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DP-STabS: Differentially Private Synthetic Tabular Stream
Anonymous Author(s)

ABSTRACT
[GK: TODO]

KEYWORDS
differential privacy, stream, tabular

1 INTRODUCTION
2 PROBLEM SETUP
Notations:

• [𝑡]: the set {1, 2, . . . , 𝑡} for any 𝑡 ∈ N
• [𝑡1 : 𝑡2]: the set {𝑡1, 𝑡1 + 1, . . . , 𝑡2} for any 𝑡1, 𝑡2 ∈ N with

𝑡1 ≤ 𝑡2
• N+: N ∪ {0}

Let X = X1 × X2 × . . . × X𝑝 denote a space of 𝑝 dimensional

points such that X𝑖 is a discrete space of size |X𝑖 | for any 𝑖 ∈ [𝑝].
For example, if each data point results from a survey of p boolean

questions, then X = {0, 1}𝑝 . Let 𝑓 : N × X → N+ be an input

stream where 𝑓 (𝑡, 𝑥) denotes the count of point 𝑥 at time 𝑡 . We

provide an algorithm that generates a privacy-preserving synthetic

data stream 𝑔 : N × X → N+ that accurately represents the input

stream 𝑓 . We define the terms “streaming", “privacy-preserving"

and “accurately" rigorously in the subsequent subsections.

For any 𝑁 ⊆ N, we will use the notation 𝑓𝑁 to denote the

restriction of the stream 𝑓 to the time indices in the set 𝑁 , that

is 𝑓𝑁 : 𝑁 × X → N+ such that 𝑓𝑁 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) for all 𝑡 ∈ 𝑁

and 𝑥 ∈ X. Similarly, for any time 𝑡 ∈ N, 𝑓𝑡 : X → N+ denotes a
restriction of 𝑓 to time 𝑡 such that 𝑓𝑡 (𝑥) = 𝑓 (𝑡, 𝑥) for all 𝑥 ∈ X. We

refer to a mapping from X to N+ such as 𝑓𝑡 as a dataset and denote

the size of a dataset (the total count of all points) as |𝑓𝑡 |, that is,
|𝑓𝑡 | =

∑
𝑥∈X 𝑓𝑡 (𝑥). Let NX+ denote the set of all datasets over X.

2.1 Streaming algorithm
Given the input stream 𝑓 , an algorithmA is said to be streaming if

for the output stream 𝑔, at any time 𝑡 ∈ N it maps 𝑓[𝑡 ] to 𝑔𝑡 , that is,
𝑔(𝑡, 𝑥) B A(𝑓[𝑡 ] ) (𝑡, 𝑥) for all 𝑥 ∈ X.

2.2 Differential Privacy
We use the notion of Differential Privacy (DP) for robust privacy

guarantees by the algorithm. In a nutshell, an algorithm that sat-

isfies DP is robust in the probability of observing an output when

the input data is changed by a small amount. To this end, we need

to define the concept of change in a data stream.
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Similar to [3], we keep track of the change of data stream 𝑓 over

time, via a differential stream defined as,

∇𝑓 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) − 𝑓 (𝑡 − 1, 𝑥), 𝑡 ∈ N, (1)

assuming 𝑓 (0, 𝑥) = 0. Furthermore, the total change of 𝑓 over all

times and locations is the quantity

𝑓 

 B ∑︁
𝑡 ∈N

∑︁
𝑥∈X

��∇𝑓 (𝑡, 𝑥)�� . (2)

Two streams, 𝑓 and
˜𝑓 are neighbours if they satisfy

∥ 𝑓 − ˜𝑓 ∥ = 1. (3)

Definition 2.1 (Differential privacy). A randomized streaming

algorithm A that takes as an input a data stream is 𝜀-differentially

private if for any two neighboring data streams 𝑓 and
˜𝑓 , and for

any measurable set of outputs 𝑆 ,

P{A( ˜𝑓 ) ∈ 𝑆} ≤ 𝑒𝜀 · P{A(𝑓 ) ∈ 𝑆} (4)

2.3 Marginals and accuracy
In this work, we measure the accuracy of our output stream using

marginal queries.

