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ABSTRACT. Synthetic data are an attractive concept to enable privacy in data
sharing. A fundamental question is how similar the privacy-preserving synthetic
data are compared to the true data. Using metric privacy, an effective generaliza-
tion of differential privacy beyond the discrete setting, we raise the problem of
characterizing the optimal privacy-accuracy tradeoff by the metric geometry of
the underlying space. We provide a partial solution to this problem in terms of
the “entropic scale”, a quantity that captures the multiscale geometry of a metric
space via the behavior of its packing numbers. We illustrate the applicability of
our privacy-accuracy tradeoff framework via a diverse set of examples of metric
spaces.

1. INTRODUCTION

A compelling approach to enable privacy in data sharing is based on the concept
of synthetic data [2]. The goal of synthetic data is to create a dataset that maintains
the statistical properties of the original data while not exposing sensitive informa-
tion. A fundamental challenge is to derive optimal bounds on the achievable utility
of synthetic data while maintaining privacy. Analyzing this privacy-utility tradeoff
is the goal of this paper.

There are numerous versions of this problem, depending on the specific notion
of privacy and the choice of the utility metric. A popular and rigorous framework
to define and quantify privacy is differential privacy. While differential privacy
is a concept of the discrete world (where datasets can differ in a single element),
it is often necessary to have more flexibility in the type of input data. Metric
privacy, introduced in [6], provides this flexibility, as it generalizes differential
privacy beyond the discrete setting. For that reason we will adopt metric privacy
as our notion of privacy in this paper. Metric privacy, tailored to the setting of
synthetic data, is defined as follows:

Definition 1.1 (Metric privacy). Let (Z, ρ1) be a metric space and α > 0. A
randomized algorithmM : Z → Z is called (α, ρ1)-metrically private if, for any
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inputs x, x′ ∈ Z we have

P
{
M(x) ∈ S

}
P
{
M(x′) ∈ S

} ≤ exp
(
αρ1(x, x

′)
)
. (1.1)

Metric privacy has been utilized in various applications, such as in location pri-
vacy [1] and privacy-preserving machine learning see e.g. [10, 12], as well as in
theoretical studies of synthetic data, cf. [4]. Metric privacy includes classical dif-
ferential privacy as special case, see e.g. Lemma 4.1 in [4].

With our notion of privacy in place, how shall we quantify utility, i.e., mea-
sure accuracy? Naturally, we want to measure how much the privacy-preserving
synthetic dataM(x) resemble the true data x. To that end we choose a (possibly
different) metric ρ2 and define:

Definition 1.2 (Optimal accuracy). Let (Z, ρ1, ρ2) be a bimetric space1 and α > 0.
Define the accuracy of the bimetric space as

A(Z,α) = inf
M

sup
x∈Z

E ρ2(M(x), x),

where the infimum is over all (α, ρ1)-metrically private mechanismsM : Z → Z.

Thus, A(Z,α) gives the best accuracy of synthetic data for a given privacy bud-
get.

Problem 1.3. Express the accuracy A(Z,α) in terms of the geometry of the bimet-
ric space Z.

1.1. State of the art. The study of the privacy-accuracy tradeoff for classical dif-
ferential privacy has a long history, a detailed review of which is beyond the scope
of this paper. The standard book on DP [9] contains detailed discussions on achiev-
able rates of accuracy for a given privacy budget. The paper [14] proves that for
each fixed count query and a given differential privacy budget, there exists a mech-
anism that is expected loss-minimizing. Hardt and Talwar [16] use methods from
convex geometry to determine a nearly optimal tradeoff between privacy and ac-
curacy, where the error is measured by the Euclidean distance between the correct
answer and the actual answer of a linear query. Nikolov, Talwar and Zhang [19]
extend these results to the case of (ε, δ)-differential privacy. In [15] Gupte and
Sundararaja adopt a framework of risk-averse agents to derive a universal opti-
mality result using a minimax formulation. Geng and Viswanath [13] give an
optimal differentially private mechanism for certain query functions under a gen-
eral utility-maximization framework. In [18] Nikolov derives differentially private
mechanisms with optimal worst case sample complexity under mean square aver-
age error for statistical queries.

Regarding the privacy-utilty tradeoff for synthetic data, Ullman and Vadhan [20]
prove that (under standard cryptographic assumptions) there is no polynomial-time
differentially private algorithm that can generate synthetic Boolean data such that
all two-dimensional marginals are close to those of the original Boolean dataset.

1By a bimetric space we mean a set with two metrics defined on it.
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In [3] the authors derive an computationally efficient algorithm to construct DP
synthetic data with approximately optimal average error. The paper [4] establishes
asymptotically sharp privacy-accuracy bounds for synthetic data for general com-
pact metric spaces.

The privacy-utility tradeoff for metric privacy is less well-understood than for
classical DP, since the achievable accuracy is strongly influenced by the geometry
of the space. In [5] the tradeoff between location privacy and utility is analyzed
by constructing for a given privacy budget a mechanism that minimizes utility
loss using linear programming techniques. In [17], the authors consider linear
programming-based metric privacy mechanisms that balance the tradeoff between
utility and computational complexity. The paper [11] investigates the privacy-
accuracy tradeoff for metric privacy from an information theoretic perspective.

In this paper, we study the optimal privacy-accuracy tradeoff in terms of the
geometry of the metric spaces, but we do not account for computational feasibility.

1.2. Our contributions. We do not know how to approach Problem 1.3 in full
generality. However, we can solve it in two special cases: when ρ1 = ρ2 (Theo-
rem 1.5) and when ρ2 is an ultrametric (Theorem 1.7). In both results, the geometry
of a bimetric space (Z, ρ1, ρ2) is captured by the packing numbers2 and diameters
of the balls.

To be specific, let (Z, ρ) be a metric space. The packing number of Z at scale
ε > 0 is denoted by N(Z, ε). It is the maximal cardinality of an ε-separated subset
N ⊂ Z, i.e. a subset in which all the points have distance strictly greater than ε
from each other. The closed ball centered at x ∈ Z and with radius r is denoted by
B(x, r).

