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Abstract. Anderson Acceleration (AA) has been widely used to solve nonlinear fixed-point
problems due to its rapid convergence. This work focuses on a variant of AA in which multiple
Picard iterations are performed between each AA step, referred to as the Alternating Anderson-
Picard (AAP) method. Despite introducing more ‘slow’ Picard iterations, this method has been
shown to be efficient and even more robust in both linear and nonlinear cases. However, there
is a lack of theoretical analysis for AAP in the nonlinear case, which this paper aims to address.
We show the equivalence between AAP and a multisecant-GMRES method that uses GMRES to
solve a multisecant linear system at each iteration. More interestingly, the incorporation of Picard
iterations and AA establishes a deep connection between AAP and the Newton-GMRES method.
This connection is evident in terms of the multisecant matrix, the approximate Jacobian inverse,
search direction, and optimization gain—an essential factor in the convergence analysis of AA. We
show that these terms converge to their corresponding terms in the Newton-GMRES method as the
residual approaches zero. Consequently, we build the convergence analysis of AAP. To validate our
theoretical findings, numerical examples are provided.
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1. Introduction. Fixed-point iterations are one of the cornerstones in scientific
computing, formulated by

(1.1) x = g(x),

where x ∈ Rd and g : Rd → Rd is assumed to be a continuously differentiable operator
in this work. The standard method for solving (1.1) is the fixed-point iteration, also
known as the Picard iteration, noted for its simplicity but also for its potentially slow
convergence. This paper concerns an acceleration method for nonlinear fixed-point
iterations.

Anderson acceleration (AA), initially introduced in [2] to address partial differ-
ential equations, is one of the most popular acceleration schemes. AA is a scheme
mixing history points with mixing coefficients computed by solving a least-squares
(LS) problem. It can be regarded as a multisecant quasi-Newton method whose ap-
proximate Jacobian inverse satisfies a multisecant equation [13]. AA is known for
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its simplicity and significantly improved convergence performance. It has wide appli-
cations in fields such as electronic structure calculations [3, 13], fluid dynamics [22],
geometrical optimization [27], and more recently machine learning [15, 38].

The classical AA method takes an AA step in each iteration. There are different
variants of AA such as restarted AA [26], type-I AA [13, 39], and EDIIS [7]. Among
these alternatives, a simple method that applies AA at periodic intervals rather than
every iteration draws our attention. Contrary to the belief that a reduced frequency
of AA would degrade performance, this technique has been proven to enhance both
the efficiency and robustness of AA. This method was first introduced to address
large-scale linear systems within the classical Jacobi fixed-point iteration framework
for electronic structure calculations, termed the Alternating Anderson-Jacobi (AAJ)
method, in[31], where it has been shown to significantly outperform both the GM-
RES and Anderson-accelerated Jacobi methods. Subsequently, AAJ was generalized
to include preconditioning, known as the Alternating Anderson-Richardson (AAR)
method; it outperforms classical preconditioned Krylov solvers in terms of efficiency
and scalability [35]. In nonlinear scenarios, [3] uses this strategy for accelerating
self-consistent field iterations, and [18] applied a similar strategy on Riemannian op-
timization. On the theoretical side, [23] provides a convergence analysis of AAR,
establishing its equivalence to GMRES. However, no theoretical convergence analysis
exists yet for the application of this alternating approach to solve nonlinear fixed-point
problems, which is the primary focus of this work.

We consider a specific variant of this periodically alternating method, referred to
as AAP, which takes m Picard iterations between each AA step, and takes an AA
step to mix all m+1 points. We refer to the method AAP(m) in this paper when the
number of Picard iterations m needs to be specified. A detailed description of AAP
is given in Algorithm 2.1. This method takes advantage of the efficiency of AA to
improve the convergence, while maintaining the simplicity of the Picard iterations.

Solving (1.1) is equivalent to finding the root of the residual function:

(1.2) 0 = f(x) := g(x)− x.

Newton-type methods are fundamental in this context due to their characteristic
fast convergence, achieved by utilizing Jacobian information [24]. One such method,
Newton-GMRES [8, 1], iteratively updates the solution by solving the root of the linear
approximation of f using GMRES [20]. In this work, we will study the properties
of the AAP method. The core is to establish the equivalence between AAP and a
multisecant-GMRES method, which iteratively uses GMRES to find the root of a
multisecant linear approximation of f . In addition, compared to other variants of
AA, the characteristic that all history points used in each AA step are generated by
Picard iterations allows AAP capture local information more effectively. Formally, we
will show that AAP has a deep connection to the Newton-GMRES method.

This paper is organized as follows. Section 2 details the AAP algorithm and re-
lated work. Section 3 demonstrates that, at each global iteration t, AAP(m) implicitly
solves a multisecant linear system using the GMRES(m) method, followed by one ad-
ditional linearized Picard iteration. Section 4 explores the connection between AAP
and the Newton-GMRES method, focusing on the multisecant matrix, the approxi-
mate Jacobian inverse, search direction, and optimization gain – an essential factor in
the convergence analysis of AA. We show that as the residual approaches zero, these
terms converge to their corresponding terms in the Newton-GMRES method. Sec-
tion 5 presents the convergence analysis of AAP, including a one-step residual bound
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and the local convergence result. Numerical examples are provided in Section 6.
Appendix A discusses an assumption for guaranteeing the convergence of AAP.

1.1. Notation. The vector norm is denoted by ∥ · ∥ and refers to the Euclidean
norm (2-norm). The matrix norm is also denoted by ∥ · ∥ and refers to the induced
2-norm, which is the largest singular value. A sequence of matrices Ak → A means
∥Ak−A∥ → 0. In this paper, a sequence of matrices Ak → Ãk, where Ãk is another

sequence of matrices, means ∥Ak − Ãk∥ → 0; we refer to this as the convergence of

Ak to Ãk. The Frobenius norm of the matrix is denoted as ∥·∥F . The identity matrix
is denoted by I. For better presentation in this paper, Aℓ represents a superscript
on matrix A; A(ℓ) refers to the matrix A raised to the power ℓ. A−1 denotes the
inverse of matrix A. A† denotes the left pseudoinverse of matrix A. The ith largest
singular value of A is denoted as σi(A) , and σmin(A) is the smallest singular value
of A. The condition number of A is denoted as cond(A). The subspace spanned by
the columns of matrix A is denoted as span(A).

For a given matrix A and vector b, the n-th Krylov subspace is defined as:

Kn(A, b) = span{b,Ab,A2b, . . . ,An−1b}.

Krylov subspaces are shift invariant, i.e., for any ν ∈ R, Kn(A − νI, b) = Kn(A, b).
The Generalized Minimal Residual Method (GMRES) is one of the most popular
Krylov subspace methods and solves the linear systems Ax = b by minimizing the
residual within a Krylov subspace at iteration n:

min
x∈Kn(A,b)

∥Ax− b∥.

The following assumptions will be used in this paper:

Assumption 1.1. The following properties are assumed for g:
(a). ∥g(x)− g(y)∥ ≤ κ∥x− y∥, ∀ x,y ∈ Rd with κ ≤ 1.
(b). The Jacobian of g, denoted as g′, is Lipschitz continuous with constant γ > 0,

∥g′(x)− g′(y)∥ ≤ γ∥x− y∥.

2. Algorithm and related work. This section provides the details of the AAP
algorithm, along with the necessary preliminary concepts and assumptions. In addi-
tion, existing work on the convergence analysis of AA is discussed.

2.1. The AAP algorithm. At global iteration t, AAP first takes m Picard
iterations from current iterate xt to generate new points {x1

t , · · · ,xm
t } and compute

their residuals. AAP next computes the mixing coefficients by solving a constrained
LS problem based on the residuals of the history points {xt,x

1
t , · · · ,xm

t }, and then
updates the iterate to xt+1 by mixing the fixed-point values of these points. See
Algorithm 2.1 for details. We denote the mixing coefficients at global iteration t as
αt = {α0

t , α
1
t , ..., α

m
t } ∈ Rm+1, and denote the residual f(xt) as either f t or f0

t ,
depending on the context. When relevant, we refer to this algorithm as AAP(m), in
which m+ 1 Picard iterations are performed in each global iteration.

Here the damping ratio βt balances the weighted average of history points and
the weighted average of history residuals, i.e.,

(2.3) xt+1 = (1− βt)

m∑
ℓ=0

αℓ
tx

ℓ
t + βt

m∑
ℓ=0

αℓ
tg(x

ℓ
t) =

m∑
ℓ=0

αℓ
tx

ℓ
t + βt

m∑
ℓ=0

αℓ
tf

ℓ
t.
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Algorithm 2.1 Alternating Anderson-Picard (AAP) Method

1: Initialization: x0 ∈ Rd, number of Picard steps m ≤ d, damping ratio βt ≥ 0
2: for global iteration t = 0 to T do
3: /* Step 1: takes Picard iteration to generate m points and

compute their residuals */

4: x0
t ← xt

5: for ℓ = 1 to m do
6: xℓ

t ← g(xℓ−1
t )

7: f ℓ−1
t ← xℓ

t − xℓ−1
t

8: end for
9: fm

t ← g(xm
t )− xm

t

10: /* Step 2: Take one Anderson Acceleration step */

11: Solve

(2.1) αt ← argmin
α∈Rm+1

∥∥ m∑
ℓ=0

αℓf ℓ
t

∥∥2 s.t.

m∑
ℓ=0

αℓ = 1

12: Update

(2.2) xt+1 ← (1− βt)

m∑
ℓ=0

αℓ
tx

ℓ
t + βt

m∑
ℓ=0

αℓ
tg(x

ℓ
t)

13: end for

Let St := [s0t , . . . , s
m−1
t ] ∈ Rd×m and Y t := [y0

t , . . . ,y
m−1
t ] ∈ Rd×m with sℓt =

xℓ+1
t −xℓ

t and yℓ
t = f ℓ+1

t − f ℓ
t, for ℓ = 0, . . . ,m− 1. When Y t is of full column rank,

the constrained LS problem (2.1) can be written as an unconstrained LS problem,
i.e.,

(2.4) zt := argmin
z∈Rm

∥Y tz − f t∥2(= Y †
tf t),

and αt can be recovered from zt by setting α0
t = 1+z0t , α

ℓ
t = zℓt −zℓ−1

t for 0 < ℓ < m,
and αm

t = −zm−1
t . This transformation leads to an equivalent multisecant quasi-

Newton formulation of AAP, which updates xt+1 based on an approximate Jacobian
inverse Ht. Specifically,

xt+1 ← xt −Htf t,(2.5)

where Ht ← −βtI + (St + βtY t)(Y
T
t Y t)

−1Y T
t .(2.6)

It is straightforward to verify that Ht satisfies the inverse multisecant equation
HtY t = St.