Definition 2.2 (k-way marginal query). A 𝑘-way marginal query

𝑞 : X → {0, 1} is a mapping defined by a tuple 𝑞𝑐 = (𝑐1, 𝑐2, . . . , 𝑐𝑘 )
of𝑘 column indices and their corresponding values𝑞𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑘 )
such that 𝑣𝑖 ∈ X𝑐𝑖 for all 𝑖 ∈ [𝑘] and the mapping is defined as,

𝑞(𝑥) =
𝑘∏
𝑖=1

(
1{𝑥𝑐𝑖 =𝑣𝑖 }

)
, (5)

for any 𝑥 ∈ X.
With a slight abuse of notation, we extend the definition of

marginal query from points to datasets as follows.

Definition 2.3 (k-way marginal query for a dataset). A 𝑘-way

marginal query 𝑞 can be extended to any dataset ℎ : X → N+ as,

𝑞(ℎ) =
∑︁
𝑥∈X

ℎ(𝑥)𝑞(𝑥) (6)

Definition 2.4 (Accuracy of a dataset). A synthetic dataset 𝑔 :

X → N+ is said to be (𝛼, 𝛽) accurate in representing a given dataset
𝑓 : X → N+ with respect to a set of marginal queries 𝑄 if,

P

{
max

𝑞∈𝑄

��𝑞(𝑔) − 𝑞(𝑓 )�� ≥ 𝛼

}
≤ 𝛽. (7)

We use this notion of the accuracy of a dataset as a base when

defining the accuracy of a stream. In Definition 2.5 and 2.6 we

present two separate notions of the accuracy of a stream. Note that

𝛼 and 𝛽 in the definitions may be a function of time 𝑡 .

[GK: TODO: verify below definitions]

Definition 2.5 (Differential accuracy of stream). A synthetic stream

𝑔 is said to have a differential accuracy of (𝛼, 𝛽) in representing a

given data stream 𝑓 , with respect to marginal queries 𝑄 , if at each

time 𝑡 ∈ N, ∇𝑔𝑡 is (𝛼, 𝛽) accurate in representing ∇𝑓𝑡 .
1
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Definition 2.6 (Snapshot accuracy of a stream). A synthetic stream

𝑔 is said to have a snapshot accuracy of (𝛼, 𝛽) in representing a

given data stream 𝑓 , with respect to a set of marginal queries 𝑄 , if

at each time 𝑡 ∈ N, 𝑔𝑡 is (𝛼, 𝛽) accurate in representing 𝑓𝑡 .

Lemma 2.7. (Differential accuracy implies snapshot accuracy) If
a synthetic stream 𝑔 has a differential accuracy of (𝛼𝑡 (𝛽), 𝛽) at any

time 𝑡 ∈ N, then it has a snapshot accuracy of
(∑𝑡

𝑖=1
𝛼𝑖

(
𝛽
𝑡

)
, 𝛽

)
at

time 𝑡 .

Proof. Taking a union bound at any time 𝑡 ∈ N, we have that
with probability at least 1 − 𝛽𝑡 ,

max

𝑞∈𝑄

��𝑞 (
∇𝑔𝑖 − ∇𝑓𝑖

) �� ≤ 𝛼𝑖 (𝛽) for all 𝑖 ∈ [𝑡]

=⇒ max

𝑞∈𝑄

��𝑞(𝑔𝑡 ) − 𝑞(𝑓𝑡 )�� = max

𝑞∈𝑄

������𝑞 ©­«
𝑡∑︁
𝑖=1

∇𝑔𝑖ª®¬ − 𝑞 ©­«
𝑡∑︁
𝑖=1

∇𝑓𝑖ª®¬
������

= max

𝑞∈𝑄

������ 𝑡∑︁
𝑖=1

(
𝑞

(
∇𝑔𝑖 − ∇𝑓𝑖

) )������ ≤ max

𝑞∈𝑄

𝑡∑︁
𝑖=1

����(𝑞 (
∇𝑔𝑖 − ∇𝑓𝑖

) )����
≤

𝑡∑︁
𝑖=1

max

𝑞∈𝑄

����(𝑞 (
∇𝑔𝑖 − ∇𝑓𝑖

) )���� ≤ 𝑡∑︁
𝑖=1

𝛼𝑖 (𝛽)

Hence, the algorithm has a snapshot accuracy of

(∑𝑡
𝑖=1

𝛼𝑖 (𝛽), 𝛽𝑡
)

or reparametrizing to give

(∑𝑡
𝑖=1

𝛼𝑖

(
𝛽
𝑡

)
, 𝛽

)
. □

3 DIFFERENTIAL PRIVACY PRILIMINARIES
In this section, we present some differentially private algorithms

that we will use as sub-routines and will serve as building blocks for

our algorithmDP-STabS.We also distinguishwhether the algorithm

is typically used for offline (one-time) or stream data input.