If (Z, ρ1, ρ2) a bimetric space, we often use subscripts 1 and 2 to indicate which
metric is being used. For example, B1(x, r) denotes the ball in the metric ρ1, and
N2(B, ε) denotes the packing number of B in the metric ρ2, where B ⊂ Z.

Our crucial quantity is the scale on which the packing numbers of all balls are
subexponential in radius:

Definition 1.4 (Entropic scale). The entropic scale of a bimetric space (Z, ρ1, ρ2)
is defined as follows:

s(Z,α) = inf
{
s > 0

∣∣∣ N2

(
B1(x, r), s

)
≤ eαr ∀x ∈ Z, ∀r > 0

}
.

Our first result states that if ρ1 = ρ2 = ρ, the optimal accuracy is equivalent to
the entropic scale:

Theorem 1.5 (Same metric). Let (Z, ρ) be a connected metric space and α > 0.
Then3

s(Z, 2α) . A(Z,α) . s(Z,α/3).

2Working with packing numbers instead of covering numbers is simply a choice of convenience
in this paper. Packing and covering numbers are equivalent (see e.g. [21, Lemma 4.2.8]) so versions
of all our results hold stated for covering numbers as well.

3We use the notation ., & and � to hide positive absolute constant factors. Thus, a . b means
that a ≤ Cb, and a � b means that ca ≤ b ≤ Cb, where C and c are positive absolute constants.
The specific numeric values of C and c can usually be derived from the proofs.
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Moreover, if (Z, ρ) is norm-convex4 then

A(Z,α) � s(Z,α).

The lower bound in Theorem 1.5 holds in full generality, even when the metrics
ρ1 and ρ2 are different, and it is proved in Theorem 3.1. The upper bound is proved
in Theorem 4.2. The “moreover” part follows from regularity of the entropic scale,
which is proved in Lemma 2.4.

If (Z, ρ) is disconnected, then the entropic scale may fail to control accuracy.
(Indeed, for a two-point metric space, all packing numbers are bounded by 2, while
the distance between the points and thus the accuracy may be arbitrarily large.) To
fix this issue, we introduce the following cousin of the entropic scale:

Definition 1.6 (Diametric scale). The diametric scale of a bimetric space (Z, ρ1, ρ2)
is defined as follows:

s◦(Z,α) := inf
{
s > 0

∣∣∣ diam2(B1(x, r)) ≤ eαrs ∀x ∈ Z, ∀r > 0
}
,

where diam2(B1(x, r)) is the diameter of B1(x, r) with respect to the metric ρ2.

Our second main result is concerned with ultrametrics. We note that ultrametrics
have attracted increasing attention in data science in recent years, due to their use-
fullness in areas such as genomics and chemoinformatics [7, 8]. We demonstrate
that if ρ2 is an ultrametric, the accuracy is equivalent to the sum of the entropic
scale and the diametric scale:

Theorem 1.7 (Ultrametric). Let (Z, ρ1, ρ2) be a bimetric space. Suppose that ρ2
is an ultrametric. Then for any α > 0 we have

s(Z, 2α) + s◦(Z, 2α) . A(Z,α) . s(Z,α/3) + s◦(Z,α/7).

The lower bound in Theorem 1.7 holds in full generality, even if ρ2 is a general
metric, and it is proved in Theorems 3.1 and 3.2. The upper bound is proved in
Theorem 5.1.

1.3. Examples. Theorem 1.5 and Theorem 1.7 allow us to compute the privacy-
accuracy tradeoff for many metric spaces up to absolute constant factors. In partic-
ular:

(1) (Theorem 6.1): If Z is a closed ball of a d-dimensional normed space, then

A(Z,α) � s(Z,α) � min

(
d

α
, 1

)
. (1.2)

(2) (Theorem 6.2): If Z is the set of all probability measures on the unit cube
[0, 1]d, equipped with the 1-Wasserstein metric with respect to the `∞-
norm on [0, 1]d, then

A(Z,α) � s(Z,α) � min
(
α−

1
d+1 , 1

)
. (1.3)

4A metric space (Z, ρ) is called norm-convex if Z is a convex subset of some normed space with
the induced metric.
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(3) (Theorem 6.3): If Z is the set of all real-valued 1-Lipschitz functions on the
unit cube [0, 1]d with f(0) = 0, equipped with the `∞ metric, then (1.3)
again holds.

(4) (Remark 6.5): If Z is the Boolean cube {0, 1}d equipped with the Baire
ultrametric [7] (with base 2), then

A(Z,α) � min

(
1

α
, 1

)
. (1.4)

A generalization of this example is obtained in Theorem 6.4, where the
two metrics ρ1 and ρ2 could be different.

1.4. Some open problems. The theorems stated above motivate the following in-
teresting questions:

(i) Can we solve Problem 1.3 if we assume ρ2 ≤ ρ1?
(ii) It seems plausible that the conclusion of Theorem 1.7 holds if ρ1 = ρ2 are

the same metric but not necessarily an ultrametric. In other words, can we
drop the connectivity assumption in Theorem 1.5 by including s◦ in the
bound?

(iii) Does the conclusion of Theorem 1.7 hold for any bimetric space, perhaps
up to logarithmic factors?

1.5. Plan of the paper. Section 2 introduces some tools that can help to compute
the entropic scale when the two metrics ρ1 and ρ2 are the same. For instance,
in Subsection 2.4 we show that for a wide class of metric spaces (specifically,
norm-convex metric spaces), one can always choose r = 2s in the Definition 1.4
of the entropic scale. In Subsection 2.5, we notice another simplification of the
definition of entropic scale: it is often enough to compute the packing numbers
of the entire metric space Z rather than of all balls. In Section 3, we show that
accuracy is always bounded below by the entropic scale (Theorem 3.1) and the
diametric scale (Theorem 3.2). This establishes the lower bounds in both of our
main results Theorems 1.5 and 1.7. In Section 4, we show that if ρ1 = ρ2, the
accuracy is bounded above by the entropic scale, thus completing the proof of
Theorem 1.5. In Section 5, we show that if ρ2 is an ultrametric, the accuracy
is bounded above by the sum of entropic and diametric scales, thus completing
the proof of Theorem 1.7. In Section 6, we work out the examples announced in
Section 1.3.