The following assumptions regarding the iterations generated by AAP are impor-
tant for this paper.

Assumption 2.1. For all t ≥ 0, both St and Y t have full column rank.

Assumption 2.1 is fundamental for all the results presented in this paper and
will be assumed without further mention. This assumption is reasonable as we can
adaptively adjust m in each global iteration and stop the Picard iterations when the
columns of St or Y t become linearly independent. Alternatively, we can remove the
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linearly dependent columns directly, though this approach may affect the analysis
presented in this paper.

Assumption 2.2 (Uniform Boundedness of cond(St)). There exist constants
T > 0 and M > 0 such that cond(St) ≤M for all t > T .

Assumption 2.2 is a general assumption in the convergence analysis of AA (see Sec-
tion 2.3). We will show that St converges to a Krylov matrix in Subsection 4.2, and
discuss this assumption in more detail in Appendix A.

2.2. Multisecant matrices. In this paper, we define the multisecant matrix
Bt as a matrix that satisfies the multisecant equation BtSt = Y t. It follows from
sℓt = xℓ+1

t − xℓ
t = f ℓ

t that

(2.7) BtSt = Y t, ⇐⇒ Btf
ℓ
t = f ℓ+1

t − f ℓ
t, ∀ 0 ≤ ℓ ≤ m− 1.

Furthermore, we define the set

(2.8) Bt := {B ∈ Rd×d | BSt = Y t}.

It is evident that Bt is non-empty and contains invertible matrices under Assump-
tion 2.1. For instance, elements of Bt include Y tS

†
t and −I+(Y t+St)S

†
t . Moreover,

an invertible matrix in Bt can be constructed by taking Y S−1, where Y ∈ Rd×d and
S ∈ Rd×d are arbitrary invertible matrices with the first m columns being Y t and St,
respectively. For any Bt ∈ Bt, we call f̂t(x) = Bt(x−xt)+f(xt) a multisecant linear

approximation of f at xt, which satisfies f̂t(x
ℓ
t) = f(xℓ

t) for 0 ≤ ℓ ≤ m. At global
iteration t, this approximation is based on the m Picard iteration points generated in
AAP, as seen in the definition of Bt.

2.3. Existing convergence analysis of Anderson acceleration. The lo-
cal convergence rate of AA is established in [36, 19]. Subsequently, [28, 12, 29]
demonstrated how AA improves the convergence rate over fixed-point (Picard) it-
erations. The state-of-the-art convergence bound consists of a linear term and a
higher-order term. A simplified result from [29, Theorem 5.1] is given by ∥f(xt+1)∥ ≤
κθt∥f(xt)∥+c

√
1− θ2t ∥f(xt)∥

∑m
ℓ=0 ∥f(xt−ℓ)∥ where θt ≤ 1 is called the optimization

gain. This result indicates that the local convergence rate of AA, κθt, is superior to
the local convergence rate of the Picard iteration, κ.

The assumptions to guarantee the convergence of AA include a smoothness condi-
tion on g and a uniform boundedness assumption on the coefficients α [36, 12, 29, 25].
Alternatives to the uniform boundedness assumption on α is to assume sufficient lin-
ear independence among the columns of Y t [29] and the boundedness of the condition
number of St or Y t [25]. The equivalence between these conditions is discussed in
[25]. These conditions are also directly related to the conditioning of the constrained
LS problem in AA. In [30], a filtering strategy is proposed to enforce these conditions
by removing nearly linearly dependent columns from the LS problem.

An important property of AA is its equivalence to GMRES on linear problems.
When g(x) = Ax + b, [37] shows that AA with no truncation solving x = g(x) is
“essentially equivalent” to GMRES applied to (I − A)x = b, in the sense that the
weighted sum of the history points in each AA step equals the GMRES iterate xGMRES

t

and the AA iterate xAA
t+1 = g

(
xGMRES
t

)
. It is also mentioned in [37] that a “restarted”

variant of AA, in which the method proceeds without truncation for m steps and
then is restarted, is equivalent to GMRES(m) applied to (I − A)x = b followed
by a fixed-point iteration. In [23], the equivalence between Alternating Anderson-
Richardson and GMRES is established. For nonlinear problems, AA is closely related
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to the Nonlinear Generalized Minimal Residual Method (NGMRES) [33]. This work
will establish the equivalence bettwen AAP and a multisecant-GMRES method for
nonlinear case.

3. Equivalence between AAP and multisecant-GMRES. This section gives
the equivalence between AAP and a multisecant-GMRES method. We show that, at
global iteration t, AAP implicitly solves a multisecant linear system, followed by one
additional linearized Picard iteration.

Theorem 3.1 (Equivalence between AAP(m) and multisecant-GMRES(m)). At
global iteration t, let {xℓ

t}mℓ=0 be generated by AAP(m), then, for any Bt ∈ Bt,

(3.1)

m∑
ℓ=0

αℓ
tx

ℓ
t = xt − p̂t, where p̂t = argmin

p∈Km(Bt,ft)

∥Btp− f t∥2.

Further, xt+1 = ĝt(xt − p̂t) where ĝt(x) := (1− βt)x+ βt[(I +Bt)(x− xt) + g(xt)]
is a (damped) linear approximation of g.

Proof. Let Bt ∈ Bt be any multisecant matrix. By expressing α in terms of z as
given in (2.4),

m∑
ℓ=0

αℓf ℓ
t = f0

t − z0(f1
t − f0

t )− · · · − zm−1(fm
t − fm−1

t ) = f t − Y tz.

From (2.7), Btf
ℓ
t = f ℓ+1

t − f ℓ
t for 0 ≤ ℓ ≤ m − 1. This implies that the residual

sequence {f ℓ
t}mℓ=0 is a Krylov sequence, i.e.,

(3.2) f ℓ+1
t = (I +Bt)f

ℓ
t = · · · = (I +Bt)

(ℓ+1)f t ∈ Kℓ+2(I +Bt,f t).

Then, the columns of Y t take the form yℓ
t = f ℓ+1

t − f ℓ
t = (I + Bt)

(ℓ+1)f t − (I +
Bt)

(ℓ)f t = Bt(I +Bt)
(ℓ)f t, and thus

span(Y t) = span{y0
t ,y

1
t , · · · ,ym−1

t } = BtKm(I +Bt,f t) = BtKm(Bt,f t),

where the last equality is due to the shift invariance property of the Krylov subspace.
Therefore, we have the equivalence between the following three problems:

(3.3) min
α∈Rm+1,∑m
ℓ=0

αℓ=1

∥
m∑
ℓ=0

αℓf ℓ
t∥2 ⇔ min

z∈Rm
∥Y tz − f t∥2 ⇔ min

p∈Km(Bt,ft)
∥Btp− f t∥2.

It is straightforward to verify that the solutions to each of the problems satisfy

(3.4)
∑m

ℓ=0 α
ℓ
tf

ℓ
t = f t − Y tzt = f t −Btp̂t.

As BtSt = Y t, we have Btp̂t = Y tzt = BtStzt holds for any Bt ∈ Bt. Since Bt

contains invertible elements, we have p̂t = Stzt. The equivalence between αt and zt

then implies
∑m

ℓ=0 α
ℓ
tx

ℓ
t = xt − Stzt = xt − p̂t, and proves (3.1).

Furthermore, let f̂t be the multisecant linear approximation of f at xt as f̂t(x) =

Bt(x − xt) + f(xt). Then, ĝt(x) = (1 − βt)x + βt(x + f̂t(x)). In addition, for all

0 ≤ ℓ ≤ m, g(xℓ
t) = xℓ

t + f(xℓ
t) and f(xℓ

t) = f̂t(x
ℓ
t). It follows that∑m

ℓ=0 α
ℓ
tg(x

ℓ
t) =

∑m
ℓ=0 α

ℓ
tx

ℓ
t +

∑m
ℓ=0 α

ℓ
t f̂t(x

ℓ
t) =

∑m
ℓ=0 α

ℓ
tx

ℓ
t + f̂t(

∑m
ℓ=0 α

ℓ
tx

ℓ
t),

where the last equation is due to the linearity of f̂t. Finally, we have xt+1 = (1 −
βt)
∑m

ℓ=0 α
ℓ
tx

ℓ
t+βt[

∑m
ℓ=0 α

ℓ
tx

ℓ
t+ f̂t(

∑m
ℓ=0 α

ℓ
tx

ℓ
t)] = ĝt(

∑m
ℓ=0 α

ℓ
tx

ℓ
t) = ĝt(xt−p̂t), which

completes the proof.
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We have shown that the LS problem (2.1) in AAP(m) is equivalent to applying
GMRES(m) to the multisecant linear system Btp = f t for any Bt ∈ Bt. We call

p̂t the multisecant-GMRES direction, and p̂t is equal to StY
†
tf t. As shown in The-

orem 3.1, the weighted average of the history points equals the multisecant-GMRES
update xt − p̂t. The above theorem holds for any Bt ∈ Bt because they generate the
same Krylov (residual) subspaces

(3.5) Km(Bt,f t) = span(St), BtKm(Bt,f t) = span(Y t), ∀Bt ∈ Bt.