3.1 Laplace Mechanism
The Laplace Mechanism is the most fundamental algorithm in dif-

ferential privacy for generating answers to queries evaluated over

datasets.

Definition 3.1 (Laplace Mechanism). Let 𝑞 : NX+ → R𝑑 be a

function we are interested in and define its sensitivity Δ𝑞 as,

Δ𝑞 B max

𝑓 , ˜𝑓 ∈NX+ ,


𝑓 − ˜𝑓




=1




𝑞(𝑓 ) − 𝑞( ˜𝑓 )




ℓ1
. (8)

Then, a randomized algorithm A defined as

A(𝑓 ) B 𝑞(𝑓 ) +
(
Lap

1

(
Δ𝑞

𝜀

)
, Lap

2

(
Δ𝑞

𝜀

)
, . . . , Lap𝑑

(
Δ𝑞

𝜀

))
, (9)

satisfies 𝜀-differential privacy. Here, Lap( ·) are independent Laplace

random variables centered at 0 and with variance scale

Δ𝑞

𝜀 . [GK:

TODO: is there a better way to write Lap random variables?]

3.2 Differentially Private Selection: Exponential
Mechanism

Let R be a finite set. Let 𝑢 : 𝑁 X+ × R → R be a function such

that 𝑢 (𝑓 , 𝑟 ) denotes the utility of an element 𝑟 ∈ R for the dataset

𝑓 ∈ 𝑁 X+ . Given a dataset 𝑓 , we want to find the element in R with

maximum utility while preserving differential privacy. [GK: needs

example or more details?]

Definition 3.2 (Exponential Mechanism). Let Δ𝑢 denote the sensi-

tivity of the utility function defined as,

Δ𝑢 B max

𝑓 , ˜𝑓 ∈NX+ ,


𝑓 − ˜𝑓




=1

max

𝑟 ∈R

���𝑢 (𝑓 , 𝑟 ) − 𝑢 ( ˜𝑓 , 𝑟 )
��� . (10)

Then, an algorithm A : NX+ → R such that, for all 𝑟 ∈ R,

P
{
A(𝑓 ) = 𝑟

}
∝ exp

(
− 𝜀

2Δ𝑢
𝑢 (𝑓 , 𝑟 )

)
satisfies 𝜀-differential privacy.

3.3 Tabular Synthetic Data Generation: Select,
Measure, Learn, and Iterate

Consider the task of generating synthetic tabular data when the

dataset is available at once (offline). Let 𝑓 ∈ NX+ be a dataset overX.
Assume we are interested in generating a synthetic dataset 𝑔 ∈ NX+
that is accurate for marginal queries𝑄 . A straightforward approach

to generating the synthetic dataset would be: (1) generate a dif-

ferentially private measurement for all queries using the Laplace

Mechanism as

𝑚 =

(
𝑞(𝑓 ) + Lap

(
Δ𝑞

𝜀 · |𝑄 |

))
𝑞∈𝑄

;

(2) find a dataset that minimizes the average error over the query

set by solving the following optimization problem,

arg min

𝑔∈NX+

1

|𝑄 |
∑︁
𝑞∈𝑄

��𝑚𝑞 − 𝑞(𝑔)
�� . (11)

There are however two key problems with this approach: (1) the size

of the query set is typically polynomial in the dimension 𝑝 which

leads to a very small budget for answering an individual query,

that is a large amount of noise is added in Laplace Mechanism, and

(2) the optimization problem in Equation 11 is a high-dimensional

discrete optimization problem which is NP-Hard and cannot be

solved in time polynomial in dimension 𝑝 . Many existing algo-

rithms thus circumvent the above two problems by: (1) measuring

only a subset of the queries in 𝑄 which have the largest error, and

(2) approximating the optimization problem in Equation 1. We refer

the reader to [4] for further discussions on the various approxi-

mations of Equation 11. For now, we assume that there exists an

algorithm A𝐷𝑎𝑡𝑎𝑠𝑒𝑡 which takes as input a set of queries and their

corresponding measurements and returns a dataset in NX+ . [GK:

TODO: add details for MW and PGM in Appendix and refer here.]