2. BASIC PROPERTIES OF THE ENTROPIC SCALE: SAME METRIC

Throughout this section, we assume that the two metrics ρ1 = ρ2 = ρ are the
same.

2.1. Background on packing and covering.

Fact 2.1 (Packing implies covering). Let (Z, ρ) be a metric space and B ⊂ Z be
any subset. Then any maximal ε-separated subset N ⊂ B is an ε-cover of B, i.e.

∀x ∈ B ∃y ∈ N : ρ(x, y) ≤ ε.
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Proof. For contradiction, assume that there exists x ∈ B such that ρ(x, y) > ε
for all y ∈ N . Thus x 6∈ N , and N ∪ {x} is an ε-separated subset of B. This
contradicts the maximality of N . �

Fact 2.2 (Chain rule). Let (Z, ρ) be a metric space and B ⊂ Z be any subset.
Then for any r, s > 0 we have

N(B, s) ≤ N(B, r) · sup
a∈B

N
(
B(a, r), s

)
.

Proof. Let Ns ⊂ B be any s-separated subset. Let Nr ⊂ B be a maximal r-
separated subset. Then B can be covered by |Nr| ≤ N(B, r) balls of radius r
centered at points in B. Each such ball B(a, r) contains at most N

(
B(a, r), s

)
points from Ns. Therefore

|Ns| ≤ N(B, r) · sup
a∈B

N
(
B(a, r), s

)
.

The proof is complete. �

The chain rule yields the following for any s > 0:

sup
x∈Z

N
(
B(x, 4s), s

)
≤ sup

x∈Z
N
(
B(x, 4s), 2s

)
· sup
y∈Z

N
(
B(y, 2s), s

)
.

Iterating this bound, we obtain:

Fact 2.3 (Chain rule with many terms). Let (Z, ρ) be a metric space. Then for any
s > 0 and k0 ∈ N we have

sup
x∈Z

N
(
B(x, s2k0), s

)
≤

k0∏
k=1

sup
xk∈Z

N
(
B(xk, s2

k), s2k−1
)
.

2.2. Regularity of entropic scale.

Proposition 2.4 (Regularity). Let (Z, ρ) be a norm-convex metric space and α >
0. Then

s(Z,α) ≤ s(Z, tα) ≤ 1

t
s(Z,α) for all t ∈ [0, 1].

The proof is based on the following monotonicity property:

Lemma 2.5 (Monotonicity). Let (Z, ρ) be a norm-convex metric space. Then for
all x ∈ Z, t ∈ [0, 1] and r, s > 0, we have

N
(
B(x, r), s

)
≤ N

(
B(x, tr), ts

)
.

Proof. Norm-convexity implies that B(x, tr) ⊃ (1− t)x+ tB(x, r). Therefore

N
(
B(x, tr), ts

)
≥ N

(
(1− t)x+ tB(x, r), ts

)
= N

(
B(x, r), s

)
. �

Proof of Proposition 2.4. The lower bound is trivial by the definition of entropic
scale. To check the upper bound, set s := s(Z,α) and fix any x ∈ Z. The
definition of entropic scale guarantees that

N
(
B(x, r), s

)
≤ eαr for all r > 0.
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Using Lemma 2.5 for s/t instead of s, and then the bound above for tr instead of
r, we obtain

N
(
B(x, r), s/t

)
≤ N

(
B(x, tr), s

)
≤ eα·tr for all r > 0.

By the definition of entropic scale, this yields s(Z, tα) ≤ s/t. The proof is com-
plete. �

2.3. Elementary lower bounds for entropic scale.

Lemma 2.6. Let (Z, ρ) be a metric space and α > 0. Then

1

α
≥ 2 diam(Z) implies s(Z,α) ≥ 1

2
diam(Z).

Proof. Assume that the conclusion is false. By the definition of entropic scale, this
means that

N

(
B(x, r),

1

2
diam(Z)

)
≤ eαr for any x ∈ Z and r > 0.

Let us use this bound for r = diam(Z). We trivially have B(x, r) = Z, and
αr ≤ 1/2 holds by assumption. It follows that

N
(
Z, r/2

)
≤ e1/2 < 2.

This means that the distance between any pair of points in Z must be bounded
by r/2. (Otherwise a pair of r/2-separated points x, y would make the packing
number at least 2.) But this shows that diam(Z) ≤ r/2 = diam(Z)/2, a contra-
diction. �

Lemma 2.7. Let (Z, ρ) be a connected metric space and α > 0. Then

1

α
< 2 diam(Z) implies s(Z,α) ≥ 1

2α
.

Proof. By assumption, there exists a pair of points x, y ∈ Z satisfying

ρ(x, y) >
1 + ε

2α
for some ε > 0. (2.1)

Assume that the conclusion of the lemma is false. By definition of entropic scale,
this means that

N

(
B(x, r),

1

2α

)
≤ eαr for any r > 0.

Plug r = 2/(3α) to get

N

(
B
(
x,

2

3α

)
,

1

2α

)
≤ e2/3 < 2.

This means that every point y in the ball B(x, 2/(3α)) must satisfy ρ(x, y) ≤
1/(2α). (Otherwise a pair of 1/(2α)-separated points x, y would make the packing
number at least 2.) Thus we showed that

B
(
x,

2

3α

)
= B

(
x,

1

2α

)
.
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This means that any ball of the intermediate radius, and in particular the ball B :=
B(x, 1+ε2α ), must be closed and open. Moreover, (2.1) shows that y 6∈ B, so B is a
proper subset of Z. This contradicts the connectedness of Z. �

2.4. Doubling scale. Fixing r = 2s in the definition of entropic scale (Defini-
tion 1.4) leads to:

Definition 2.8 (Doubling scale). The doubling scale of a metric space (Z, ρ) is
defined as follows:

¯
s(Z,α) = inf

{
s > 0

∣∣∣ N (B(x, 2s), s
)
≤ e2αs ∀x ∈ Z

}
.