We refer to [17] for the properties of matrices that generate the same Krylov residual
spaces.

The equivalence between AAP and multisecant-GMRES resembles the one given
in [37] for linear g. A similar result was also mentioned for a restarted variant of AA
applied on gradient descent [26]. The equivalence between other variants of AA and
the multisecant methods is discussed in [14].

Let us briefly take a closer look at the damping ratio. To that end, we define
the multisecant-GMRES residual at iteration t as r̂t. According to the equivalence
between the three minimization problems in (3.3), we have

(3.6) r̂t = Btp̂t − f t = Y tzt − f t = −
m∑
ℓ=0

αℓ
tf

ℓ
t.

The following corollary shows that the damping ratio acts as a stepsize parameter
in the direction of the residual.

Corollary 3.2. The iterate xt+1 generated from (2.2) in AAP satisfies

(3.7) xt+1 = xt − p̂t − βtr̂t.

Proof. The result follows from xt+1 =
∑m

ℓ=0 α
ℓ
tx

ℓ
t+βt

∑m
ℓ=0 α

ℓ
tf

ℓ
t = xt−p̂t−βtr̂t.

When βt satisfies ∥I−βtBt∥ ≤ 1, the “damped” direction p̂t+βtr̂t could be a better
solution to the multisecant linear system Btp = f t than the original direction p̂t.
Indeed, in this case, ∥Bt(p̂t+βtr̂t)−f t∥ = ∥(I −βtBt)(Btp̂t−f t)∥ ≤ ∥Btp̂t−f t∥.

4. Connection Between AAP and Newton-GMRES. Newton’s method
finds the roots of a nonlinear function f(x) by using its Jacobian information. At
iteration t, a linear approximation of f at xt is given by

(4.1) f(x) ≈ J t(x− xt) + f(xt),

where J t := f ′(xt) is the Jacobian of f at xt. The Newton-GMRES(m) method is a
variant of the inexact-Newton method that uses GMRES(m) to approximately solve
this linearized system for a search direction pN

t at each iteration as follows

(4.2) xt+1 := xt − pN
t with pN

t := argmin
p∈Km(Jt,ft)

∥J tp− f t∥.

However, the Jacobian is not always available or easy to compute directly.
As shown in Corollary 3.2, at iteration xt, the search direction given by AAP is

equivalent to the multisecant-GMRES direction based on Bt ∈ Bt with an additional
damping term. In this section, we establish the connection between AAP and the
Newton-GMRES method by showing that, (i) when the residual ∥f t∥ goes to zero
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as t → ∞, the distance between the set of multisecant matrix Bt given by AAP and
the Jacobian matrix J t converges to zero (Section 4.1), (ii) the matrices St, Y t, and
Ht constructed by AAP converge respectively to their counterparts in the Newton-
GMRES method (Section 4.2), and (iii) the optimization gain θt in AAP converges
to an analogous quantities in Newton-GMRES (Section 4.3).

One of the key properties of AAP that enables the analysis in this section is the
m Picard iteration steps taken in a global iteration. The Picard iteration steps often
progress more conservatively than the acceleration step. Therefore, the multisecant
matrix given by these history points could be a good approximation to the local
Jacobian J t. In fact, the following lemma provides bounds on the Picard iteration
updates and residuals, which are essential in the analysis in this section.

Lemma 4.1. Under Assumption 1.1(a), at global iteration t of AAP, for all 0 ≤
ℓ ≤ m,

∥f ℓ
t∥ ≤ ∥f t∥, and ∥xℓ

t − xt∥ ≤ ℓ∥f t∥.
Proof. Since xℓ

t = g(xℓ−1
t ) and x0

t = xt, we have xℓ
t = xℓ−1

t + f(xℓ−1
t ) and thus

∥xℓ
t − xt∥ = ∥

∑ℓ−1
i=0 f(x

i
t)∥ ≤

∑ℓ−1
i=0 ∥f(xi

t)∥. The non-expansive property of g gives
that, for i = 1, . . . , ℓ,

∥f(xi
t)∥ = ∥g(xi

t)− xi
t∥ = ∥g(xi

t)− g(xi−1
t )∥ ≤ κ∥xi

t − xi−1
t ∥ = κ∥f(xi−1

t )∥.

Since κ ≤ 1, ∥f ℓ
t∥ ≤ ∥f t∥ and ∥xℓ

t − xt∥ ≤
∑ℓ−1

i=0 ∥f(xt)∥ ≤ ℓ∥f t∥.
Another useful technique in the following analysis is the fundamental theorem for line
integrals, i.e.,

(4.3) f(y)− f(x) =
∫ 1

0
f ′(x+ r(y − x))(y − x) dr.

With these results, we show in the following subsections that, as the AAP residual
f t approaches zero, Bt, St, Y t, Ht, and θt in AAP converge to their counterparts
in Newton-GMRES.

4.1. Convergence of the multisecant matrix. We start the analysis with
showing that the distance between the set of multisecant matrices Bt generated by
AAP and the Jacobian J t goes to zero provided that the residual approaches zero as
t→∞. Here, the distance between Bt and J t is defined as the norm of

(4.4) Et := B∗
t − J t, where B∗

t := argmin
B∈Bt

∥B − J t∥.

Because St is full column rank, the minimal-norm property [37] gives

(4.5) Et = (J tSt − Y t)S
†
t .

Note that J t +Et = B∗
t ∈ Bt. In addition, when g is linear, J t satisfies J tSt = Y t

and thus ∥Et∥ = 0. An upper bound on ∥Et∥ for the nonlinear case is provided in
the following theorem.

Theorem 4.2. Under Assumption 1.1,

(4.6) ∥Et∥ ≤ γm
3
2 cond(St)∥f t∥.

Furthermore, if Assumption 2.2 holds, then

(4.7) ∥Et∥ ≤ CE∥f t∥, ∀ t > T,

where CE > 0 is a constant that is independent of t.
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Proof. It follows from (4.5) that

∥Et∥ ≤ ∥Y t − J tSt∥∥S†
t∥.

Let Y t − J tSt = [v0,v1, . . . ,vm−1] ∈ Rd×m. For 0 ≤ ℓ ≤ m− 1,

vℓ = yℓ − J ts
ℓ = f(xℓ+1

t )− f(xℓ
t)− f ′(xt)(x

ℓ+1
t − xℓ

t).

By using (4.3) and sℓt = xℓ+1
t − xℓ

t = f ℓ
t,

vℓ =

∫ 1

0

f ′(xℓ
t + rf ℓ

t)f
ℓ
t dr − f ′(xt)f

ℓ
t =

∫ 1

0

[f ′(xℓ
t + rf ℓ

t)− f ′(xt)]f
ℓ
t dr.

Applying f ′(x) = g′(x)− I and the Lipschitz continuity of g′ gives, for r ∈ [0, 1],

∥f ′(xℓ
t + rf ℓ

t)− f ′(xt)∥ ≤ γ∥xℓ
t + rf ℓ

t − xt∥ ≤ γ(∥xℓ
t − xt∥+ ∥f ℓ

t∥).

By Lemma 4.1, ∥xℓ
t − xt∥+ ∥f ℓ

t∥ ≤ (ℓ+ 1)∥f t∥ ≤ γm∥f t∥ as ℓ < m, which leads to

(4.8) ∥vℓ∥ ≤
∫ 1

0

∥f ′(xℓ
t + rf ℓ

t)− f ′(xt)∥∥f ℓ
t∥ dr ≤ γm∥f t∥∥sℓt∥.

Using the matrix norm inequality ∥ · ∥ ≤ ∥ · ∥F ,

∥J tSt−Y t∥ ≤ ∥J tSt−Y t∥F =

√∑
ℓ

∥vℓ∥2 ≤ γm∥f t∥
√∑

ℓ

∥sℓt∥2 = γm∥f t∥∥St∥F .

Since St has full column rank and ∥St∥F ≤
√
m∥St∥, it follows that

∥Et∥ ≤
√
mγm∥f t∥∥St∥∥S†

t∥ = γm
3
2 ∥f t∥cond(St).

The second claim is then a direct consequence of Assumption 2.2.

The bound given in (4.7) shows that ∥Et∥ ≤ O(∥f t∥), which leads to the following
convergence result.

Corollary 4.3. Under Assumptions 1.1 and 2.2, suppose that f t → 0 as t→∞,
then, as t→∞,

Et → 0 and B∗
t → J t,

where B∗
t ∈ Bt is defined in (4.4).

The convergence of Bt to J t suggests that the multisecant direction p̂t could con-
verge to the Newton-GMRES direction pN

t := argminp∈Km(Jt,ft)
∥J tp − f t∥, which

we prove later in Corollary 4.6.

4.2. Limits of St, Y t, and Ht. In this section, we establish the limits of
St and Y t as t → ∞ under the assumption that f t approaches zero. These limits
are related to a Krylov matrix spanned by g′(xt) and f t, which further implies the
convergence of the approximate Jacobian inverse Ht of AAP defined in (2.6).

We first review the Newton-GMRES method. At iteration xt, the Krylov matrix
associated with Km(J t,f t) can be written as

(4.9) F t := [f t,J
(1)
t f t,J

(2)
t f t, · · · ,J

(m−1)
t f t] ∈ Rd×m.
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The Newton-GMRES direction pN
t := argminp∈Km(Jt,ft)

∥J tp− f t∥ satisfies J tp
N
t =

PJtF t
(f t) where PA = AA† denotes the orthogonal projection onto the subspace

spanned by the columns of A. Define

(4.10) Gt := [f t, g
′(xt)

(1)f t, g
′(xt)

(2)f t, · · · , g′(xt)
(m−1)f t] ∈ Rd×m.