Algorithm 1 is a meta-algorithm that is based on the above idea

and falls in a “select, measure, optimize, and iterate" paradigm. The

algorithm has a fixed number of iterations 𝑘 . In each iteration 𝑖 ,

the following happens: (1) while upholding differential privacy,

2
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we select a query 𝑞𝑙𝑖 that performs the worst on the current syn-

thetic dataset ℎ𝑖−1; (2) an approximation of the value of this query

is generated as𝑚𝑙𝑖 using the Laplace Mechanism; and finally (3)

the dataset is updated from ℎ𝑖−1 to ℎ𝑖 by using the sub-routine

A𝐷𝑎𝑡𝑎𝑠𝑒𝑡 .

Algorithm 1 Meta algorithm: generating differentially private

synthetic tabular dataset

1: Input: Given dataset 𝑓 , an ordered set of queries 𝑄 , privacy

budget 𝜀, a differentially private selection mechanism A𝑆𝑒𝑙𝑒𝑐𝑡 ,

a subroutineA𝐷𝑎𝑡𝑎𝑠𝑒𝑡 to find a dataset given noisy query mea-

surements, and the number of iterations 𝑘 .

2: Output: A dataset 𝑔 ∈ NX+ .
3: Create a dataset ℎ0 ∈ NX+ with ℎ0 (𝑥) = 1 for all 𝑥 ∈ X.
4: Set𝑀 ← ∅ as a set of selected queries and their measurements.

5: for 𝑖 = 1, 2, . . . , 𝑘 do
6: Set 𝑒𝑖 ←

(��𝑞(ℎ𝑖−1) − 𝑞(𝑓 )
��)
𝑞∈𝑄

as the error in queries.

7: Select: 𝑙𝑖 ← A𝑆𝑒𝑙𝑒𝑐𝑡 (𝑒𝑖 , 2/𝜀), an index of query.

8: Measure:𝑚𝑙𝑖 ← 𝑞(𝑓 ) + Lap

(
2Δ𝑞𝑖 /𝜀

)
, value of query.

9: Set𝑀 ← 𝑀 ∪ {(𝑞𝑙𝑖 ,𝑚𝑙𝑖 )}; add selected query and its value.

10: Optimize: Dataset ℎ𝑖 ← A𝐷𝑎𝑡𝑎𝑠𝑒𝑡 (𝑀).
11: end for

3.4 Counters and Selective Counting
In the previous subsections, we discussed some DP algorithms over

datasets. In this subsection, we discuss DP algorithms for streams,

and in particular we discuss the counter algorithms. In our final

algorithm, we will measure a query 𝑞 ∈ 𝑄 at multiple instances

over time. Thus we need an algorithm that can do this measurement

over an input stream accurately and privately. We use the notion

of counters introduced in [2] and [1]. The below definition of a

counter is borrowed from [3].

Definition 3.3. An (𝛼, 𝛽)-accurate counter C is a randomized

streaming algorithm that estimates the sum of an input stream

of values 𝑓 : N → R and maps it to an output stream of values

𝑔 : N→ R such that for each time 𝑡 ∈ N,

P

{����𝑔(𝑡) −∑︁
𝑡 ′≤𝑡

𝑓 (𝑡 ′)
���� ≤ 𝛼 (𝑡, 𝛿)

}
≥ 1 − 𝛽,

where the probability is over the randomness of C and 𝛽 is a small

constant.

We will be using the Simple II and Log Binary Tree counters

from [1], hereafter referred to as Simple and Binary Tree Counters

respectively (see Appendix ?? for further details). Moreover, based

on the Two Level Counter in [1], we also introduce a new counter

in this work termed Unbounded Block counter in Section ??.

3.4.1 Selective Counting. Algorithm 4 (Online Selective Count-

ing) in [3] provides a differentially private and streaming meta-

algorithm that only updates a selected subset of counters at any

time. Our algorithm DP-STabS is an instance of this algorithm and

inherits its privacy guarantees.

