTHETIC DATA SUBROUTINES

In the next stage of Algorithm 1, we construct synthetic data on the private subspace V̂d′ . Since
the original data Xi is in [0, 1]d, after Algorithm 3, we have∥∥∥X̂i

∥∥∥
2
=
∥∥∥Xi −X − λ

∥∥∥
2
≤

√
d+
∥∥∥X + λ

∥∥∥
2
=: R (4.1)

for any fixed λ ∈ Rd. Therefore, the data after projection would lie in a d′-dimensional ball embedded
in Rd with radius R, and the domain for the subroutine is

Ω′ = {a1v̂1 + · · ·+ ad′ v̂d′ | a21 + · · ·+ a2d′ ≤ R2},
where v̂1, . . . , v̂d′ are the first d′ private principal components in Algorithm 3. Depending on whether
d′ = 2 or d′ ≥ 3, we apply two different algorithms from [24].

Remark 4.1 (R is private). R defined in (4.1) depends on the private mean. It is part of the input for
the synthetic data subroutines, and it is independent of the randomness in the subroutines.

4.1. d′ = 2: private measure mechanism (PMM). We use the private measure mechanism intro-
duced in [24] with a specified bounded region. In this method, we need a binary partition structure
for the region Ω′. However, for a high-dimensional ball like Ω′, it is not easy to give an explicit binary
partition to match its covering numbers. Instead, we can enlarge Ω′ to a hypercube [−R,R]d

′
inside

the linear subspace V̂d′ . The privacy and accuracy guarantees follow from [24].

Proposition 4.2. The subroutine Algorithm 4 is ε-differentially private. When d′ = 2, with the input
as the projected data X̂ and the range Ω′ with radius R, the algorithm has an accuracy bound

EW1(µX̂
, µX′) ≤ CR(εn)−1/2,

where the expectation is taken with respect to the randomness of the synthetic data subroutine, con-
ditioned on R.
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Algorithm 4 PMM Subroutine

Input: dataset X̂ = (X̂1, . . . , X̂n) in the region

Ω′ = {a1v̂1 + · · ·+ ad′ v̂d′ | a21 + · · ·+ a2d′ ≤ R}.

Binary partition: Let r = ⌈log2(εn)⌉ and σj ∼ ε−1 · 2
1
2
(1− 1

d′ )(r−j). Enlarge the region Ω′ into

ΩPMM = {a1v̂1 + · · ·+ ad′ v̂d′ | ai ∈ [−R,R], ∀i ∈ [d′]}.
Build a binary partition {Ωθ}θ∈{0,1}≤r on ΩPMM.

Noisy count: For any θ, count the number of data in the region Ωθ denoted by nθ =
∣∣∣X̂ ∩ Ωθ

∣∣∣,
and let n′

θ = (nθ + λθ)+, where λθ are independent Laplacian random variables with λ ∼
Lap(σ|θ|), and |θ| is the length of the vector θ.

Consistency: Enforce consistency of {n′
θ}θ∈{0,1}≤r

Output: Synthetic data X′ randomly sampled from {Ωθ}θ∈{0,1}r .

Remark 4.3 (PMM for d′ ≥ 2). For general d′ ≥ 2, PMM can still be applied, and the accuracy
bound becomes EW1(µX̂

, µX′) ≤ CR(εn)−1/d′ . Compared to (1.2), as EλR = Θ(
√
d), this accu-

racy bound is weaker by a factor of
√
d′. However, as shown in [24], PMM has a running time linear

in n, which is more efficient than PSMM given in Algorithm 5.