Since g′(xt) = I+J t, the shift invariance of the Krylov subspace leads to PGt = PF t .
Therefore, PJtGt

= PJtF t
. If J t is invertible, we have

(4.11) pN
t = J−1

t PJtGt(f t).

We refer to J−1
t PJtGt as the Newton-GMRES update operator.

As shown in (3.2), the AAP residuals {f ℓ
t}m−1

ℓ=0 form a basis of the Krylov subspace

Km(Bt,f t) as f
ℓ
t = (I +Bt)

(ℓ)f t. Therefore,

St = [f0
t ,f

1
t , · · · ,f

m−1
t ] = [f t, (I +Bt)

(1)f t, (I +Bt)
(2)f t, · · · , (I +Bt)

(m−1)f t]

is a Krylov matrix associated with I+Bt and f t. As f t approaches zero, the matrices
St, Y t, and Gt all approach zero. Further, the following lemma gives estimates of
the distances between St, Y t and their Newton-GMRES counterparts.

Lemma 4.4. Under Assumption 1.1,

(4.12) ∥St −Gt∥ ≤ γm
5
2 ∥f t∥2 and ∥Y t − J t Gt∥ ≤ 2γm

5
2 ∥f t∥2.

Proof. For a better presentation, we omit the subscript t in this proof unless
necessary. Note that x0 = xt is the starting point for the Picard iterations at the
global iteration t, and f ℓ = f(xℓ

t) for all 0 ≤ ℓ ≤ m− 1.
We first define ∆t = Gt − St and write ∆t = [ϵ0, ϵ1, ϵ2, · · · , ϵm−1]. By the

definitions of Gt and St, ϵ0 = 0 and ϵℓ = f ℓ − g′(xt)
(ℓ)f t for ℓ = 0, . . . ,m − 1.

We next estimate ϵℓ. By (4.3), f(xℓ) − f(xℓ−1) =
∫ 1

0
f ′(xℓ−1 + rf ℓ−1)f ℓ−1 dr as

xℓ − xℓ−1 = f ℓ. Thus,

f ℓ = f(xℓ) =
∫ 1

0
[I + f ′(xℓ−1 + rf ℓ−1)]f ℓ−1 dr

=
∫ 1

0
g′(xℓ−1 + rf ℓ−1)f ℓ−1 dr

= g′(xt)f
ℓ−1 +

∫ 1

0
[g′(xℓ−1 + rf ℓ−1)− g′(xt)]f

ℓ−1 dr

= Kf ℓ−1 + vℓ−1,

where K := g′(xt) and vℓ−1 :=
∫ 1

0

[
g′(xℓ−1 + rf ℓ−1)− g′(xt)

]
f ℓ−1 dr. Applying

this relation iteratively gives f ℓ = K(ℓ)f t +
∑ℓ−1

i=0 K
(i)vℓ−1−i. Therefore, ϵℓ =∑ℓ−1

i=0 K
(i)vℓ−1−i. Furthermore, under Assumption 1.1, ∥K∥ ≤ κ ≤ 1 and

∥vℓ−1∥ ≤ γ∥xℓ−1 + rf ℓ−1 − xt∥∥f ℓ−1∥ ≤ γℓ∥f t∥∥f
ℓ−1∥ ≤ mγ∥f t∥2,

where the second inequality follows from Lemma 4.1 and 0 ≤ r ≤ 1. Then,

∥ϵℓ∥ =
∑ℓ−1

i=0 K
(i)vℓ−1−i ≤

∑ℓ−1
i=0 ∥vℓ−1−i∥ ≤ ℓ(mγ∥f t∥2) ≤ m2γ∥f t∥2.

Therefore,

(4.13) ∥St −Gt∥ = ∥∆t∥ ≤ ∥∆t∥F =
√∑m−1

i=0 ∥ϵi∥2 ≤ γm
5
2 ∥f t∥2.



CONVERGENCE ANALYSIS OF AAP METHOD 11

To estimate ∥Y t − J tGt∥, we use the relations established above and write the
ℓ-th column of Y t as

yℓ
t = f ℓ+1 − f ℓ = K(ℓ+1)f t + ϵℓ+1 −K(ℓ)f t − ϵℓ = J tK

(ℓ)f t + ϵℓ+1 − ϵℓ,

where the last equality is due to K = g′(xt) = I + f ′(xt) = I + J t. Then, we write

Y t = J tGt + ∆̃t −∆t where ∆̃t := [ϵ1, ϵ2, ϵ3, · · · , ϵm] ∈ Rd×m. Following a similar

approach as above, one can obtain ∥∆̃t∥ ≤ γm
5
2 ∥f t∥2, and thus

(4.14) ∥Y t − J tGt∥ ≤ ∥∆̃t∥+ ∥∆t∥ ≤ 2γm
5
2 ∥f t∥2.

When f t approaches 0, despite St and Y t converging to 0, the above lemma
shows that 1

∥ft∥
St → 1

∥ft∥
Gt and 1

∥ft∥
Y t → 1

∥ft∥
J tGt. We note that, when g is

linear, i.e., γ = 0, for all t,

(4.15) St = Gt, and Y t = J tGt.

Now we are ready to give the convergence of the approximate Jacobian inverse
Ht in AAP. As given in (2.6), Ht = StY

†
t − βt(I − PY t) where βt is the damping

ratio. The definitions of p̂t and r̂t in (3.1) and (3.6) lead to p̂t = StY
†
tf t and

r̂t = −βt(I − PY t
)f t, respectively. Thus, StY

†
t corresponds to the multisecant-

GMRES update operator, and I − PY t corresponds to the extra linearized fixed-

point iteration in AAP. The following corollary gives the convergence of StY
†
t to the

Newton-GMRES update operator defined in (4.11), as well as the convergence of Ht.

Assumption 4.1. There exist constants T > 0 and M > 0 such that, for all
t ≥ T , J t is invertible, σmin(Y t) ≥M∥f t∥, and J t Gt has full column rank.

Theorem 4.5. Under Assumptions 1.1 and 4.1, when f t goes to 0,

(4.16) StY
†
t → J−1

t PJtGt , Ht → J−1
t PJtGt − βt(I − PJtGt).

Proof. When f t goes to 0, Lemma 4.4 gives Y t → J t Gt. Because both Y t and
J t Gt have full column rank, it follows from [34, Theorem 3.4] that

(4.17) ∥Y †
t − (J t Gt)

†∥ ≤
√
2∥Y †

t∥ ∥(J t Gt)
†∥ ∥Y t − J t Gt∥ .

Furthermore, ∥Y †
t∥ = 1

σmin(Y t)
≤ 1

M∥ft∥
and, for sufficiently small ∥f t∥,

(4.18) ∥(J t Gt)
†∥ = 1

σmin(J t Gt)
≤ 1

σmin(Y t)− ∥Y t − J tGt∥
≤ τ

1

M∥f t∥
,

where τ < 1 is a constant and the first inequality follows from [16, Corollary 2.4.4]
and the estimate in Lemma 4.4 on ∥Y t − J tGt∥. With these estimates, the RHS of
(4.17) is uniformly bounded and thus, as ∥f t∥ → 0,

(4.19) ∥( 1
∥ft∥

Y t)
† − ( 1

∥ft∥
J t Gt)

†∥ = ∥f t∥∥Y
†
t − (J t Gt)

†∥ → 0.

Therefore, since J t is invertible, Gt = J−1
t J tGt, and then

StY
†
t = ( 1

∥ft∥
St)(

1
∥ft∥

Y t)
† → J−1

t ( 1
∥ft∥

J t Gt)(
1

∥ft∥
J t Gt)

† = J−1
t PJtGt

.

Further, PY t
= Y tY

†
t → (J tGt)(J tGt)

† = PJtGt
. It follows that

Ht = StY
†
t − βt(I − PY t) → J−1

t PJtGt − βt(I − PJtGt),

which completes the proof.
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When βt = 0, the above theorem demonstrates the convergence of the approx-
imate Jacobian inverse Ht to the Newton-GMRES update operator. This suggests
that the iteration sequences generated by AAP and Newton-GMRES are likely to
be close to each other, provided that they start from the same initial point with a
sufficiently small residual.

As p̂t = StY
†
tf t, the following convergence of p̂t to the Newton-GMRES search

direction pN
t = J−1

t PJtGt
(f t) is straightforward.

Corollary 4.6. Under Assumptions 1.1 and 4.1, when f t goes to 0, we have
1

∥ft∥
p̂t → 1

∥ft∥
pN
t .

Remark 4.7. For Assumption 4.1, the condition that J t is invertible is satisfied
when g is a contractive mapping, i.e., κ < 1.

4.3. Convergence of the optimization gain. As mentioned in Section 2.3,
the optimization gain θt, which is defined as the ratio between the minimum of the
constrained LS problem (2.1) and ∥f t∥, is a crucial factor in the convergence analysis
of Anderson acceleration. Based on (3.6), the optimization gain can be written as

(4.20) θt :=
∥
∑m

ℓ=0 α
ℓ
tf

ℓ
t∥

∥f t∥
=
∥Btp̂t − f t∥
∥f t∥

=
∥Y tzt − f t∥
∥f t∥

=
∥(I − PY t

)(f t)∥
∥f t∥

,

In this section, we provide convergence estimates for θt to an analogous gain term in
the Newton-GMRES method.