4 PROPOSED METHODS
In this section, we first propose a baseline method in Algorithm 2

and then improve upon it to give our final algorithm in Algorithm 3.

4.1 Baseline
Let A be any differentially private algorithm for generating a syn-

thetic dataset given an input true dataset. In Algorithm 2we provide

a general framework that converts A into a differentially private

streaming algorithm for producing synthetic stream. Given an input

stream 𝑓 , at any time 𝑡 , Algorithm 2 simply runs an independent

instance of algorithmA on the differential dataset at time 𝑡 , that is

∇𝑓𝑡 and produces the differential synthetic dataset ∇𝑔𝑡 .

Algorithm 2 Baseline: from differentially private dataset to stream

1: Input: An input data stream 𝑓 , a differentially private algo-

rithm A to generate synthetic datasets, the privacy budget 𝜀

2: Output: A synthetic stream 𝑔.

3: Initialize 𝑔(0, 𝑥) = 0 for all 𝑥 ∈ X.
4: for 𝑡 = 1, 2, . . . do
5: Set ℎ𝑡 ← A(∇𝑓𝑡 , 𝜀)
6: Set 𝑔(𝑡, 𝑥) = 𝑔(𝑡 − 1, 𝑥) + ℎ𝑡 (𝑥) for all 𝑥 ∈ X
7: Release 𝑔𝑡 .

8: end for

Proof of privacy of Basline Algorithm 2. LetA+ denote the
Algorithm 2. For neighboring data streams 𝑓 and

˜𝑓 satisfying

Equation 3, there exists almost one 𝜏 ∈ N and 𝑥 ∈ X such that

∇𝑓 (𝜏, 𝑥) ≠ ∇ ˜𝑓 (𝜏, 𝑥). SinceA is 𝜀-DP, it follows that for any output

ℎ𝜏 ,

P
{
A(∇𝑓𝜏 , 𝜀) = ℎ𝜏

}
≤ 𝑒𝜀 · P

{
A(∇ ˜𝑓𝜏 , 𝜀) = ℎ𝜏

}
.

Since at any time 𝑡 ≠ 𝜏 , the input streams 𝑓 and ∇𝑓 are identical, it

follows that,

P
{
A+ (𝑓 ,A, 𝜀) = 𝑔

}
≤ 𝑒𝜀 · P

{
A+ ( ˜𝑓 ,A, 𝜀) = 𝑔

}
.

Hence, Baseline Algorithm 2 is 𝜀-DP. □

4.2 Main Algorithm DP-STabS

4.2.1 Outline. In a nutshell, our algorithm also follows the “select,

measure, optimize, and iterate" paradigm described in Algorithm 1.

At any time 𝑡 ∈ N, the goal is to ensure that 𝑓𝑡 and 𝑔𝑡 are close to

each other as evaluated using the queries𝑄 . We start with a dataset

ℎ𝑡,0 = 𝑔𝑡−1 and update it over 𝑘 iterations from ℎ𝑡,0, ℎ𝑡,1, . . . , to ℎ𝑡,𝑘 .

At any iteration 𝑙 ∈ [𝑘], we select a query index 𝜂𝑡,𝑙 ∈ [|𝑄 |] for
which our dataset ℎ𝑡,𝑙−1

has approximately the highest error when

compared to 𝑓𝑡 . We will discuss how exactly this selection is done

soon, but for now, let us accept it as a black-box. At the end of the

𝑘 iterations, 𝑔𝑡 is set to some aggregate of the datasets ℎ𝑡,1, ℎ𝑡,2, . . .,

and ℎ𝑡,𝑘 . We present our proposed method as a meta-algorithm

DP-STabS in Algorithm 3.

4.2.2 Measure. Let𝑚 : N × [|𝑄 |] → R be a map such that𝑚(𝑡, 𝑖)
denotes our differentially private approximation of𝑞𝑖 (𝑓𝑡 ), that is the
value of query 𝑞𝑖 ∈ 𝑄 at time 𝑡 . Since a single query may be selected

at multiple time instances, we use a counter algorithm to measure

the value of the query efficiently over time. We associate each query

3
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in 𝑄 with an instance of some counter Algorithm, say A𝐶𝑜𝑢𝑛𝑡𝑒𝑟 .