Proposition 2.9 (Entopic vs doubling scale). For any norm-convex metric space
(Z, ρ) and any α > 0, we have

1

4
s(Z,α) ≤

¯
s(Z,α) ≤ s(Z,α).

Proof. The upper bound is trivial. To prove the lower bound, let s =
¯
s(Z,α). Fix

any x ∈ Z, and let us bound the packing number

N(r) := N
(
B(x, r), s

)
for each r > 0. Consider three cases.

1. If r ∈ (0, s/2), then N(r) = 1.
2. If r ∈ [s/2, 2s), then the definition of s gives

N(r) ≤ N(B(x, 2s), s) ≤ e2αs ≤ e4αr.

3. If r ≥ 2s, then r ∈ [s2k0−1, s2k0) for some k0 ∈ {2, 3, . . .}. Then by the
chain rule (Fact 2.3) we have

N(r) ≤
k0∏
k=1

sup
xk∈Z

N
(
B(xk, s2

k), s2k−1
)
.

Using Lemma 2.5 and the definition of s, we see that each factor in this product is
bounded by N(B(x, 2s), s) ≤ e2αs. Thus

N(r) ≤ e2αsk0 ≤ e2αr,

where in the last step we used that k0 ≤ 2k0−1.
Combining all three cases, we conclude that N(r) ≤ e4αr for any r > 0. By the

definition of entropic scale, this implies s(Z, 4α) ≤ s. By Proposition 2.4, we get

s(Z,α) ≤ 4s(Z, 4α) ≤ 4s.

In view of the definition of s, this completes the proof. �
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2.5. Outer scale.

Definition 2.10 (Outer scale). The outer scale of a metric space (Z, ρ) is defined
as follows:

s̄(Z,α) = inf
γ>0

{
γ +

1

α
lnN(Z, γ)

}
.

Proposition 2.11. For any metric space (Z, ρ) and any α > 0, we have

s(Z,α) ≤ 2s̄(Z,α).

Proof. Fix any γ > 0 and let s := γ + 1
α lnN(Z, γ). Fix any x ∈ Z, and let us

bound the packing number

N(r) := N(B(x, r), 2s)

for each r > 0. Consider two cases.
1. If r < s, then N(r) = 1.
2. If r ≥ s, then, using that 2s ≥ γ and by definition of s we have

N(r) ≤ N(Z, γ) ≤ eαs ≤ eαr.
ThusN(r) ≤ eαr for any r > 0. By the definition of entropic scale, this implies

s(Z,α) ≤ 2s. In view of the definition of s, this completes the proof. �

For norm-convex spaces, the bound in Proposition 2.11 can be reversed up to a
logarithmic factor:

Proposition 2.12. For any norm-convex metric space (Z, ρ) and any α > 0, we
have

s̄(Z,α) ≤ 3s(Z,α)

[
1 + ln

diam(Z)

s(Z,α)

]
.

Proof. Let s := s(Z,α) and

k0 :=

⌈
log2

diam(Z)

s

⌉
.

Then diam(Z) ≤ s2k0 and thus Z ⊂ B(x, s2k0) for any x ∈ Z. Then by chain
rule (Fact 2.3) we have

N(Z, s) ≤
k0∏
k=1

sup
xk∈Z

N
(
B(xk, s2

k), s2k−1
)
.

Using Lemma 2.5 and the definition of s, we see that each factor in this product is
bounded by N(B(x, 2s), s) ≤ e2αs. Thus

N(Z, s) ≤ e2αsk0 .
It follows that

s+
1

α
lnN(Z, s) ≤ s+ 2sk0 ≤ 3s

[
1 + ln

diam(Z)

s

]
.

Recall the definitions of s and s̄(Z,α) to complete the proof. �
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Remark 2.13. The logarithmic factor in Proposition 2.12 cannot be removed in
general. For example, let Z be the unit Euclidean ball in Rd with the Euclidean
metric, and let α > 2d. Then, as we will see in Theorem 6.1, s(Z,α) � d/α while
it is not hard to check that s̄(Z,α) � (d/α) log(α/d).

Nevertheless, the logarithmic factor can be removed if the packing numbers
satisfy a doubling condition:

Proposition 2.14. Let (Z, ρ) be a norm-convex metric space and let α > 0. Set
s = s(Z,α). Assume that

N(Z, s) ≥ N(Z, κs)2 for some κ ≥ 1.

Then
s

2
≤ s̄(Z,α) ≤ 2κs.

For the proof, we need:

Lemma 2.15. Let (Z, ρ) be a norm-convex metric space and let α > 0. Set s =
s(Z,α). Then

1

α
lnN(Z, s) ≤ s̄(Z,α).

Proof. Fix any γ > 0 and use the chain rule (Fact 2.2) and the definition of s to get

N(Z, s) ≤ N(Z, γ) · sup
z∈Z

N
(
B(z, γ), s

)
≤ N(Z, γ) · eαγ .

Rearranging the terms yields

1

α
lnN(Z, s) ≤ γ +

1

α
lnN(Z, γ).

Take the infimum over γ > 0 to complete the proof. �

Proof of Proposition 2.14. The lower bound was proved in Proposition 2.11, so
it is enough to prove the upper bound. Using first the doubling condition, then
Lemma 2.15, and finally the definition of the outer scale, we get

2

α
lnN(Z, κs) ≤ 1

α
lnN(Z, s) ≤ s̄(Z,α) ≤ κs+

1

α
lnN(Z, κs).

Rearranging the terms, we get

κs+
1

α
lnN(Z, κs) ≤ 2κs.

By the definition of the outer scale, this yields s̄(Z,α) ≤ 2κs. The proposition is
proved. �
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3. LOWER BOUNDS ON ACCURACY

Theorem 3.1. For any bimetric space (Z, ρ1, ρ2) and any α > 0, we have

A(Z,α) ≥ 1

8
s(Z, 2α).