Recall that at iterate xt, the Newton-GMRES method uses GMRES(m) to solve
J tp − f t = 0 where J t = f ′(xt) is the Jacobian at xt. We define the Jacobian-
GMRES(m) gain as ∥rJt ∥/∥f t∥ where rJt is the GMRES residual:

(4.21) ∥rJt ∥ := min
p∈Km(Jt,ft)

∥J tp− f t∥ = ∥(I − PJtGt
)(f t)∥,

as shown in (4.11). The term Jacobian-GMRES(m) gain is used to distinguish it
from the Newton-GMRES algorithm since rJt is evaluated at iteration xt generated
by the AAP method. If g is a linear function, we have θt = ∥rJt ∥/∥f t∥ according to
(4.15). The following theorem provides the convergence of θt to ∥rJt ∥/∥f t∥ provided
that ∥f t∥ → 0 as t→∞.

Theorem 4.8 (Limit of optimization gain). Under Assumptions 1.1 and 4.1,
when ∥f t∥ is small enough,

(4.22)
∣∣ θt − ∥rJt ∥/∥f t∥

∣∣ ≤ O(∥f t∥),

implying that θt converges to ∥rJt ∥/∥f t∥ as ∥f t∥ approaches zero.

Proof. By the definitions,

(4.23)
∣∣∣θt − ∥rJ

t ∥
∥ft∥

∣∣∣ = ∥(I−PY t )(ft)−(I−PJtGt )(ft)∥
∥ft∥

≤ ∥PY t
− PJtGt

∥.

Lemma 4.4 shows that ∥ 1
∥ft∥

Y t− 1
∥ft∥

J tGt∥ ≤ O(∥f t∥). Meanwhile, when ∥f t∥
is small enough, (4.19) in Theorem 4.5 shows that ∥( 1

∥ft∥
Y t)

† − ( 1
∥ft∥

J tGt)
†∥ ≤

O(∥f t∥), Therefore,

∥PY t − PJtGt∥ = ∥(
1

∥f t∥
Y t)(

1

∥f t∥
Y t)

† − (
1

∥f t∥
J tGt)(

1

∥f t∥
J tGt)

†∥ ≤ O(∥f t∥),

which finished the proof.
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We showed that the optimization gain converges to the Jacobian-GMRES(m)
gain ∥rJt ∥/∥f t∥ as the residual f t approaches zero. Thus, ∥rJt ∥/∥f t∥ can serve as
an estimator of θt when the residual is small. For a general J t, the bounds on the
m-th residual produced by GMRES applied to J tp = f t can vary widely. However,
when J t is symmetric and positive definite, the norm of the m-th GMRES residual is
well-known to be bounded as follows

(4.24)
∥rJt ∥
∥f t∥

≤ 2

(√
cond(J t)− 1√
cond(J t) + 1

)k

≈ 2

(
1− 2√

cond(J t)

)k

,

showing exponential decay with respect to m. However, according to (4.12), when
m is large, the upper bound in (4.22) could have a large constant, which makes the
bound loose. Numerical examples are provided in Figure 2 in Section 6.1.

Remark 4.9. Another interpretation that illustrates the relationship between θt
and ∥rJt ∥/∥f t∥ is based on the equivalence between AAP and multisecant-GMRES.
Specifically, from (3.6), one can write θt∥f t∥ = ∥Btp̂t − f t∥, for any Bt ∈ Bt. Since
(J t +Et)St = Y t, we have

θt∥f t∥ = min
p∈Km(Jt+Et,ft)

∥(J t +Et)p− f t∥.

Combining this with (4.21), the relation between θt and ∥rJt ∥/∥f t∥ can be regarded
as the change in GMRES residuals under perturbation Et. Interested readers can
refer to [32], where the GMRES residual change with respect to perturbations on
the coefficient matrix is estimated using spectral perturbation theory and resolvent
estimates. A simple application of Theorem 2.1 therein gives

∣∣ θt − ∥rJt ∥/∥f t∥
∣∣ ≤

O(∥Et∥) under some conditions. This bound is essentially identical as (4.22).

5. Convergence analysis. This section presents the convergence analysis of
AAP. We provide a one-step convergence analysis to establish the bounds on ∥f t+1∥,
followed by a local convergence result. These analyses are based on the equivalence
between AAP and multisecant-GMRES. We present some preliminary results before
starting the convergence analysis.

First, recall Corollary 3.2 which states that the update of xt+1 in AAP satisfies

xt+1 = xt − p̂t − βtr̂t,

where r̂t = Btp̂t − f t is the residual of the multisecant-GMRES. It follows from
the optimization gain θt = ∥Btp̂t − f t∥/∥f t∥ that ∥r̂t∥ = θt∥f t∥. Meanwhile, the
following lemma characterizes the lengths of ∥p̂t∥.

Lemma 5.1. For any invertible Bt ∈ Bt, we have p̂t satisfies

∥p̂t∥ ≤
√

1− θ2t ∥B
−1
t ∥∥f t∥.

Proof. Since p̂t = argminp∈Km(Bt,ft)
∥Btp − f t∥, Btp̂t ⊥ (Btp̂t − f t). Thus,

∥Btp̂t∥ =
√
1− θ2t ∥f t∥ as ∥Btp̂t − f t∥ = θt∥f t∥. The result follows from the non-

singularity of Bt.

We note that assuming Bt nonsingular does not impose additional restrictions,
since the equivalence of AAP and multi-secant GMRES holds for any Bt ∈ Bt (Sec-
tion 3) and Bt has nonsingular elements under Assumption 2.1 as shown in Section 2.2.
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The above bound holds for any invertible Bt ∈ Bt. We give a lower bound
estimate of ∥B−1

t ∥: considering that B−1
t satisfies B−1

t Y t = St, we have, according

to the minimal norm properties of pseudoinverse, ∥B−1
t ∥ ≥ ∥StY

†
t∥,∀Bt ∈ Bt being

invertible. On the other hand, if J t is invertible and ∥J−1
t Et∥ < 1, Theorem 2.3.4 of

[16] gives that J t +Et is invertible and

(5.1) ∥(J t +Et)
−1 − J−1

t ∥ ≤
∥Et∥ ∥J−1

t ∥2

1− ∥J−1
t Et∥

.

When ∥Et∥ is small enough, the denominator is negligible. It follows that ∥(J t +
Et)

−1 − J−1
t ∥ ≤ O(∥Et∥) and ∥J−1

t ∥ can be used to estimate ∥B−1
t ∥ when ∥Et∥ is

small enough.

Now, we are ready to give the bound of ∥f t+1∥.
Theorem 5.2. Under Assumptions 1.1 and 2.2, for any invertible Bt ∈ Bt,

(5.2)

∥f t+1∥ ≤ [(1− βt) + βtκ] θt∥f t∥+
√

1− θ2t ∥B
−1
t ∥

[
γ

2

√
1− θ2t ∥B

−1
t ∥+ CE

]
∥f t∥2.

Proof. The update can be expressed as

xt+1 = xt − pt = xt − (p̂t + βtr̂t) = x̂t − βtr̂t,

where x̂t := xt − p̂t =
∑

ℓ α
ℓxℓ

t. By (4.3),

f(xt+1) = f(xt) + [f(x̂t)− f(xt)] + [f(xt+1)− f(x̂t)]

= f t −
∫ 1

0
f ′(xt − sp̂t)p̂t dr −

∫ 1

0
f ′(x̂t − sβtr̂t)βtr̂t ds

= −r̂t +Btp̂t −
∫ 1

0
f ′(xt − sp̂t)p̂t ds−

∫ 1

0
f ′(x̂t − sβtr̂t)βtr̂t ds

= −
∫ 1

0
[I + βtf

′(x̂t − sβtr̂t)]r̂t ds︸ ︷︷ ︸
:=Lt

+
∫ 1

0
[Bt − f ′(xt − sp̂t)]p̂t ds︸ ︷︷ ︸

:=Ht

.

For the term Lt, we have I + βtf
′(xt − sr̂t) = (1 − βt)I + βt[I + f ′(xt − sr̂t)].

Note that I + f ′(xt − sr̂t) = g′(xt − sr̂t) and ∥g′(x)∥ ≤ κ,∀x. Thus,

(5.3) ∥Lt∥ ≤
∫ 1

0

∥I + βtf
′(xt − sr̂t)∥∥r̂t∥ ds ≤ [(1− βt) + βtκ]θt∥f t∥.

The termHt =
∫ 1

0
[Bt−f ′(xt−sp̂t)]p̂t ds is equal to

∫ 1

0
[J t+Et−f ′(xt−sp̂t)]p̂t ds

since Btp̂t = (J t +Et)p̂t for all Bt ∈ Bt. By telescoping, we have

∥J t +Et − f ′(xt − sp̂t)∥ ≤ ∥f ′(xt − sp̂t)− f ′(xt)∥+ ∥f ′(xt)− (J t +Et)∥
≤ sγ∥p̂t∥+ ∥Et∥

≤ sγ
√
1− θ2t ∥B

−1
t ∥∥f t∥+ ∥Et∥,

where the second inequality holds because g′ is Lipschitz continuous and the last
inequality is due to the Lemma 5.1. Thus, we have

(5.4)

∥Ht∥ ≤
∫ 1

0

∥f ′(xt − sp̂t)− (J t +Et)∥ ∥p̂t∥ ds

≤
√
1− θ2t ∥B

−1
t ∥

[
γ

2

√
1− θ2t ∥B

−1
t ∥∥f t∥+ ∥Et∥

]
∥f t∥.
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The claim then follows from (5.3), (5.4), and the estimate ∥Et∥ ≤ CE∥f t∥ given
in Theorem 4.2 under Assumption 2.2.

The bound given in (5.2) includes a linear term and a higher-order term, which
is similar to the one for classical AA given in [29]. The higher-order term here is
simpler because the history points in AAP are generated by Picard iterations and are
well bounded around xt. Furthermore, the subsequent result is derived directly by
applying (5.1) and ∥Et∥ ≤ CE∥f t∥.

Corollary 5.3. Under Assumptions 1.1 and 2.2, assume that J t is invertible
and f t is small enough. Then,

∥f t+1∥ ≤ [(1− βt) + βtκ] ∥f t∥

+
√
1− θ2t

∥∥J−1
t

∥∥ [γ
2

√
1− θ2t

∥∥J−1
t

∥∥ ∥f t∥+ CE

]
∥f t∥2 + o(∥f t∥2).