Consider a query 𝑞𝑖 ∈ 𝑄 and let 𝐶𝑖 be its corresponding counter.

We use the notation 𝐶𝑖 (𝑡) to conveniently refer to the value of the

counter 𝐶𝑖 at time 𝑡 . Let 𝑁𝑖 (𝑡) ⊆ [𝑡] be the time instances until

time 𝑡 when the query 𝑞𝑖 was selected to be measured using the

true data. Also, let 𝑁𝑖 (𝑡) B [𝑡] \ 𝑁𝑖 (𝑡) be the time instances until

time 𝑡 at which query 𝑞𝑖 was not selected. Then the output 𝐶𝑖 (𝑡)
of the counter algorithm is based solely on the stream ∇𝑓𝑁𝑖 (𝑡 ) .

However, to generate the dataset 𝑔𝑡 we need an approximate

measurement of the value 𝑞𝑖 (𝑓𝑡 ). In other words, we are missing

the measurement of the query on times 𝑁𝑖 (𝑡) when the index 𝑖 was

not selected. At any such time 𝜏 ∈ 𝑁𝑖 (𝑡), since 𝑞𝑖 was not selected,
we assume that the query value 𝑞𝑖 (𝑔𝜏 ) on the synthetic dataset 𝑔𝜏
is close to the true value 𝑞𝑖 (𝑓𝜏 ). We create a map 𝑟 : N× [|𝑄 |] → R
such that 𝑟 (𝑡, 𝑖) denotes our differentially private approximation of

the value of query 𝑞𝑖 over times in 𝑁𝑖 (𝑡). Assuming 𝑟 (0, 𝑖) = 0, we

define 𝑟 (𝑡, 𝑖) for any 𝑡 ∈ N as,

𝑟 (𝑡, 𝑖) =
{
𝑞𝑖 (𝑔𝑡 ) −𝐶𝑖 (𝑡), 𝑡 ∈ 𝑁𝑖 (𝑡),
𝑟 (𝑡 − 1, 𝑖), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Finally, our differentially private approximation𝑚(𝑡, 𝑖) of the query
𝑞𝑖 at time 𝑡 becomes

𝑚(𝑡, 𝑖) = 𝐶𝑖 (𝑡) + 𝑟 (𝑡, 𝑖).

4.2.3 Optimize. At any time 𝑡 and iteration 𝑙 , Algorithm 3 uses

the Algorithm A𝐷𝑎𝑡𝑎𝑠𝑒𝑡 as a subroutine to generate the synthetic

dataset ℎ𝑡,𝑙 using the query indices selected so far at time 𝑡 , that is

{𝜂𝑡,1, . . . , 𝜂𝑡,𝑙 }, and their corresponding differentially private values
{𝑚(𝑡, 𝜂𝑡,1), . . . ,𝑚(𝑡, 𝜂𝑡,𝑙 )}. A𝐷𝑎𝑡𝑎𝑠𝑒𝑡 can be any algorithm and is

not required to satisfy differential privacy.

4.2.4 Select. We are finally ready to talk about query selection.

During iteration 𝑙 of time 𝑡 , we want to select the query with

maximum error over the synthetic dataset ℎ𝑡,𝑙−1
as compared to the

true dataset 𝑓𝑡 . However, accessing 𝑞(𝑓𝑡 ) results in high sensitivity.

Indeed a simple change at some time 𝜏 ∈ N can affect the selection

at all times 𝑡 > 𝜏 .

To control the sensitivity, we follow the same trick as [3] and

approximate 𝑓𝑡 as 𝑔𝑡−1 + ∇𝑓𝑡 for selection. For any query 𝑞𝑖 ∈ 𝑄 ,
𝑙 ∈ [𝑘], and 𝑡 ∈ N, we define

𝑒𝑡,𝑙 B
(
|𝑞𝑖 (∇𝑓𝑡 + 𝑔𝑡−1) − 𝑞𝑖 (ℎ𝑡,𝑙−1

) |
)
𝑖∈[ |𝑄 | ]

.