Proof. Fix a point x ∈ Z and numbers r, s > 0. By the definition of packing
numbers, there exists a subset S(x, r) ⊂ B1(x, r) that is (8s)-separated in the
metric ρ2 and has cardinality∣∣S(x, r)

∣∣ = N2

(
B1(x, r), 8s

)
.

The separation condition implies by triangle inequality that all ballsB2(y, 4s) cen-
tered at points y ∈ S(x, r) are disjoint. LetM : Z → Z be a (α, ρ1)-metrically
private randomized algorithm. We have

1 = P
{
M(x) ∈ Z

}
≥

∑
y∈S(x,r)

P
{
M(x) ∈ B2(y, 4s)

}
.

Since the mechanismM is (α, ρ1)-metrically private, we have

P
{
M(x) ∈ B2(y, 4s)

}
≥ e−αρ1(x,y) · P

{
M(y) ∈ B2(y, 4s)

}
.

Now, for y ∈ S(x, r) ⊂ B1(x, r), we have e−αρ1(x,y) ≥ e−αr. Furthermore,
Markov’s inequality yields

P
{
M(y) ∈ B2(y, 4s)

}
= P

{
ρ2(M(y), y) ≤ 4s

}
≥ 3

4

whenever s ≥ Eρ2(M(y), y). Combining these bounds, we conclude the follow-
ing. If

s = sup
y∈Z

Eρ2(M(y), y),

then

1 ≥
∣∣S(x, r)

∣∣ · e−αr · 3

4
.

Rearranging the terms, we get

N2

(
B1(x, r), 8s

)
=
∣∣S(x, r)

∣∣ ≤ ⌊4

3
eαr
⌋
≤ e2αr.

By the definition of entropic scale, this yields

s(Z, 2α) ≤ 8s = 8 sup
y∈Z

Eρ2(M(y), y).

Take the infimum over all (α, ρ1)-metrically private mechanismsM on both sides
to complete the proof. �

Theorem 3.2. For any bimetric space (Z, ρ1, ρ2) and any α > 0, we have

A(Z,α) ≥ 1

5
s◦(Z, 2α).
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Proof. Fix any (α, ρ1)-metrically private mechanismM and any r > 0. Markov’s
inequality gives

P
{
ρ2(M(x), x) > 2eαrs

}
≤ 1

2eαr
whenever s ≥ Eρ2(M(x), x).

SinceM is (α, ρ1)-metrically private, the probability bound above yields

P
{
ρ2(M(y), x) > 2eαrs

}
≤ 1

2
where r = ρ1(x, y).

On the other hand, Markov’s inequality gives

P
{
ρ2(M(y), y) > 3s

}
≤ 1

3
whenever s ≥ Eρ2(M(y), y).

Combining the last two probability bounds by triangle inequality, we obtain

P
{
ρ2(x, y) > 2eαrs+ 3s

}
≤ 1

2
+

1

3
< 1.

But for fixed x, y, the event in the left hand side is deterministic. Thus, the last
bound implies that

ρ2(x, y) ≤ (2eαr + 3)s ≤ 5eαrs.

Summarizing, we have shown that

ρ2(x, y) ≤ 5eαρ1(x,y)s where s = sup
x∈Z

Eρ2(M(x), x).

Now consider a ballB1(x, r) with an arbitrary center x ∈ Z and arbitrary radius
r > 0. Since the ρ1-distance between any pair of points in this ball is at most 2r, it
follows that

diam2(B1(x, r)) ≤ 5e2αrs.

Since this holds for all x ∈ Z and r > 0, we proved that

s◦(Z, 2α) ≤ 5s = 5 sup
x∈Z

Eρ2(M(x), x).

Since this holds for any (α, ρ1)-metrically private mechanismM, the proof is com-
plete. �

4. UPPER BOUNDS ON ACCURACY: SAME METRIC

Throughout this section, we assume that the two metrics ρ1 = ρ2 = ρ are the
same.

Lemma 4.1 (Exponential mechanism). For any metric space (Z, ρ) and α > 0,
we have

A(Z,α) . s(Z,α/3) +
1

α
.

Proof. Let
s := s(Z,α/3). (4.1)
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LetN be a maximal s-separated subset of Z. Define a randomized mapM : Z →
N as follows. Given an input x ∈ Z, output y ∈ N with probability proportional
to e−αρ(x,y)/2. In other words, for each x ∈ Z, we let

P
{
M(x) = y

}
:=

1

Σ(x)
e−αρ(x,y)/2 for all y ∈ N ,

where
Σ(x) =

∑
y∈N

e−αρ(x,y)/2. (4.2)

It is clear that this mechanism M is (α, ρ)-metrically private (this follows anal-
ogously to establishing differential privacy of the usual exponential mechanism,
see [9, Chapter 3.4]).

To estimate the accuracy ofM, we need to fix any input x ∈ Z and bound the
expected value of the random variable

A := ρ(x,M(x)).

We start by the trivial bound

EA ≤ 6s+ EA1{A>6s} (4.3)

By definition ofM(x), we have

EA1{A>6s} =
1

Σ(x)

∑
y∈N : ρ(x,y)>6s

ρ(x, y) e−αρ(x,y)/2.

Let us decompose the set of vectors y in this sum according to their distance from
x as follows: {

y ∈ N : ρ(x, y) > 6s
}

=
∞⊔
k=1

Nk

where

Nk =

{
y ∈ N : 6s+

k − 1

α
< ρ(x, y) ≤ 6s+

k

α

}
.

Thus

EA1{A>6s} =
1

Σ(x)

∞∑
k=1

∑
y∈Nk

(
6s+

k

α

)
e−α(6s+(k−1)/α)/2.