Remark 5.4. The higher-order term Ht in the proof of Theorem 5.2 equals

Ht = Btp̂t + f(xt − p̂t)− f(xt) = f
(∑m

ℓ=0 α
ℓ
tx

ℓ
t

)
−
∑m

ℓ=0 α
ℓ
tf(x

ℓ
t),

which might be positive, potentially resulting in ∥f t+1∥ > ∥f t∥. However, if f is
convex and αℓ

t ≥ 0 for ℓ = 0, . . . ,m, then Ht ≤ 0 and the monotonic decay of ∥f t∥ is
guaranteed, i.e., ∥f t+1∥ ≤ ∥f t∥. The condition αt ≥ 0 can be satisfied by imposing
nonnegative constraints on the LS problem in (2.1), as in the EDIIS method [7], but
the convergence might become slow.

Finally, we present the local convergence of AAP under the condition that g is
a contractive mapping, i.e., κ < 1. Under this condition, g has a unique fixed point
x∗ such that f(x∗) = 0. Since ∥g′(x∗)∥ ≤ κ < 1, it follows that the Jacobian f ′(x∗)
is non-singular. Furthermore, an important property of contractive mappings is the
relation between the residual and error. Specifically, for all x ∈ Rd, the error satisfies

∥x− x∗∥ ≤ ∥x− g(x)∥+ ∥g(x)− g(x∗)∥ ≤ ∥f(x)∥+ κ∥x− x∗∥,

which implies ∥x− x∗∥ ≤ (1− κ)−1∥f(x)∥. Meanwhile, the residual satisfies

∥f(x)∥ = ∥(x− x∗)− [g(x)− g(x∗)]∥ ≤ (1 + κ)∥x− x∗∥.

Theorem 5.5 (Local linear convergence of residual). Assume Assumptions 1.1
and 2.2 hold, with βt ≥ β > 0 for some β, and the contraction constant κ in Assump-
tion 1.1 satisfies κ < 1. Let x∗ be the fixed-point solution, i.e., x∗ = g(x∗). If x0 is
sufficiently close to x∗, then f t converges linearly to f(x∗) = 0, i.e., ∥f t+1∥ ≤ ρ∥f t∥
where ρ is a constant such that supt[(1− βt) + βtκ]θt < ρ < 1.

Proof. Recall the bound on ∥f t+1∥ given in (5.2). As κ < 1, βt ≥ β > 0 and
θt ≤ 1, the coefficient in the linear term satisfies [(1 − βt) + βtκ]θt < 1. Thus, there
exists ρ that satisfies supt[(1 − βt) + βtκ]θt < ρ < 1. Additionally, the coefficient in
the higher-order term includes ∥B−1

t ∥ where Bt ∈ Bt is invertible.
We first find the conditions to bound ∥B−1

t ∥. We choose a small ϵ > 0. According
to the continuity property of the Jacobian inverse [10, Lemma 2.1] and the fact that
f ′(x∗) is nonsingular, there exists δ1 > 0 such that f ′(xt) = J t is invertible and
∥f ′(xt)

−1−f ′(x∗)−1∥ ≤ ϵ provided that ∥xt−x∗∥ ≤ (1−κ)−1δ1, which can be satisfied
by requiring ∥f(xt)∥ ≤ δ1. Furthermore, according to (5.1) and ∥Et∥ ≤ CE∥f t∥ under



16 X. FENG, M. P. LAIU, AND T. STROHMER

Assumptions 1.1 and 2.2, if J t is invertible, there exists a sufficiently small δ2 > 0
such that (J t + Et) is invertible and ∥(J t + Et)

−1∥ ≤ ∥J−1
t ∥ + ϵ when ∥f t∥ ≤ δ2.

Note that J t +Et ∈ Bt. Therefore, if ∥f t∥ ≤ min{δ1, δ2}, there exists Bt ∈ Bt which
is invertible and satisfies ∥B−1

t ∥ ≤M∗ where M∗ := ∥f ′(x∗)−1∥+ 2ϵ.
Next, we find conditions to guarantee the monotonic decay of the residual, i.e.,

∥f t+1∥ ≤ ρ∥f t∥. According to (5.2),

∥f t+1∥ ≤ [(1− βt) + βtκ] θt∥f t∥+
√

1− θ2t ∥B
−1
t ∥

[
γ

2

√
1− θ2t ∥B

−1
t ∥+ CE

]
∥f t∥2

≤ [(1− βt) + βtκ] θt∥f t∥+ ∥B
−1
t ∥

[γ
2
∥B−1

t ∥+ CE

]
∥f t∥2

=
[
[(1− βt) + βtκ]θt + ∥B−1

t ∥
(γ
2
∥B−1

t ∥+ CE

)
∥f t∥

]
∥f t∥.

We have that if ∥f t∥ ≤ min{δ1, δ2},

∥f t+1∥ ≤
[
[(1− βt) + βtκ]θt +M∗ (γ

2M
∗ + CE

)
∥f t∥

]
∥f t∥.

It follows that ∥f t+1∥ ≤ ρ∥f t∥ when ∥f t∥ ≤ δ3 where δ3 = ρ−supt[(1−βt)+βtκ)]θt

M∗( γ
2 M

∗+CE)
> 0.

Thus, if ∥f t∥ ≤ min{δ1, δ2, δ3}, we have ∥f t+1∥ ≤ ρ∥f t∥.
Since ρ < 1, if ∥f0∥ ≤ min{δ1, δ2, δ3}, then ∥f t+1∥ ≤ ρ∥f t∥ for all t ≥ 0. This

condition, ∥f0∥ ≤ min{δ1, δ2, δ3}, is satisfied when x0 is sufficiently close to x∗ due
to the continuity of f . This concludes the proof.

We have established the linear convergence of the residual, ∥f t+1∥ ≤ ρ∥f t∥. The
convergence of the iterates {xt} follows as

∥xt − x∗∥ ≤ (1 + κ)∥f t∥ ≤ (1 + κ)ρt∥f0∥.

Remark 5.6. AAP can be regarded as an inexact Newton method [10] whose
search direction satisfies ∥J tpt−f t∥ ≤ ηt∥f t∥ where pt := xt−xt+1. This ηt is called
the forcing term of the inexact Newton method and assesses how well pt approximates
the exact Newton direction in each iteration. For any invertible Bt ∈ Bt, we have

∥J tpt − f t∥ ≤
[
[(1− βt) + βtκ]θt +

√
1− θ2t ∥Et∥∥B−1

t ∥
]
∥f t∥.

Since pt = p̂t + βtr̂t, the above bound comes from the decomposition of J tpt − f t =
(I + βtJ t)r̂t − Etp̂t. Thus, the forcing term of AAP satisfies ηt = [(1 − βt) +

βtκ]θt +
√
1− θ2t ∥Et∥∥B−1

t ∥. If ∥Et∥ ≤ CE∥f t∥, then ηt ≤ [(1 − βt) + βtκ]θt +
O(∥f t∥). It follows that, when ∥f t∥ approaches 0, ηt converges to [(1− βt) + βtκ]θt,
with the optimization gain θt converging to the Jacobian-GMRES gain as shown in
Theorem 4.8. One sufficient condition to guarantee the local convergence of AAP, as
an inexact Newton method, is that supt ηt < 1 [10], which can be ensured by the same
assumptions as in Theorem 5.5.

6. Numerical results. In this section, we present numerical experiments to
demonstrate the performance of the AAP(m) against other algorithms, including:

• Picard: Picard iteration with xt+1 = g(xt).
• AA(m) [37]: Classical Anderson acceleration with a fixed window size m,
taking an AA step at each iteration.
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• resAA(m) [26]: Restarted Anderson acceleration, where an AA step is taken
at each iteration. The number of history iterates used increases until a given
threshold m is reached, after which the number of history iterates used is
reset to 0.

• Newton-GMRES[8]: Solves J tp
N
t = f t using GMRES(m) at each global

iteration, updating xt+1 = xt − pN
t . There is no line search applied.

Note that AAP(m) evaluates m+1 Picard iterations in each global iteration, whereas
Picard, AA(m), and resAA(m) evaluate one Picard iteration per iteration. The per-
formance of each algorithm may vary depending on the specific problem and the
parameters. The examples provided are chosen to better illustrate the features of
AAP. The code can be accessed at https://github.com/xue1993/AAP.git.

6.1. Logistic regression. The first example is a nonlinear fixed-point problem
derived from the gradient descent (GD) algorithm to minimize a function h(x). The
GD step with stepsize η is defined by xt+1 = xt−η∇h(xt), which can be reformulated
as a fixed-point problem:

x = g(x) = x− η∇h(x).

Here, h is the loss function of a regularized logistic regression problem. Specifically,

h(x) =
1

n

n∑
i=1

log(1 + exp(−yix⊤vi)) +
µ

2
∥x∥2,

where vi ∈ Rd is a feature vector and yj ∈ {−1, 1} is the corresponding response, x
represents the weights, and µ is the regularization parameter. We use two classical
datasets: w8a (n = 49, 749 and d = 300) and covtype ( n = 581, 000 and d = 54).
Both datasets are available at the LIBSVM website [6]. The function h is strongly
convex. For all examples, we use η = 1 and ensure that g is a contractive mapping.
The initial point is x0 = 0, and the global minimizer is denoted as x∗.