Finally, we use Exponential Mecnahism as defined in Definition 3.2

for selecting a query index 𝜂𝑡,𝑙 given the vector of query utilities

𝑒𝑡,𝑙 . Note that Algorithm 3 does not find the error for all queries

but instead only for queries that have not been chosen so far at

iteration 𝑙 of time 𝑡 (whose indices are in the set 𝐽𝑡,𝑙 ).

Lemma 4.1 (Privacy ofAlgorithm 3). If the AlgorithmsA𝐶𝑜𝑢𝑛𝑡𝑒𝑟

and A𝐷𝑎𝑡𝑎𝑠𝑒𝑡 satisfy differential privacy, then Algorithm 3 is 𝜀-
differentially private.

Proof. Since Algorithm 3 is an instance of the “Online Selective

Counting" algorithm due to [3], it is therefore differentially private.

[GK: TODO: Will add more to this.] □

Algorithm 3 Main Algorithm: DP-STabS

1: Input: An input data stream 𝑓 , an ordered set of marginal

queries 𝑄 , number of marginals to select at any time 𝑘 , the pri-

vacy budget 𝜀, a counter algorithmA𝐶𝑜𝑢𝑛𝑡𝑒𝑟 , and a subroutine

A𝐷𝑎𝑡𝑎𝑠𝑒𝑡 to find a dataset given noisy query measurements.

2: Output: A synthetic stream 𝑔.

3: Initialize 𝐶1,𝐶2, . . . ,𝐶 |𝑄 | as independent instances of the

counter algorithm A𝐶𝑜𝑢𝑛𝑡𝑒𝑟 , one for each query in the set

𝑄 , with privacy budget 𝜀/2𝑘 .
4: Initialize 𝑔(0, 𝑥) ← 1 for all 𝑥 ∈ X.
5: Initialize𝑚(0, 𝑖) ← 0 for all 𝑖 ∈ [|𝑄 |]; query measurements of

selected queries

6: Initialize 𝑟 (0, 𝑖) ← 0 for all 𝑖 ∈ [|𝑄 |]; remainder of query value

for times when the query is not selected.

7: for 𝑡 = 1, 2, . . . do
8: Set 𝐼𝑡,0 ← ∅.
9: for 𝑙 = 1, 2, . . . , 𝑘 do
10: Set 𝐽𝑡,𝑙 ← [|𝑄 |] \ 𝐼𝑡,𝑙−1

; as query indices not selected.

11: Set 𝑒𝑡,𝑙 ←
(
|𝑞𝑖 (∇𝑓𝑡 + 𝑔𝑡−1) − 𝑞𝑖 (ℎ𝑡,𝑙−1

) |
)
𝑖∈ 𝐽𝑡,𝑙

.

12: 𝜂𝑡,𝑙 ← 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚

(
𝑒𝑡,𝑙 , 𝜀/2𝑘

)
.

13: Using shorthand 𝑗 for 𝜂𝑡,𝑙 . [GK: Can I write like this?]

14: Set 𝐼𝑡,𝑙 ← 𝐼𝑡,𝑙−1
∪ { 𝑗}.

15: Update counter 𝐶 𝑗 by counting on ∇𝑓𝑡 .
16: Set 𝑟 (𝑡, 𝑗) ← 𝑟 (𝑡 − 1, 𝑗).
17: Set𝑚(𝑡, 𝑗) ← 𝐶 𝑗 + 𝑟 (𝑡, 𝑗).
18: Set ℎ𝑡,𝑙 ← A𝐷𝑎𝑡𝑎𝑠𝑒𝑡

({(
𝑞𝑖 ,𝑚(𝑡, 𝑖)

)}
𝑖∈𝐼𝑡,𝑙

)
.

19: end for
20: Set 𝑔𝑡 ← avg𝑙∈[𝑘 ] ℎ𝑡,𝑙 .
21: Set 𝐶𝑖 (𝑡) ← 𝐶𝑖 (𝑡 − 1) for all 𝑖 ∈ [|𝑄 |] \ 𝐼𝑡,𝑘 .
22: Set 𝑟 (𝑡, 𝑖) ← 𝑞𝑖 (𝑔𝑡 ) −𝐶𝑖 (𝑡) for all 𝑖 ∈ [|𝑄 |] \ 𝐼𝑡,𝑘 .
23: end for

4.3 A new (unbounded) Block counter
We extend the Two-Level counter mechanism (also referred to as

Block counter) due to [1] to unbounded streams. We present it for-

mally in Algorithm 4. The idea is similar to how the bounded Binary

Mechanism is extended to the unbounded Hybrid Mechanism in

[1]. As shown in [1], an optimal block size of the Bounded Block

Counter for a stream of size 𝑇 is

√
𝑇 . The key idea is to partition

the time dimension of the stream 𝑓 : N→ R into intervals of size

4, 9, 16, . . . (that is perfect squares), and within each of the corre-

sponding intervals, we use a bounded block counter of block size

2, 3, 4, . . . respectively.