Algorithm 5 PSMM Subroutine

Input: dataset X̂ = (X̂1, . . . , X̂n) in the region

Ω′ = {a1v̂1 + · · ·+ ad′ v̂d′ | a21 + · · ·+ a2d′ ≤ R2}.
Integer lattice: Let δ ∼

√
d/d′(εn)−1/d′ . Find the lattice over the region:

L = {a1v̂1 + · · ·+ ad′ v̂d′ | a21 + · · ·+ a2d′ ≤ R2, a1, . . . , ad′ ∈ δZ}.
Counting: For any v = a1v̂1 + · · ·+ ad′ v̂d′ ∈ L, count the number

nv =
∣∣∣X̂ ∩ {b1v̂1 + · · ·+ bd′ v̂d′ | bi ∈ [ai, ai + δ)}

∣∣∣ .
Adding noise: Define a synthetic signed measure ν such that

ν({v}) = (nv + λv)/n,

where λv ∼ Lap(1/ε), v ∈ L are i.i.d. random variables.
Synthetic probability measure: Use linear programming and find the closest probability mea-

sure to ν.
Output: Synthetic data corresponding to the probability measure.

4.2. d′ ≥ 3: private signed measure mechanism (PSMM). We provide the main steps of PSMM
in Algorithm 5. Details about the linear programming in the synthetic probability measure step can
be found in [24]. We apply PSMM from [24] when the metric space is a ℓ2-ball of radius R inside
V̂d′ and the following privacy and accuracy guarantees hold:

Proposition 4.4. The subroutine Algorithm 5 is ε-differentially private. And when d′ ≥ 3, with the
input as the projected data X̂ and the range Ω′ with radius R the algorithm has an accuracy bound

EW1(µX̂
, µX′) ≲

R√
d′
(εn)−1/d′ ,
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where the expectation is conditioned on R.

4.3. Adding a private mean vector and metric projection. After generating the synthetic data,
since we shifted the data by its private mean before projection, we need to add another private mean
vector back, which shifts the dataset X̂ to a new affine subspace close to the original dataset X. The
output data vectors in X′′ (defined in Algorithm 1) after this step are not necessarily inside [0, 1]d.
The metric projection step enforces all synthetic data to be inside [0, 1]d. This post-processing does
not influence the privacy guarantee. After metric projection, dataset Y from the output of Algorithm
1 is close to an affine subspace, as shown in the next proposition.

Proposition 4.5 (Y is close to an affine subspace). The function f : Rd → [0, 1]d is the metric
projection to [0, 1]d with respect to ∥ · ∥∞, and the accuracy error for the metric projection step in
Algorithm 1 is dominated by the error of the previous steps:

W1(µY, µX′′) ≤ W1(µX, µX′′),

where the dataset X′′ defined in Algorithm 1 is in a d′-dimensional affine subspace. And we have

EW1(µY, µX′′) ≲d

√∑
i>d′

σi(M) + (εn)−1/d′ .

5. PRIVACY AND ACCURACY OF ALGORITHM 1

In this section, we summarize the privacy and accuracy guarantees of Algorithm 1. The privacy
guarantee is proved by analyzing three parts of our algorithms: private mean, private linear subspace,
and private data on an affine subspace.

Theorem 5.1 (Privacy). Algorithm 1 is ε-differentially private.

The next accuracy bound combines errors from linear projection, synthetic data subroutine using
PMM or PSMM, and the post-processing error from mean shift and metric projection.

Theorem 5.2 (Accuracy). For 2 ≤ d′ ≤ d, the output data Y from Algorithm 1 with the input data
X satisfies

EW1(µX, µY) ≲

√∑
i>d′

σi(M) +

√
d

d′
(εn)−1/d′ +

√
d′d2.5

εn
, (5.1)

where M denotes the sample covariance matrix defines as (3.1).

There are three terms on the right-hand side of (5.1). The first term is due to the error from the
rank-d′ approximation of the covariance matrix M. The second term is from the accuracy loss for
private PCA after the perturbation from a random Laplacian matrix. It is not clear to us whether this
error term is needed or optimal. The third term is from the accuracy loss when generating synthetic
data in a low-dimensional subspace, and it matches the optimal accuracy rate for synthetic data on
[0, 1]d

′
in [9, 24] when d′ = d. The scaling factor

√
d/d′ is from the private linear projection step,

where we essentially project a d-dimensional ℓ2-ball of radius
√
d to a d′-dimensional ℓ2-ball of radius√

d. This can be seen more clearly in the proof of Proposition 4.4.