Figure 1 shows the results of different algorithms on the w8a and covtype datasets.
From Figure 1(a) about w8a dataset, we observe that AAP outperforms other algo-
rithms. The convergence plot for AAP in terms of the number of Picard iterations
exhibits a stair-step effect, with flat regions in each global iteration from Picard steps
and rapid decay from the AA step marked as red dot. Meanwhile, the errors of re-
sAA and AA oscillate, especially in the first few iterations. This oscillation is also
observed in the landscape of function h and optimization path plots in Figure 1(c),
where AA and resAA overshoot around the global minimizer, slowing their conver-
gence. This phenomenon can be explained as the approximate Jacobian is inaccurate
when constructed using points that are far apart from each other.

For the covtype dataset, both AAP and resAA perform well, as shown in Fig-
ure 1(b). The optimization paths of all AA algorithms in Figure 1(d) also show less
oscillation on this dataset. The third row in Figure 1 illustrates the impact of varying
m on different AA algorithms. It is observed that increasing m does not necessarily
improve the convergence rate for all AA variants. Compared to AA and resAA, the
performance of AAP demonstrates less oscillation across different values of m. None-
theless, the convergence rate of AAP tends to decrease over iterations. This is likely
due to machine round-off error, as the points generated by Picard are very close to
each other, making it difficult to retain useful curvature information in Y t.

The first row of Figure 2 presents the convergence of the residual ∥f(xt)∥ in
terms of global iterations t for AAP with varying m. In these examples, we chose
γ = 0.0001 on the w8a dataset. With this small γ, the least singular value of the

https://github.com/xue1993/AAP.git
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Hessian of h is 0.0001, and the contraction constant κ of g is 0.9999. We can see that
the convergence of the Picard method is slow. However, the performance of AAP is
close to the Newton-GMRES method, both significantly improving the convergence
of Picard iteration. From subplots (b) and (c), it is evident that the residual ∥f(xt)∥
decrease monotonically when the residual is sufficiently small. The second row of
Figure 2 shows the optimization gain θt of AAP in terms of global iterations t. By
comparing each pair, for example, subplot (a) of the convergence plot and subplot
(d) of the θt plot both in red, we observe that the convergence rate of AAP is largely
influenced by θt, and the convergence is faster with smaller θt.

Additionally, subplots (d) and (e) of Figure 2 demonstrate that the optimization
gain θt of AAP is close to the Jacobian-GMRES gain. However, for larger values of m
(e.g., m = 7 as shown in subplot (f)), the Jacobian-GMRES gain is no longer a good
estimate of the optimization gain. This discrepancy is likely due to large constant in
the bound (4.22), and/or machine round-off errors.

6.2. Nonnegative matrix factorization. The second example is the Nonneg-
ative Matrix Factorization (NMF) problem, which has been applied in fields such
as text mining, image processing, and bioinformatics [11]. NMF decomposes a ma-
trix A ∈ Rd1×d2 into two nonnegative matrices W ∈ Rd1×r and H ∈ Rr×d2 , i.e.,
A ≈WH and W ≥ 0,H ≥ 0. The optimization problem associated with NMF can
be formulated as

min
W ,H

∥A−WH∥2F subject to W ≥ 0, H ≥ 0,

where ∥ · ∥F denotes the Frobenius norm. A widely used method to solve this prob-
lem is the alternating nonnegative least-squares (ANNLS) method: starting from
W 0 ≥ 0, one generates a sequence of (W t,Ht) by alternately solving the standard
nonnegatively constrained linear least-squares problems:

Ht = argmin
H≥0

∥A−W t−1H∥F and W t = argmin
W≥0

∥A−WHt∥F .

Additionally, a normalization of W t is applied at the beginning of each iteration. Fol-
lowing [37], we consider ANNLS to be a fixed-point iteration through the assignment
(W t,Ht) → (W t+1,Ht+1). We perform the AA step on this problem by solving a
constrained LS based on the vectorized variable, and we truncate (W t,Ht) after the
AA step to guarantee nonnegativity of the sequence.

We construct synthetic NMF problems by generating random matrices W ∈
R300×r and H ∈ Rr×50, and then take A = WH ∈ R300×50. Consequently, the mini-
mum of the NMF objective function is zero. The initial point W 0 is chosen randomly.
Figure 3 presents the results of different algorithms with the same initialization. It is
evident that all AA variants, including AAP, AA, and resAA, significantly improve
convergence compared to ANNLS. Since performance of each algorithm can be influ-
enced by different initializations, we also provide the median and interquartile range
plots of 15 runs.

7. Conclusion. This work focuses on the analysis of the Alternating Anderson
Picard method, in which an Anderson acceleration step is periodically applied after
a number of Picard iterations. We established the equivalence between AAP and
multisecant-GMRES and explored the relation between AAP and Newton-GMRES,
with particular emphasis on convergence analysis. We proved that the AAP residual
converges locally at an improved rate when compared to Picard iteration. Numeri-
cally, this method has demonstrated efficiency and robustness in our evaluations and
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(a) w8a(m = 5) (b) covtype(m = 5)

(c) w8a: optimization paths(m = 5) (d) covtype: optimization paths(m = 5)

(e) w8a: varying m (f) covtype: varying m

Fig. 1. Comparison of different algorithms applied to logistic regression with µ = 0.01 on both
w8a and covtype datasets. First row: number of Picard iterations versus relative error. Second
column: Landscape of the function h and the optimization paths of different algorithms. The true
domain dimension of h is 300 for the w8a dataset and 54 for the covtype dataset. To visualize h, we
show the level set of h along two directions starting from the initial point x0 = 0: normalized x0−x∗

and a random direction. The optimization paths are also projected onto these two directions, with
each marker representing one Picard iteration. Due to the inefficiency of the history data points,
the first m iterations of AA(m) are equivalent to those of resAA(m), with their plots overlapping.
Third row: effect of varying m on different AA algorithms. It is noteworthy that when m = 1,
AAP(1) is equivalent to resAA(1), resulting in the vanishing plot of resAA(1).
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(a) m = 1 (b) m = 3 (c) m = 7

(d) m = 1 (e) m = 3 (f) m = 7

Fig. 2. Convergence of AAP on logistic regression with γ = 0.0001 on the w8a dataset. The first
row shows global iterations versus residual norm ∥f(xt)∥ for different algorithms, including Picard
and Newton-GMRES as reference. In each global iteration, Picard performs m + 1 steps to have
a fair comparison with AAP. The second row presents global iterations versus optimization gain
θt. We also display the value of the Jacobian-GMRES gain ∥rJ

t ∥/∥f t∥, as defined in (4.21). The
Jacobian-GMRES gain ∥rJ

t ∥/∥f t∥ (U) represents the theoretical upper bound of ∥rJ
t ∥/∥f t∥ given

in (4.24). Here the Jacobian is the Hessian of h, which is symmetric and positive definite.

(a) (b)

Fig. 3. Comparison of different algorithms on NMF problems with r = 4. All plot shows number
of Picard iterations versus relative residual ∥A−W tHt∥F /∥A∥F . (a): Different algorithms with the
same initialization. (b): Median and interquartile range plots of 15 runs with random initializations.

is comparable to the Newton-GMRES method without accessing the Jacobian. This
underscores the potential of AAP as a practical alternative in scenarios where compu-
tational resources are limited or when explicit Jacobian computation is impractical.

Acknowledgments. X.F. would like to express her sincere gratitude to Professor
Zhaojun Bai for his valuable suggestions and insightful feedback, which contributed
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to the improvement of this work.

Appendix A. Uniform boundedness of cond(St). The uniform boundedness
of cond(St) is important for the bound of Et as shown in Theorem 4.2. Thus, in this
section, we discuss cond(St) when the AAP residual f t approaches 0.

We have shown that St converges to Gt as ∥f t∥ approaches zero. Consequently,
cond(Gt) can serve as an estimator for cond(St) when ∥f t∥ is sufficiently small. The
matrix Gt is a Krylov matrix. The condition number and the least singular value
of Krylov matrices are active research areas [5, 9, 4]. Generally speaking, Gt can be
ill-conditioned even for a moderate number of columns [5].

In the following, we discuss cond(Gt) in a simple case where g′(xt) is symmetric,
allowing Gt to be decomposed into the product of a diagonal matrix and a Vander-
monde matrix.

Lemma A.1. Let g′(xt)be a symmetric matrix with eigendecomposition g′(xt) =

QTΛQ, where Q is an orthogonal matrix and Λ = diag(λ1, . . . , λd). Denote Q ft

∥ft∥
=

[a1, a2, . . . , ad]
T . If mini |ai| > 0, then

(A.1) cond(Gt) ≤
√
m

(mini |ai|) σmin (V m(λ1, λ2, . . . , λd))
,

where V m(λ1, . . . , λd) is a d×m rectangular Vandermonde matrix.

Proof. Denote K = g′(xt). Since K = QTΛQ, we have K(ℓ) = QTΛ(ℓ)Q. By
the definition of Gt, we have

QGt = Q[f t,K
(1)f t,K

(2)f t, . . . ,K
(m−1)f t]

= [Qf t,QK(1)f t,QK(2)f t, . . . ,QK(m−1)f t]

= [Qf t,Λ
(1)Qf t,Λ

(2)Qf t, . . . ,Λ
(m−1)Qf t].

It follows from Q ft

∥ft∥
= [a1, a2, . . . , ad]

T that

1

∥f t∥
QGt =


a1 a1λ1 a1λ

2
1 · · · a1λ

m−1
1

a2 a2λ2 a2λ
2
2 · · · a2λ

m−1
2

...
...

...
. . .

...
ad adλd adλ

2
d · · · adλ

m−1
d


= diag(a1, a2, . . . , ad)V m(λ1, λ2, . . . , λd).

Denote D = diag(a1, a2, . . . , ad) and V = V m(λ1, λ2, . . . , λd). Since Q is an orthog-
onal matrix, we have

σmin

(
1

∥ft∥
Gt

)
= σmin

(
1

∥ft∥
QGt

)
= σmin (DV ) .