Recall that by construction, Nk is an s-separated subset of the ball B(x, 6s +
k/α). Thus, due to our choice of s in (4.1) and by the definition of entropic scale,
we have

|Nk| ≤ e(α/3)(6s+k/α) = e2αs+k/3. (4.4)

Next, let us find a lower bound on Σ, a quantity we defined in (4.2). By definition
of N and Fact 2.1, there exists y ∈ N that satisfies ρ(x, y) ≤ s. It follows that

Σ(x) ≥ e−αρ(x,y)/2 ≥ e−αs/2. (4.5)
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Then using (4.4) and (4.5), we conclude that

EA1{A>6s} ≤ eαs/2
∞∑
k=1

e2αs+k/3
(

6s+
k

α

)
e−3αs−(k−1)/2

= e(1−αs)/2

6s

∞∑
k=1

e−k/6 +
1

α

∞∑
k=1

ke−k/6

 . e−αs/2(s+
1

α

)
.

Plugging this bound into (4.3), we arrive at

EA . s+ e−αs/2
(
s+

1

α

)
.

Summarizing, we proved that

A(Z,α) . s+ e−αs/2
(
s+

1

α

)
where s = s(Z,α/3).

Since αs ≥ 0, this bound is stronger that than the one announced in the statement
of the lemma. �

Theorem 4.2. Let (Z, ρ) be a connected metric space and α > 0. Then

A(Z,α) . s(Z,α/3).

Proof. Assume first that 3/α ≥ 2 diam(Z). In this case, we can use a trivial mech-
anismM that always outputs the same, arbitrarily chosen point inZ. This gives ac-
curacy A(Z,α) ≤ diam(Z, ρ), while Lemma 2.6 yields s(Z,α/3) ≥ 1

2 diam(Z).
The desired bound follows.

Next, assume that 3/α < 2 diam(Z). In this case, we can use the exponential
mechanism, for which Lemma 4.1 gives accuracy A(Z,α) . s(Z,α/3) + 1/α.
On the other hand, Lemma 2.7 yields s(Z,α/3) ≥ 3/(2α). Combining these two
bounds gives the conclusion. �

5. UPPER BOUND ON ACCURACY: ULTRAMETRIC

Theorem 5.1 (Ultrametric). let (Z, ρ1, ρ2) be a bimetric space such that ρ2 is an
ultrametric. Then for any α > 0 we have

A(Z,α) . s(Z,α/3) + s◦(Z,α/7).

The proof of this result will generally follow the proof of Theorem 4.1, but the
exponential mechanism will be “relaxed”.

As before, let
s := s(Z,α/3). (5.1)

Let N be a maximal s-separated subset of Z in the ρ2 ultrametric.
For any two points x, y ∈ Z, let σ(x, y) denote the ρ1-distance from x to the

ρ2-ball centered at y and with radius s, that is

σ(x, y) := inf
{
ρ1(x, v) : v ∈ B2(y, s)

}
.
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Define a randomized map M : Z → N as follows. Given an input x ∈ Z,
output y ∈ N with probability proportional to e−ασ(x,y)/2. In other words, for
each x ∈ Z, we let

P
{
M(x) = y

}
:=

1

Σ(x)
e−ασ(x,y)/2 for all y ∈ N , (5.2)

where
Σ(x) =

∑
y∈N

e−ασ(x,y)/2.

Since σ(x′, y) ≤ σ(x, y) + ρ1(x, x
′) for all x, x′, y ∈ Z, the mechanism M is

(α, ρ1)-metrically private (this follows analogously to proving differential privacy
of the usual exponential mechanism, see [9, Chapter 3.4]).

By the definition of N and Fact 2.1, for each x ∈ Z there exists y ∈ N that
satisfies ρ2(x, y) ≤ s. It follows that σ(x, y) = 0 and thus

Σ(x) ≥ 1. (5.3)

We will first estimate the accuracy ofM in the “relaxed distance” σ, and then
remove relaxation and transfer the result to the original ultrametric ρ2. The follow-
ing lemma is crucial; it is the only step of the argument where the ultrametric is
used.

Lemma 5.2 (Relaxed ball). For any x ∈ Z and r > 0, we have∣∣∣{y ∈ N : σ(x, y) < r
}∣∣∣ ≤ N2

(
B1(x, r), s

)
≤ eαr/3.

Proof. Consider the set

Nr :=
{
y ∈ N : σ(x, y) < r

}
.

By the definition of σ, for each y ∈ Nr there exists v = v(y) ∈ Z that satisfies

ρ1
(
x, v(y)

)
< r and ρ2

(
v(y), y

)
≤ s. (5.4)

Moreover, the definition of N implies that ρ2(y, y′) > s for any pair of distinct
points y, y′ ∈ Nr ⊂ N . We can combine this lower bound with the two upper
bounds ρ2

(
v(y), y

)
≤ s and ρ2

(
v(y′), y′

)
≤ s using the max-triangle inequality

for the ultrametic ρ2. This gives

ρ2(
(
v(y), v(y′)

)
> s. (5.5)

One consequence of this bound is that the map y 7→ v(y) is injective, so

|Nr| ≤
∣∣v(Nr)

∣∣ . (5.6)

Moreover, the set v(Nr) is s-separated in ultrametric ρ2 by (5.5) and is contained
in the ball B1(x, r) by the first inequality in (5.4). Thus,∣∣v(Nr)

∣∣ ≤ N2

(
B1(x, r), s

)
.

Combining this with (5.6), we obtain the first bound in the statement of the lemma.
The second bound follows from the definition of s in (5.1). �
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Next we analyze the accuracy of the mechanismM in the relaxed distance σ.
We shall prove that

Eσ(x,M(x)) .
1

α
for any x ∈ Z.

In fact we can prove a stronger tail bound, from which the bound on expectation
follows immediately:

Lemma 5.3 (Relaxed accuracy). For any x ∈ Z and r > 0, we have

P
{
σ(x,M(x)) ≥ r

}
. e−αr/6.

Proof. We have

P
{
σ(x,M(x)) ∈ [r, r + 1/α)

}
=

∑
y∈N :σ(x,y)∈[r,r+1/α)

P
{
M(x) = y

}
.

By the definition of mechanismM in (5.2) and since Σ(x) ≥ 1 by (5.3), each term
of the sum above is bounded by e−ασ(x,y)/2 ≤ e−αr/2. By Lemma 5.2, the number
of terms in the sum is bounded by∣∣∣{y ∈ N : σ(x, y) < r + 1/a

}∣∣∣ ≤ eα(r+1/α)/3 ≤ 2eαr/3.