Remark 5.3 (Dependence on d). When d′ ≥ 3 and d ≤ (d′)−
4
3 (εn)

2
3
(1−2/d′), the error rate in (5.1)

becomes O
(√

d
d′ (εn)

−1/d′
)

. When d′ = 2, we get a slightly worse error bound O(d5/4(εn)−1/2).
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Remark 5.4 (Adaptive choice of d′). Recall M̂ from Algorithm 2. We can choose d′ based on M̂
privately such that

d′ := argmin
2≤k≤d

(√∑
i>d′

σi(M̂) +

√
d

d′
(εn)−1/d′ +

√
d′d2.5

εn

)
. (5.2)

Moreover, we have
∣∣∣∑i>d′ σi(M̂)−

∑
i>d′ σi(M)

∣∣∣ ≤ (d − d′)∥A∥ . Compared to the upper bound

in Theorem 5.2, the choice of d′ in (5.2) is near-optimal in Theorem 5.2 if (d− d′)∥A∥ is small.

6. NEAR-OPTIMAL ACCURACY BOUND WITH ADDITIONAL ASSUMPTIONS WHEN d′ = 1

Our Theorem 5.2 is not applicable to the case d′ = 1 because the projection error in Theorem 3.3
only has bound O((εn)−

1
2 ), which does not match with the optimal synthetic data accuracy bound

in [9, 24]. We are able to improve the accuracy bound with an additional dependence on σ1(M) as
follows:

Theorem 6.1. When d′ = 1, consider Algorithm 1 with input data X, output data Y, and the sub-
routine PMM in Algorithm 4. Let M be the sample covariance matrix defines as (3.1). Assume
σ1(M) > 0, then

EW1(µX, µY) ≲

√∑
i>1

σi(M) +
d3√

σ1(M)εn
+

√
d log2(εn)

εn
.

7. CONCLUSION

In this paper, we provide a differentially private algorithm to generate synthetic data, which closely
approximates the true data in the hypercube [0, 1]d under 1-Wasserstein distance. Moreover, when
the true data lies in a d′-dimensional affine subspace, we improve the accuracy guarantees in [24] and
circumvents the curse of dimensionality by generating a synthetic dataset close to the affine subspace.

For d′ ≥ 2, our analysis of private PCA works without using the classical Davis-Kahan inequality
that requires a spectral gap on the dataset. However, to approximate a dataset close to a line (d′ = 1),
additional assumptions are needed in our analysis to achieve the near-optimal accuracy rate. It is an
interesting problem to achieve the optimal rate without the dependence on σ1(M) when d′ = 1.

Our Algorithm 1 only outputs synthetic data with a low-dimensional linear structure, and its analy-
sis heavily relies on linear algebra tools. For original datasets from a d′-dimensional linear subspace,
we improve the accuracy rate from (εn)−1/(d′+1) in [14] to (εn)−1/d′ . It is also interesting to provide
algorithms with optimal accuracy rates for datasets from general low-dimensional manifolds beyond
the linear setting.
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APPENDIX A. PROOFS

A.1. Proof of Theorem 3.1.

Proof. Before applying the definition of differential privacy, we compute the entries of M explicitly.
One can easily check that

M =
1

n

n∑
k=1

XkX
T
k − 1

n(n− 1)

∑
k ̸=ℓ

XkX
T
ℓ . (A.1)

Now, if there are neighboring datasets X and X′, suppose Xk = (X
(1)
k , . . . , X

(d)
k )T is a column

vector in X and X ′
k = (X ′

k
(1), . . . , X ′

k
(d))T is a column vector in X′, and all other column vectors

are the same. Let M and M′ be the covariance matrix of X and X′, respectively. Then we consider
the density function ratio for the output of Algorithm 2 with input X and X′:

denA(M̂−M)

denA(M̂−M′)
=
∏
i<j

denλij
((M̂−M)ij)

denλij
((M̂−M′)ij)

∏
i=j

den2λij
((M̂−M)ij)

den2λij
((M̂−M′)ij)

=
∏
i<j

exp
(
− |(M̂−M)ij |

σ

)
exp

(
− |(M̂−M′)ij |

σ

)∏
i

exp
(
− |(M̂−M)ii|

2σ

)
exp

(
− |(M̂−M′)ii|

2σ

)
≤ exp

∑
i<j

∣∣∣Mij −M′
ij

∣∣∣ /σ +
∑
i

∣∣Mii −M′
ii

∣∣ /(2σ)


= exp

 1

2σ

∑
i,j

∣∣∣Mij −M′
ij

∣∣∣
 .