Assume σmin(DV ) = ∥DV x̄∥ with ∥x̄∥=1. Since σmin(V ) = minx ̸=0
∥V x∥
∥x∥ ,

σmin(V ) ≤ ∥V x̄∥
∥x̄∥ = ∥D−1DV x̄∥

∥x̄∥ ≤ ∥D−1∥ ∥DV x̄∥ = 1
mini |ai|∥DV x̄∥.

Thus, σmin

(
1

∥ft∥
Gt

)
≥ (mini |ai|) σmin (V ). On the other hand, σmax

(
1

∥ft∥
Gt

)
=

∥
(

1
∥ft∥

Gt

)
∥ ≤ ∥

(
1

∥ft∥
Gt

)
∥F ≤

√
m. Combining these with

cond(Gt) = cond( 1
∥ft∥

Gt) = σmax

(
1

∥ft∥
Gt

)
/σmin

(
1

∥ft∥
Gt

)
,
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gives the result.

In Lemma A.1, the condition that mini |ai| > 0 is equivalent to the vector f t not
being parallel to any of the eigenvectors of the matrix g′(xt). The least singular value
of the Vandermonde matrix V m(λ1, . . . , λd) depends on the distribution of its seeds
λi [4, 21, 9]. Theorem 6 of [9] shows that when the largest seed |λ1| < 1, the least
singular value

σmin(V m(λ1, . . . , λd)) ≤ σmax(V m(λ1, . . . , λd))|λ1|(m),

which decays exponentially with respect to m. It indicates that a large m may lead
to a significant increase in cond(Gt), which in turn can cause a dramatic increase in
∥Et∥. In addtion, since St → Gt, and Y t → Gt, large m may cause instability of the
least square problem in the AA step. However, when f t is small, machine round-off
errors will also affect the numerical value of cond(St) and cond(Y t).

REFERENCES

[1] H.-B. An and Z.-Z. Bai, A globally convergent newton-gmres method for large sparse systems
of nonlinear equations, Applied Numerical Mathematics, 57 (2007), pp. 235–252.

[2] D. G. Anderson, Iterative procedures for nonlinear integral equations, Journal of the ACM
(JACM), 12 (1965), pp. 547–560.

[3] A. S. Banerjee, P. Suryanarayana, and J. E. Pask, Periodic Pulay method for robust
and efficient convergence acceleration of self-consistent field iterations, Chemical Physics
Letters, 647 (2016), pp. 31–35.

[4] F. S. Bazán, Conditioning of rectangular Vandermonde matrices with nodes in the unit disk,
SIAM Journal on Matrix Analysis and Applications, 21 (2000), pp. 679–693.

[5] B. Beckermann, The condition number of real Vandermonde, Krylov and positive definite
Hankel matrices, Numerische Mathematik, 85 (2000), pp. 553–577.

[6] C.-C. Chang and C.-J. Lin, Libsvm: a library for support vector machines, ACM Transactions
on Intelligent Systems and Technology (TIST), 2 (2011), pp. 1–27.

[7] X. Chen and C. T. Kelley, Convergence of the EDIIS algorithm for nonlinear equations,
SIAM Journal on Scientific Computing, 41 (2019), pp. A365–A379.

[8] R. Choquet and J. Erhel, Some convergence results for the Newton-GMRES algorithm, PhD
thesis, INRIA, 1993.

[9] A. Dax, The numerical rank of Krylov matrices, Linear Algebra and Its Applications, 528
(2017), pp. 185–205.

[10] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact newton methods, SIAM Journal on
Numerical analysis, 19 (1982), pp. 400–408.

[11] L. Eldén, Matrix methods in data mining and pattern recognition, SIAM, 2019.
[12] C. Evans, S. Pollock, L. G. Rebholz, and M. Xiao, A proof that Anderson acceleration

improves the convergence rate in linearly converging fixed-point methods (but not in those
converging quadratically), SIAM Journal on Numerical Analysis, 58 (2020), pp. 788–810.

[13] H.-r. Fang and Y. Saad, Two classes of multisecant methods for nonlinear acceleration,
Numerical linear algebra with applications, 16 (2009), pp. 197–221.

[14] X. Feng, Anderson Acceleration and Dynamic Optimal Transport in Optimization: Theoretical
Analysis, Algorithms, and Applications in Machine Learning, University of California,
Davis, 2024.

[15] M. Geist and B. Scherrer, Anderson acceleration for reinforcement learning, arXiv preprint
arXiv:1809.09501, (2018).

[16] G. H. Golub and C. F. Van Loan, Matrix computations, JHU press, 2013.
[17] A. Greenbaum and Z. Strakos, Matrices that generate the same Krylov residual spaces,

Springer, 1994.
[18] A. Han, B. Mishra, P. Jawanpuria, and J. Gao, Riemannian accelerated gradient meth-

ods via extrapolation, in International Conference on Artificial Intelligence and Statistics,
PMLR, 2023, pp. 1554–1585.

[19] C. T. Kelley, Numerical methods for nonlinear equations, Acta Numerica, 27 (2018), pp. 207–
287.



CONVERGENCE ANALYSIS OF AAP METHOD 23

[20] D. A. Knoll and D. E. Keyes, Jacobian-free Newton–Krylov methods: a survey of approaches
and applications, Journal of Computational Physics, 193 (2004), pp. 357–397.

[21] S. Kunis and D. Nagel, On the condition number of Vandermonde matrices with pairs of
nearly-colliding nodes, Numerical Algorithms, 87 (2021), pp. 473–496.

[22] P. A. Lott, H. F. Walker, C. S. Woodward, and U. M. Yang, An accelerated Picard method
for nonlinear systems related to variably saturated flow, Advances in Water Resources, 38
(2012), pp. 92–101.

[23] M. Lupo Pasini, Convergence analysis of Anderson-type acceleration of Richardson’s iteration,
Numerical Linear Algebra with Applications, 26 (2019), p. e2241.

[24] J. Nocedal and S. J. Wright, Numerical optimization, Springer, 1999.
[25] W. Ouyang, Y. Liu, and A. Milzarek, Descent properties of an Anderson accelerated gradient

method with restarting, SIAM Journal on Optimization, 34 (2024), pp. 336–365.
[26] W. Ouyang, Y. Peng, Y. Yao, J. Zhang, and B. Deng, Anderson acceleration for nonconvex

ADMM based on Douglas-Rachford splitting, in Computer Graphics Forum, vol. 39, Wiley
Online Library, 2020, pp. 221–239.

[27] Y. Peng, B. Deng, J. Zhang, F. Geng, W. Qin, and L. Liu, Anderson acceleration for
geometry optimization and physics simulation, ACM Transactions on Graphics, 37 (2018),
p. Article 42.

[28] S. Pollock, L. Rebholz, and M. Xiao, Anderson-accelerated convergence of Picard itera-
tions for incompressible Navier-Stokes equations, SIAM Journal on Numerical Analysis,
57 (2019), pp. 615–637.

[29] S. Pollock and L. G. Rebholz, Anderson acceleration for contractive and noncontractive
operators, IMA Journal of Numerical Analysis, 41 (2021), pp. 2841–2872.

[30] S. Pollock and L. G. Rebholz, Filtering for Anderson acceleration, SIAM Journal on Sci-
entific Computing, 45 (2023), pp. A1571–A1590.

[31] P. P. Pratapa, P. Suryanarayana, and J. E. Pask, Anderson acceleration of the Jacobi iter-
ative method: An efficient alternative to Krylov methods for large, sparse linear systems,
Journal of Computational Physics, 306 (2016), pp. 43–54.

[32] J. A. Sifuentes, M. Embree, and R. B. Morgan, GMRES convergence for perturbed coeffi-
cient matrices, with application to approximate deflation preconditioning, SIAM Journal
on Matrix Analysis and Applications, 34 (2013), pp. 1066–1088.

[33] H. D. Sterck and Y. He, On the asymptotic linear convergence speed of Anderson accelera-
tion, Nesterov acceleration, and nonlinear GMRES, SIAM Journal on Scientific Comput-
ing, 43 (2021), pp. S21–S46.

[34] G. W. Stewart, On the perturbation of pseudo-inverses, projections and linear least squares
problems, SIAM review, 19 (1977), pp. 634–662.

[35] P. Suryanarayana, P. P. Pratapa, and J. E. Pask, Alternating Anderson–Richardson
method: An efficient alternative to preconditioned Krylov methods for large, sparse linear
systems, Computer Physics Communications, 234 (2019), pp. 278–285.

[36] A. Toth and C. T. Kelley, Convergence analysis for Anderson acceleration, SIAM Journal
on Numerical Analysis, 53 (2015), pp. 805–819.

[37] H. F. Walker and P. Ni, Anderson acceleration for fixed-point iterations, SIAM Journal on
Numerical Analysis, 49 (2011), pp. 1715–1735.

[38] D. Wang, Y. He, and H. De Sterck, On the asymptotic linear convergence speed of Anderson
acceleration applied to ADMM, Journal of Scientific Computing, 88 (2021), p. 38.

[39] J. Zhang, B. O’Donoghue, and S. Boyd, Globally convergent type-I Anderson acceleration
for nonsmooth fixed-point iterations, SIAM Journal on Optimization, 30 (2020), pp. 3170–
3197.


	Introduction
	Notation

	Algorithm and related work
	The AAP algorithm
	Multisecant matrices
	Existing convergence analysis of Anderson acceleration

	Equivalence between AAP and multisecant-GMRES
	Connection Between AAP and Newton-GMRES
	Convergence of the multisecant matrix
	Limits of bold0mu mumu SSSSSSt, bold0mu mumu YYYYYYt, and bold0mu mumu HHHHHHt
	Convergence of the optimization gain

	Convergence analysis
	Numerical results
	Logistic regression
	Nonnegative matrix factorization

	Conclusion
	Appendix A. Uniform boundedness of cond(bold0mu mumu SSappendixSSSSt)
	References