Thus, we have proved that

P
{
σ(x,M(x)) ∈ [r, r + 1/α)

}
≤ e−αr/2 · 2eαr/3 = 2e−αr/6

for any r > 0. Using the above bound for r + k/α instead of r, we conclude that

P
{
σ(x,M(x)) ≥ r

}
=

∞∑
k=0

P

{
σ(x,M(x)) ∈

[
r +

k

α
, r +

k + 1

α

)}

≤
∞∑
k=0

2e−α(r+k/α)/6 = 2e−αr/6
∞∑
k=0

e−k/6 . e−αr/6.

�

The next lemma allows one to transfer accuracy bounds from the relaxed dis-
tance σ to the original ultrametric ρ2.

Lemma 5.4 (Unrelaxation). Let x, y ∈ Z and r > 0. Then

σ(x, y) < r implies ρ2(x, y) ≤ s+ eαr/7s◦

where s = s(Z,α/3) and s◦ = s◦(Z,α/7).

Proof. If σ(x, y) < r, then by the definition of σ there exists v ∈ Z such that

ρ1(x, v) < r and ρ2(v, y) ≤ s. (5.7)

Using the first inequality in (5.7) and then the definition of s◦, we get

ρ2(x, v) ≤ diam2

(
B1(x, r)

)
≤ eαr/7s◦.

To complete the proof, combine this with the second inequality in (5.7) by triangle
inequality. �
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Proof of Theorem 5.1. Combining Lemmas 5.4 and 5.3, we get for any x ∈ Z and
r > 0:

P
{
ρ2(x,M(x)) > s+ eαr/7s◦

}
≤ P

{
σ(x,M(x)) ≥ r

}
. e−αr/6.

From this one can easily conclude that

Eρ2(x,M(x)) . s+ s◦.

The theorem is proved. �

6. EXAMPLES

The result below is quite standard. It can be derived from the K-norm mecha-
nism in the paper [16].

Theorem 6.1 (Unit ball of a normed space). Let Z be the closed unit ball of a
d-dimensional normed space X with the induced metric. Then for any α > 0 we
have

A(Z,α) � s(Z,α) � min

(
d

α
, 1

)
.

Proof. According to Theorem 1.5, it is enough to prove the bound on the entropic
scale s(Z,α). Furthermore, by Proposition 2.9, it is enough to prove the same
bound for the doubling scale

¯
s(Z,α).

If BX(x, r) and BZ(x, r) denote the balls of X and Z centered at x and with
radius r, then by the definition of Z we have

BZ(x, r) = BX(x, r) ∩BX(0, 1).

The rest of the argument is based on standard entropy bounds (e.g. see [22,
Chapter 5]), namely

2d ≤ N
(
BX(x, 2), 1

)
≤ 5d for any x ∈ X

To prove the upper bound on doubling scale, note that

N
(
BZ(x, 2s), s

)
≤ N

(
BX(x, 2s), s

)
= N

(
BX(0, 2), 1

)
≤ 5d ≤ e2αs

for any s ≥ d/α, and

N
(
BZ(x, 2s), s

)
≤ N

(
BX(0, 1), s

)
= 1 ≤ e2αs

for any s ≥ 2. Combining the two bounds yields

¯
s(Z,α) ≤ min

(
d

α
, 2

)
.

To prove the lower bound on the doubling scale, note that for any s ≤ 1
10 min

(
d
α , 1
)

we have

N
(
BZ(0, 2s), s

)
= N

(
BX(0, 2s), s

)
= N

(
BX(0, 2), 1

)
≥ 2d > e2αs.

This yields

¯
s(Z,α) >

1

10
min

(
d

α
, 1

)
.
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The proof is complete. �

Theorem 6.2 (Probability measures with Wasserstein metric). Consider the unit
cube [0, 1]d equipped with the ‖·‖∞ metric. Let Z be the set of all probability
measures on this cube, equipped with the 1-Wasserstein metric. Then for any α > 0
we have

A(Z,α) � s(Z,α) � min
(
α−

1
d+1 , 1

)
.

Proof. Observe that Z is a norm-convex space, since Z is a convex subset of the
normed space of all signed measures µ on [0, 1]d with ‖µ‖ <∞, where

‖µ‖ = sup

{∣∣∣∣∫ f dµ

∣∣∣∣ : f : [0, 1]d → R is 1-Lipschitz
}
,

and the 1-Wasserstein metric between two probability measures µ and ν on [0, 1]d

coincides with ‖µ− ν‖.
According to Theorem 1.5, it is enough to prove the bound on the entropic scale

s(Z,α). Recall that

exp
(

(c1/γ)d
)
≤ N(Z, γ) ≤ exp

(
(c2/γ)d

)
for any γ ∈ (0, 1/3) (6.1)

where c1 and c2 are positive absolute constants. For the lower bound in (6.1)
see Proposition 8.2 in [4]. The upper bound follows from Lemma A.1 and the
equivalence between packing and covering numbers. Then one can easily conclude
the desired bound for the outer scale, namely

s̄(Z,α) � min
(
α−

1
d+1 , 1

)
.

To transfer this result to the the entropic scale s(Z,α), we can use Proposition 2.14.
Since the doubling condition N(Z, γ) ≥ N(Z, (2c2/c1)γ)2 holds for all γ > 0,
we have

s(Z,α) � s̄(Z,α).

�

Theorem 6.3 (Lipschitz functions). Let Z be the set of al 1-Lipschitz functions
f : [0, 1]d → R satisfying f(0) = 0, equipped with the‖·‖∞ metric. Then for any
α > 0 we have

A(Z,α) � s(Z,α) � min
(
α−

1
d+1 , 1

)
.