As the datasets differs on only one data Xk, consider all entry containing Xk in (A.1), we have∣∣∣Mij −M′
ij

∣∣∣ ≤ 1

n

∣∣∣X(i)
k X

(j)
k −X ′

k
(i)
X ′

k
(j)
∣∣∣+ 1

n(n− 1)

∑
ℓ̸=k

∣∣∣X(i)
k −X ′

k
(i)
∣∣∣Xℓ

(j)

+
1

n(n− 1)

∑
ℓ̸=k

Xℓ
(i)
∣∣∣X(j)

k −X ′
k
(j)
∣∣∣

≤ 2

n
+

2

n(n− 1)
· 2(n− 1) =

6

n
.

Therefore, substituting the result in the probability ratio implies

denA(M̂−M)

denA(M̂−M′)
≤ exp

(
1

2σ
· d2 · 6

n

)
= exp

(
3d2

σn

)
,

and when σ = 3d2

εn , Algorithm 2 is ε-differentially private. □

A.2. Proof of Lemma 3.2.
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Proof. Let v̂1, . . . , v̂d be a set of orthonormal eigenvectors for M̂ with the corresponding eigenvalues
σ̂1, . . . , σ̂d. Define four matrices whose column vectors are eigenvectors:

V = [v1, . . . , vd], V̂ = [v̂1, . . . , v̂d],

Vd′ = [v1, . . . , vd′ ], V̂d′ = [v̂1, . . . , v̂d′ ].

By orthogonality, the following identities hold:

d∑
i=1

∥vTi X∥22 =
d∑

i=1

∥v̂Ti X∥22 = ∥X∥2F .∑
i>d′

∥vTi X∥22 = ∥X−Vd′V
T
d′X∥2F .∑

i>d′

∥v̂Ti X∥22 = ∥X− V̂d′V̂
T
d′X∥2F .

Separating the top d′ eigenvectors from the rest, we obtain∑
i≤d′

∥vTi X∥22 + ∥X−Vd′V
T
d′X∥2F =

∑
i≤d′

∥v̂Ti X∥22 + ∥X− V̂d′V̂
T
d′X∥2F .

Therefore

∥X− V̂d′V̂
T
d′X∥2F =

∑
i≤d′

∥vTi X∥22 −
∑
i≤d′

∥v̂Ti X∥22 + ∥X−Vd′V
T
d′X∥2F

= n
∑
i≤d′

σi − n
∑
i≤d′

v̂Ti Mv̂i + n
∑
i>d′

σi

= n
∑
i≤d′

σi − n
∑
i≤d′

v̂Ti (M̂−A)v̂i + n
∑
i>d′

σi

= n
∑
i≤d′

(σi − σ̂i) + n tr(AV̂d′V̂
T
d′) + n

∑
i>d′

σi. (A.2)

By Weyl’s inequality, for i ≤ d′,

|σi − σ̂i| ≤ ∥A∥. (A.3)

By von Neumann’s trace inequality,

tr(AV̂d′V̂
T
d′) ≤

d′∑
i=1

σi(A). (A.4)

From (A.2), (A.3), and (A.4),

1

n
∥X− V̂d′V̂

T
d′X∥2F ≤

∑
i>d′

σi + d′∥A∥+
d′∑
i=1

σi(A) ≤
∑
i>d′

σi + 2d′∥A∥.

Let Yi be the i-th column of Y. We have

W 2
2 (µX, µY) ≤ 1

n

n∑
i=1

∥Xi − Yi∥22 =
1

n
∥X−Y∥2F . (A.5)

Therefore (3.2) holds. □
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A.3. Proof of Theorem 3.3.