Theorem 4.2 (Privacy of unbounded block counter). The
unbounded block counter, as presented in Algorithm 4, satisfies 𝜀-
differential privacy.

Proof. Note that Algorithm 4 is exactly the block counter algo-

rithm, except the size of the block changes over time. However, the

change in the block size is independent of the input data stream.

Hence, similar to the Block counter, Algorithm 4 is 𝜀-differentially

private. [GK: Needs more discussion?]. □
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Algorithm 4 Unbounded Block Counter

1: Input: An input data stream 𝑓 : N→ R, the privacy budget 𝜀.

2: Output: A synthetic stream 𝑔 : N→ R.
3: Initialize partition size 𝑇 ← 4.

4: Initialize block size 𝐵 ← 2.

5: Last block value 𝛼𝑙𝑎𝑠𝑡𝐵𝑙𝑜𝑐𝑘 ← 0.

6: True value within block 𝛼𝑡𝑟𝑢𝑒𝐼𝑛𝐵𝑙𝑜𝑐𝑘 ← 0.

7: Synthetic value within block 𝛼𝑠𝑦𝑛𝑡ℎ𝐼𝑛𝐵𝑙𝑜𝑐𝑘 ← 0.

8: Time when the last partition changed 𝑡𝑎𝑡𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 0.

9: Set 𝑔(0) = 0.

10: for 𝑡 = 1, 2, . . . do
11: Set 𝛿 ← 𝑡 − 𝑡𝑎𝑡𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 .
12: Update 𝛼𝑡𝑟𝑢𝑒𝐼𝑛𝐵𝑙𝑜𝑐𝑘 ← 𝛼𝑡𝑟𝑢𝑒𝐼𝑛𝐵𝑙𝑜𝑐𝑘 + 𝑓 (𝑡).
13: if 𝛿 = 𝑘𝐵 for some 𝑘 ∈ 𝑍 then
14: Update 𝛼𝑙𝑎𝑠𝑡𝐵𝑙𝑜𝑐𝑘 ← 𝛼𝑙𝑎𝑠𝑡𝐵𝑙𝑜𝑐𝑘 +𝛼𝑡𝑢𝑒𝐼𝑛𝐵𝑙𝑜𝑐𝑘 +Lap

(
2

𝜀

)
.

15: Update 𝛼𝑡𝑟𝑢𝑒𝐼𝑛𝐵𝑙𝑜𝑐𝑘 ← 0 and 𝛼𝑠𝑦𝑛𝑡ℎ𝐼𝑛𝐵𝑙𝑜𝑐𝑘 ← 0.

16: Set 𝑔(𝑡) ← 𝛼𝑙𝑎𝑠𝑡𝐵𝑙𝑜𝑐𝑘 .

17: if 𝛿 = 𝑇 then
18: Update 𝑡𝑎𝑡𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 𝑡 .

19: Update 𝐵 ← 𝐵 + 1 and 𝑇 ← 𝐵2
.

20: end if
21: else
22: Update 𝛼𝑠𝑦𝑛𝑡ℎ𝐼𝑛𝐵𝑙𝑜𝑐𝑘 ← 𝛼𝑠𝑦𝑛𝑡ℎ𝐼𝑛𝐵𝑙𝑜𝑐𝑘 + 𝑓 (𝑡)+Lap

(
2

𝜀

)
.

23: Set 𝑔(𝑡) ← 𝛼𝑙𝑎𝑠𝑡𝐵𝑙𝑜𝑐𝑘 + 𝛼𝑠𝑦𝑛𝑡ℎ𝐼𝑛𝐵𝑙𝑜𝑐𝑘 .
24: end if
25: Release 𝑔(𝑡).
26: end for
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