Proof. The proof is nearly identical to that of Theorem 6.2, since the two-sided
bound (6.1) holds in this setting as well, see e.g. [22, Example 5.10]. �

Next, we give an example for Theorem 1.7. Suppose that f : N → (0,∞) and
g : N → (0,∞) are strictly decreasing with lim

k→∞
f(k) = lim

k→∞
g(k) = 0. Define

ultrametrics ρ1, ρ2 on {0, 1}N by

ρ1(x, y) = f
(

inf
{
j ∈ N | xj 6= yj

})
, (6.2)

and
ρ2(x, y) = g

(
inf
{
j ∈ N | xj 6= yj

})
. (6.3)
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Theorem 6.4 (Ultrametric). LetZ = ({0, 1}N, ρ1, ρ2) with ρ1, ρ2 as defined in (6.2)
and (6.3). Then for any α > 0 we have

s(Z,α) = g

(⌊
inf
k∈N

(
k +

α

ln 2
f(k)

)⌋)
, s0(Z,α) = sup

k∈N
g(k)e−αf(k). (6.4)

Proof. Since the metric ρ2 takes values in {g(k) : k ∈ N} and the metric ρ1 takes
values in {f(k) : k ∈ N},

s(Z,α) = inf
{
s > 0

∣∣∣ N2

(
B1(x, r), s

)
≤ eαr ∀x ∈ {0, 1}N, ∀r > 0

}
= inf

{
g(k0)

∣∣∣ N2

(
B1(x, f(k)), g(k0)

)
≤ eαf(k) ∀x ∈ {0, 1}N, ∀k ∈ N

}
.

It is easy to see that

B1(x, f(k)) =
{
y ∈ {0, 1}N : xj = yj ∀j ≤ k − 1

}
. (6.5)

Also, for x, y ∈ {0, 1}N, we have ρ2(x, y) > g(k0) if and only if inf{j ∈ N :
xj 6= yj} < k0. So

N2

(
B1(x, f(k)), g(k0)

)
=

{
2k0−k, k < k0

1, k ≥ k0
,

for all x ∈ {0, 1}N. Therefore,

s(Z,α) = inf
{
g(k0)

∣∣∣ 2k0−k ≤ eαf(k) ∀k < k0

}
= inf

{
g(k0)

∣∣∣ k0 ≤ inf
k∈N

(
k +

α

ln 2
f(k)

)}
= g

(⌊
inf
k∈N

(
k +

α

ln 2
f(k)

)⌋)
.

Now we consider s◦(Z,α). We have

s◦(Z,α) = inf
{
s > 0

∣∣∣ diam2

(
B1(x, r)

)
≤ eαrs ∀x ∈ Z, ∀r > 0

}
= inf

{
s > 0

∣∣∣ diam2

(
B1(x, f(k))

)
≤ eαf(k)s ∀x ∈ Z, ∀k ∈ N

}
.

By (6.5), we have diam2

(
B1(x, f(k))

)
= g(k). So

s◦(Z,α) = inf
{
s > 0

∣∣∣ g(k) ≤ eαf(k)s ∀k ∈ N
}

= sup
k∈N

g(k)e−αf(k). �

Remark 6.5 (Baire metric). The ultrametrics defined in (6.2) and (6.3) include as
special case the Baire metric [7, 8], which is obtained by letting f(k) = r−k and
g(k) = r−k for some (not necessarily the same) r > 1. If we further set r = 2 for
both metrics, we obtain from equation (6.4) after some brief computations that

s(Z,α) � min

(
1

α
, 1

)
and s0(Z,α) � min

(
1

α
, 1

)
.



20 MARCH BOEDIHARDJO, THOMAS STROHMER, AND ROMAN VERSHYNIN

Due to Theorem 1.7, this establishes (1.4).

APPENDIX A. THE METRIC ENTROPY OF THE SET OF ALL PROBABILITY
MEASURES

Lemma A.1. Let 0 < γ < 1. The γ-covering number of the set Z of all probability
measures on [0, 1]d with respect to the 1-Wasserstein distance is at most exp(( 5γ )d).

Proof. Let n = d 2γ e and S = { 1n , . . . ,
n
n}

d. We denote

Λ =

∑
x∈S

axδx :
∑
x∈S

ax = 1, ax ∈
{

0

|S|
,

1

|S|
, . . . ,

|S|
|S|

}
∀x ∈ S

 .

Then |Λ| coincides with the number of ways to distribute |S| unlabeled balls into
|S| bins. So

|Λ| =
(

2|S| − 1

|S| − 1

)
≤ 4|S| = exp(nd ln 4) ≤ exp

((
5

γ

)d)
.

It remains to show that every probability measure µ on [0, 1]d has 1-Wasserstein
distance at most 2

n from a measure in Λ. First in view of the set S, there is a
probability measure ν supported on S such that W1(µ, ν) ≤ 1

n . We now show that
ν has 1-Wasserstein distance at most 1

n from a measure in Λ.
By induction on d, one can construct an enumeration x1, . . . , x|S| of S such that

|S|−1∑
k=1

‖xk+1 − xk‖∞ ≤ nd−1 −
1

n
≤ nd−1.

In other words, a “travelling salesman” can visit every point in S by travelling a
total distance of at most nd−1.

We now construct a measure in Λ based on the measure ν as follows. Write
ν({x1}) = m1+ω1

|S| where m1 ∈ {0, . . . , |S| − 1} and 0 ≤ ω1 ≤ 1. The salesman
moves the weight ω1

|S| from x1 to x2.
Next write ν({x2}) + ω1

|S| = m2+ω2
|S| where m2 ∈ {0, . . . , |S| − 1} and 0 ≤

ω2 ≤ 1. The salesman moves the weight ω2
|S| from x2 to x3. Continue until the last

step: the salesman moves the weight
ω|S|−1

|S| from x|S|−1 to x|S|. Because all the
probabilities sum up to 1, the new weight of x|S| must be an integer multiple of 1

|S| .
So after moving all the weights, the new probability measure is in Λ.

Finally let us sum up the weights times the distances moved. We have

|S|−1∑
k=1

ωk
|S|
‖xk+1 − xk‖∞ ≤

|S|−1∑
k=1

1

|S|
‖xk+1 − xk‖∞ ≤

nd−1

|S|
=

1

n
. �
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