Proof. For the true sample covariance matrix M, consider its SVD

M =
1

n− 1

n∑
i=1

(Xi −X)(Xi −X)T =

d∑
j=1

σjvjv
T
j , (A.6)

where σ1 ≥ σ2 ≥ · · · ≥ σd are the singular values and v1 . . . vd are corresponding orthonormal
eigenvectors. Moreover, define two d× d′ matrices

Vd′ = [v1, . . . , vd′ ], V̂d′ = [v̂1, . . . , v̂d′ ].

Then the matrix V̂d′V̂
T
d′ is a projection onto the subspace spanned by the principal components

v̂1, . . . , v̂d′ .
In Algorithm 3, for any data Xi we first shift it to Xi −X − λ and then project it to V̂d′V̂

T
d′(Xi −

X − λ). Therefore∥∥∥Xi −X − V̂d′V̂
T
d′(Xi −X − λ)

∥∥∥
∞

≤
∥∥∥Xi −X − V̂d′V̂

T
d′(Xi −X)

∥∥∥
∞

+
∥∥∥V̂d′V̂

T
d′λ
∥∥∥
∞

≤
∥∥∥Xi −X − V̂d′V̂

T
d′(Xi −X)

∥∥∥
2
+∥λ∥2 .

Let Zi denote Xi −X and Z = [Z1, . . . , Zn]. Then

1

n
ZZT =

n− 1

n
M.

With Lemma 3.2, by definition of the Wasserstein distance, we have

W 2
2 (µX−X1T , µX̂

) =
1

n

n∑
i=1

∥∥∥Xi −X − V̂d′V̂
T
d′(Xi −X − λ)

∥∥∥2
∞

(A.7)

≤ 2

n

n∑
i=1

∥∥∥Xi −X − V̂d′V̂
T
d′(Xi −X)

∥∥∥2
2
+ 2∥λ∥22 (A.8)

=
2

n
∥Z− V̂d′V̂

T
d′Z∥2F + 2∥λ∥22 (A.9)

≤ 2

n∑
i=d′

σi(M) + 4d′∥A∥+ 2∥λ∥22 . (A.10)

Since λ = (λ1, . . . , λd) is a Laplacian random vector with i.i.d. Lap(1/(εn)) entries,

E∥λ∥22 =
d∑

j=1

E
∣∣λj

∣∣2 = 2d

ε2n2
. (A.11)

Furthermore, in Algorithm 2, A is a symmetric random matrix with independent Laplacian random
variables on and above its diagonal. Thus, we have the tail bound for its norm [12, Theorem 1.1]

P
{
∥A∥ ≥ σ(C

√
d+ t)

}
≤ C0 exp(−C1min(t2/4, t/2)). (A.12)

And we can further compute the expectation bound for∥A∥ from (A.12) with the choice of σ = 3d2

εn ,

E ∥A∥ ≤ Cσ
√
d+

∫ ∞

0
C0 exp

(
− C1min

( t2

4σ2
,
t

2σ

))
dt ≲

d2.5

εn
.
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Combining the two bounds above and (A.10), as the 1-Wasserstein distance is bounded by the
2-Wasserstein distance and inequality

√
x+ y ≤

√
x+

√
y holds for all x, y ≥ 0,

EW1(µX−X1T , µX̂
) ≤

(
EW 2

2 (µX−X1T , µX̂
)
)1/2

≤
√
2
∑
i>d′

σi(M) +
√
4d′ E∥A∥+

√
2E∥λ∥22

≤
√
2
∑
i>d′

σi(M) +

√
Cd′d2.5

εn
.

□

A.4. Proof of Proposition 4.2.

Proof. The privacy guarantee follows from [24, Theorem 1.1]. For accuracy, note that the region Ω′ is
a subregion of a d′-dimensional ball. Algorithm 4 enlarges the region to a d′-dimensional hypercube
with side length 2R. By re-scaling the size of the hypercube and applying [24, Corollary 4.4], we
obtain the accuracy bound. □

A.5. Proof of Proposition 4.4.

Proof. The proposition is a direct corollary to the result in [24]. The size of the scaled integer lattice
δZ in the unit d-dimensional ball of radius R is bounded by ( C

δR)
d for an absolute constant C > 0 (see,

for example, [20, Claim 2.9] and [8, Proposition 3.7]). Then the number of subregions in Algorithm
5 is bounded by

|L| ≤
(

R√
d′

· C
δ

)d′

.

By [24, Theorem 3.6], we have

EW1(µX̂
, µX′) ≤ δ +

2

εn

(
R√
d′

· C
δ

)d′

· 1
d′

((
R√
d′

· C
δ

)d′
)− 1

d′

.

Taking δ = CR√
d′
(εn)−

1
d′ concludes the proof. □

A.6. Proof of Theorem 5.1.

Proof. We can decompose Algorithm 1 into the following steps:

(1) M1(X) = M̂ is to compute the private sample covariance matrix with Algorithm 2.
(2) M2(X) = X + λ is to compute the private sample mean.
(3) M3(X, y,Σ) for fixed y and Σ, is to project the shifted data {Xi − y}ni=1 to the first d′

principal components of Σ and apply a certain differentially private subroutine (we choose
y and Σ as the output of M2 and M1, respectively). This step outputs synthetic data X′ =
(X ′

1, . . . , X
′
m) on a linear subspace.

(4) M4(X,X′) is to shift the dataset to {X ′
i +X + λ′}mi=1.

(5) Metric projection.
It suffices to show that the data before metric projection has already been differentially private. We
will need to apply Lemma 2.1 several times.
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With respect to the input X while fixing other input variables, we know that M1,M2,M3,M4 are
all ε/4-differentially private. Therefore, by using Lemma 2.1 iteratively, the composition algorithm

M4(X,M3(X,M2(X),M1(X)))

satisfies ε-differential privacy. Hence Algorithm 1 is ε-differentially private. □

A.7. Proof of Theorem 5.2.

Proof. Similar to privacy analysis, we will decompose the algorithm into several steps. Suppose that

(1) X− (X + λ)1T denotes the shifted data {Xi −X − λ}ni=1;
(2) X̂ is the data after projection to the private linear subspace;
(3) X′ is the output of the synthetic data subroutine in Section 4;
(4) X′′ = X′ + (X + λ′)1T denotes the data shifted back;
(5) M(X) is the data after metric projection, which is the output of the whole algorithm.

For the metric projection step, by Proposition 4.5, we have that

W1(µX, µM(X)) ≤ W1(µX, µX′′) +W1(µX′′ , µM(X)) (A.13)

≤ 2W1(µX, µX′′). (A.14)

Moreover, applying the triangle inequality of Wasserstein distance to the other steps of the algo-
rithm, we have

W1(µX, µX′′) = W1(µX−X1T , µX′+λ′1T) (A.15)

≤ W1(µX−X1T , µX̂
) +W1(µX̂

, µX′) +W1(µX′ , µX′+λ′) (A.16)

≤ W1(µX−X1T , µX̂
) +W1(µX̂

, µX′) +
∥∥λ′∥∥

∞ . (A.17)

Note that W1(µX−X1T , µX̂
) is the projection error we bound in Theorem 3.3, and W1(µX̂

, µX′) is
treated in the accuracy analysis of subroutines in Section 4. Moreover, we have

EW1(µX̂
, µX′) = ER EX′ W1(µX̂

, µX′)

≤ ER
CR√
d′
(εn)−1/d′

≤
C(2

√
d+ E∥λ∥2)√

d′
(εn)−1/d′

≲

√
d

d′
(εn)−1/d′ .

Here in the last step we use E∥λ∥2 ≤
C
√
d

εn in (A.11). Since λ′ is a sub-exponential random vector,
the following bound also holds for some absolute constant C > 0:

E
∥∥λ′∥∥

∞ ≤ C log d

εn
. (A.18)
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Hence

EW1(µX, µM(X)) (A.19)

≤ 2EW1(µX, µX′+(X+λ′)1T) (A.20)

≤ 2EW1(µX−X1T , µX̂
) + 2EW1(µX̂

, µX′) + 2E
∥∥λ′∥∥

∞ (A.21)

≤ 2

√
2
∑
i>d′

σi(M) + 2

√
Cd′d2.5

εn
+ 2C

√
d

d′
(εn)−1/d′ +

2C log d

εn
(A.22)

≲

√∑
i>d′

σi(M) +

√
d

d′
(εn)−1/d′ +

√
d′d2.5

εn
, (A.23)

where the first inequality is from (A.14), the second inequality is from (A.17), and the third inequality
is due to Theorem 3.3, Proposition 4.2, and Proposition 4.4. □

A.8. Proof of Proposition 4.5.

Proof. For the function f defined in Algorithm 1, we know f(x) is the closest real number to x in the
region [0, 1] for any x ∈ R. Furthermore, if v ∈ Rd is a vector, then f(v) is the closest vector to v in
[0, 1]d with respect to ∥ · ∥∞. Thus f : Rd → [0, 1]d is indeed a metric projection to [0, 1]d.

We first assume that the synthetic data X′′ also has size n. Then for any column vector X ′′
i , we

know that Yi = f(X ′′
i ) is its closest vector in [0, 1]d under the ℓ∞ metric. For the data X1, X2, . . . , Xn,

suppose that the solution to the optimal transportation problem for W1(µX, µX′′) is to match Xτ(i)

with X ′′
i , where τ is a permutation on [n]. Then

W1(µY, µX′′) ≤ 1

n

n∑
i=1

∥∥Yi −X ′′
i

∥∥
∞ ≤ 1

n

n∑
i=1

∥∥∥Xτ(i) −X ′′
i

∥∥∥
∞

= W1(µX, µX′′).

In general, if the synthetic dataset has m data points and m ̸= n, we can split the points and regard
both the true dataset and synthetic dataset as of size mn, then it’s easy to check that the inequality
still holds.

The expectation bound follows from (A.17) and (A.22). □

A.9. Results when d′ = 1 with extra assumptions. We start with the following lemma based on
the Davis-Kahan theorem [42].

Lemma A.1. Let X be a d× n matrix and A be an d× d Hermitian matrix. Let M = 1
nXXT, with

the SVD

M =

d∑
j=1

σjvjv
T
j ,

where σ1 ≥ σ2 ≥ · · · ≥ σd are the singular values of M and v1, . . . , vd are corresponding or-
thonormal eigenvectors. Let M̂ = 1

nXXT +A with orthonormal eigenvectors v̂1, . . . , v̂d, where v̂1

corresponds to the top singular value of M̂. When there exists a spectral gap σ1 − σ2 = δ > 0, we
have

1

n
∥X− v̂1v̂

T
1 X∥2F ≤ 2

∑
i>d′

σi +
8d′2

nδ2
∥A∥2∥X∥2F .
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Proof. We have that

1

n
∥X− v̂1v̂

T
1 X∥2F =

1

n
∥X− v1v

T
1 X+ v1v

T
1 X− v̂1v̂

T
1 X∥2F

≤ 2

n

(
∥X− v1v

T
1 X∥2F + ∥v1vT1 X− v̂1v̂

T
1 X∥2F

)
= 2

∑
i>d′

σi +
2

n

∥∥∥∥(v1vT1 − v̂1v̂
T
1

)
X

∥∥∥∥2
F

≤ 2
∑
i>d′

σi +
2

n

∥∥∥v1vT1 − v̂1v̂
T
1

∥∥∥2∥X∥2F . (A.24)

To bound the operator norm distance between the two projections, we will need the Davis-Kahan
Theorem in the perturbation theory. For the angle Θ(v1, v̂1) between the vectors v1 and v̂1, applying
[42, Corollary 1], we have∥∥∥v1vT1 − v̂1v̂

T
1

∥∥∥ = sinΘ(v1, v̂1) ≤
2∥M− M̂∥
σ1 − σ2

≤ 2∥A∥
δ

.

Therefore, when the spectral gap exists (δ > 0),

1

n
∥X− v̂1v̂

T
1 X∥2F ≤ 2

∑
i>d′

σi +
8

nδ2
∥A∥2∥X∥2F .

□

Compared to Lemma 3.2, with the extra spectral gap assumption, the dependence on A in the
upper bound changes from ∥A∥ to ∥A∥2. A similar phenomenon, called global and local bounds,
was observed in [35, Proposition 2.2]. With Lemma A.1, we are able to improve the accuracy rate for
the noisy projection step as follows.

Theorem A.2. When d′ = 1, assume that σ1(M) =∥M∥ > 0. For the output X̂ in Algorithm 3, we
have

EW1(µX−X1T , µX̂
) ≤

(
EW 2

2 (µX−X1T , µX̂
)
)1/2

≲

√∑
i>1

σi +
d3

√
σ1εn

,

where σ1 ≥ · · · ≥ σd ≥ 0 are singular values of M.

Proof. Similar to the proof of Theorem 3.3, we can define Zi = Xi −X and deduce that

1

n
ZZT =

n− 1

n
M,

1

n
∥Z∥2F =

n− 1

n
tr(M),

and

W 2
2 (µX−X1T , µX̂

) =
2

n
∥Z− v̂1v̂

T
1 Z∥2F + 2∥λ∥22 .

By the inequality
√
x+ y ≤

√
x+

√
y for x, y ≥ 0,

EW1(µX−X1T , µX̂
) ≤ E

[
2

n
∥Z− v̂1v̂

T
1 Z∥2F

]1/2
+
√
2E∥λ∥2 .

Let δ = σ1 − σ2. Next, we will discuss two cases for the value of δ.
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Case 1: When δ = σ1 − σ2 ≤ 1
2σ1, we have σ1 ≤ 2σ2 and

tr(M) = σ1 + · · ·+ σd ≤ 3
∑
i>1

σi.

As any projection map has spectral norm 1, we have
∥∥∥v1vT1 − v̂1v̂

T
1

∥∥∥ ≤ 2. Applying (A.24), we have

1

n
∥Z− v̂1v̂

T
1 Z∥2F ≤ 2

∑
i>1

σi +
2

n

∥∥∥v1vT1 − v̂1v̂
T
1

∥∥∥2∥Z∥2F
≤ 2

∑
i>1

σi +
8

n
∥Z∥2F

≤ 2
∑
i>1

σi + 8 tr(M)

≤ 26
∑
i>1

σi.

Hence

EW1(µX−X1T , µX̂
) ≲

√∑
i>1

σi + E∥λ∥2 ≲
√∑

i>1

σi +

√
d

εn
. (A.25)

Case 2: When δ ≥ 1
2σ1, we have

tr(M) ≤ dσ1 ≤
4dδ2

σ1
.

For any fixed δ, by Lemma A.1,

1

n
∥Z− v̂1v̂

T
1 Z∥2F ≤ 2

∑
i>1

σi +
8

nδ2
∥A∥2∥Z∥2F

≤ 2
∑
i>1

σi +
8

δ2
∥A∥2 tr(M)

≤ 2
∑
i>1

σi +
32d

σ1
∥A∥2 .

So we have the Wasserstein distance bound

EW1(µX−X1T , µX̂
) ≤

√
2
∑
i>1

σi +

√
32d

σ1
E∥A∥+

√
2E∥λ∥2 (A.26)

≤
√

2
∑
i>1

σi +

√
32d

σ1

d2.5

εn
+

√
2d

εn
(A.27)

≤
√
2
∑
i>1

σi +
Cd3

√
σ1εn

. (A.28)

From (A.6),

σ1 = ∥M∥ ≤ ∥M∥F ≤ n

n− 1
d ≤ 2d.

Combining the two cases (A.25) and (A.28), we deduce the result. □
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Proof of Theorem 6.1. Following the steps in the proof of Theorem 3.3, we obtain

EW1(µX, µM(X)) ≤ 2EW1(µX, µX′+(X+λ′)1T)

≤ 2EW1(µX−X1T , µX̂
) + 2EW1(µX̂

, µX′) + 2E
∥∥λ′∥∥

∞

≲

√∑
i>1

σi +
d′d3

√
σ1εn

+

√
d log2(εn)

εn
+

2C log d

εn

≲

√∑
i>1

σi +
d′d3

√
σ1εn

+

√
d log2(εn)

εn
,

where for the second inequality, we apply the bound from [24, Theorem 1.1] for the second term, and
we use (A.18) for the third term. □
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