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Federated learning (FL) is a distributed machine learning approach that enables
multiple local clients and a central server to collaboratively train a model while
keeping the data on their own devices. First-order methods, particularly those in-
corporating variance reduction techniques, are themost widely used FL algorithms
due to their simple implementation and stable performance. However, these meth-
ods tend to be slow and require a large number of communication rounds to reach
the global minimizer. We propose FedOSAA, a novel approach that preserves the
simplicity of first-order methods while achieving the rapid convergence typically
associated with second-order methods. Our approach applies one Anderson accel-
eration (AA) step following classical local updates based on first-order methods
with variance reduction, such as FedSVRG and SCAFFOLD, during local training.
This AA step is able to leverage curvature information from the history points and
gives a new update that approximates the Newton-GMRES direction, thereby sig-
nificantly improving the convergence. We establish a local linear convergence rate
to the globalminimizer of FedOSAA for smooth and strongly convex loss functions.
Numerical comparisons show that FedOSAA substantially improves the commu-
nication and computation efficiency of the original first-order methods, achieving
performance comparable to second-order methods like GIANT.

1. Introduction
We consider a standard federated learning (FL) [1] architecturewhere a set of clients collaboratively
work with a central server to train a model, with the objective function defined as follows:

min
w∈Rd

f(w) =
∑K

k=1

Nk

N
fk(w). (1)

Here,K is the number of clients,N =
∑K

k=1 Nk, and f : Rd → R represents the global function and
is a weighted average of local clients’ objective functions fk. In various machine learning problems,
such as classification and regression, fk could be the empirical risk minimization function which
depends on the private data of each client, with Nk representing the number of local data points.
The minimum of f is denoted as f∗.
Federated learning typically involves two phases that alternate periodically during training: (1) at
iterate wt, clients perform local updates to minimize its own local loss function, and (2) the server
aggregates these local updates wt

k to update the global model as wt+1 =
∑K

k=1
Nk

N wt
k, which is

then transmitted back to the clients. This setup inherently presents two key challenges: minimizing
communication overhead between clients and the server, and ensuring efficient local computation
on each client’s side. Addressing these challenges is critical for FL algorithms.
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Various FL optimization algorithms have been proposed. The efficiency of first-order methods
makes them particularly appealing, leading to many variants. The basic benchmark algorithm is
FedAvg [1], where the client optimization phase involves multiple local (stochastic) gradient de-
scent (GD) steps. However, FedAvg suffers from the client-drift effect, where the local iterates of
each client tend to drift towards the minimum of their local loss function rather than the true global
minimum, due to the heterogeneity between the local function fi and the global function f . To mit-
igate this issue and ensure convergence to the global minimum, FedAvg often requires a small or
diminishing local stepsize [2, 3]. The optimal convergence rate to the global minimum for FedAvg
is sublinear even for strongly convex problems.
An alternative approach is to apply variance reduction techniques to correct client drift in local
updates. Examples include SAG [4], SAGA [5], FedSVRG [6] (equivalently, FedLin [7]), SCAF-
FOLD [2], and FedProx [8], etc. These methods typically exhibit better convergence performance
and are less affected by heterogeneity. For instance, the convergence of FedSVRG improves to a lin-
ear rate with a constant local stepsize under arbitrary heterogeneity. Despite these improvements,
first-order methods generally suffer from slow convergence even with fine-tuned local stepsizes,
causing a high number of communication rounds needed to reach the global minimizer.
This motivates the development of accelerationmethods such asmomentum-basedmethods [9, 10]
and second-order methods. The latter category includes algorithms such as Disco [11], DANE [12],
GIANT [13], FedNL [14], and the FederatedQuasi-Newtonmethod [15]. TheseNewton-typemeth-
ods achieve faster convergence by utilizing curvature information, often in combination with vari-
ance reduction techniques to find the global minimizer [13, 15]. For instance, during local training,
GIANT solves a local Newton direction with the global gradient transmitted from the server in-
stead of using the local gradient. However, despite their advantages, second-order methods may
face challenges such as accessing the Hessian.
In this work, we are interested in developing a method that is easy to implement and enjoys fast
convergence. Our motivation is from Anderson acceleration (AA), which is also known as Ander-
son mixing and is typically used to accelerate conventional fixed-point iterations by mixing history
points. It can be regarded as a quasi-Newton method whose approximate Jacobian inverse satisfies
a multisecant equation [16]. AA is known for its simplicity and significantly improved convergence
performance, with wide applications in fields such as electronic structure calculations [16, 17], fluid
dynamics [18], geometrical optimization [19], and more recently machine learning [20, 21]. We
note that a recent study on the Alternating Anderson-Picard (AAP) method [22] demonstrated
that AAP effectively approximates the Newton-GMRES directions at each step when the residual of
the fixed-point iteration is small. This highlights the potential of AAP as an alternative to Newton-
type methods, as it does not require access to the Hessian. These qualities make Anderson accel-
eration (AA) particularly attractive for machine learning applications. However, the use of AA in
distributed optimization problems, including federated learning, has been relatively limited thus
far.
Our contributions in this paper can be summarized below:

• We proposed a novel method called FedOSAA, which applies one Anderson acceleration
(AA) step following classical local updates based on first-order methods with variance re-
ducation such as FedSVRG and SCAFFOLD, during local training. This AA step is able to
leverage curvature information from the history points and gives a newupdate that approx-
imates the Newton-GMRES direction, thereby significantly accelerating the convergence.
We note that the Newton-GMRES direction here is equivalent to the Newton-MINRES di-
rection since the Hessian matrix is symmetric [23].

• We established a local linear convergence rate of FedOSAA to the global minimizer for
smooth and strongly convex loss functions.

• We provide numerical examples demonstrating that FedOSAA improves the communi-
cation and computation efficiency of original first-order methods, achieving performance
comparable to second-order methods like GIANT.
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2. FedOSAA: Related Work and Algorithm
In this section, we outline the motivation behind our proposed algorithm. We begin by reviewing
classical first-order federated learning (FL) methods that leverage variance reduction techniques
to mitigate client drift. These methods perform (stochastic) gradient descent on a "corrected" local
objective function, enabling accelerated convergence to the global minimizer even with aggressive
local updates. However, as the number of local epochs increases, the computational cost for each
client grows. Next, by reformulating the gradient descent step as a fixed-point iteration, it is natural
to apply AA to speed up the local training bymixing the history points generated by the (stochastic)
gradient descent steps. Finally, we introduce the proposed FedOSAA algorithm, which integrates
an additional AA step into existing first-order methods to improve the convergence.

2.1. Variance-Reduced First-Order Methods

In the centralized setting, the ideal update is wt+1 = wt − η∇f(wt). However, in FL, client-drift
effect is a common challenge. For example, in FedAvg, the local updateswt

k,ℓ+1 = wt
k,ℓ−η∇fk(wt

k,ℓ)
converge to minimizers for local objectives. Therefore, FedAvg converges to the average of these
local minimizers, which is not necessarily the minimizer for the global objective function.
To address this issue, variance reduction techniques such as SAG, SAGA, FedSVRG, and SCAFFOLD
can be applied to correct client drift in local updates, thereby improving convergence. In this work,
we consider specifically FedSVRG and SCAFFOLD, the details of which are given below. For con-
venience, we denote the mini-batch (stochastic) gradient as ∇fk(w; ζ), where ζ is a random subset
of client k’s dataset.
FedSVRG, Federate Stochastic Variance ReducedGradientmethod, mitigates client drift by introduc-
ing a gradient correction term in the local loss function. Specifically, at iteration t, the central server
first computes and transmits the global gradient ∇f(wt) to each local client. The clients then per-
form corrected (stochastic) gradient descent (GD) steps with the difference∇f(wt)−∇fk(wt; ζ) as
the gradient correction. This enables local clients to leverage the global gradient to account for ob-
jective function heterogeneity, and FedSVRG is shown to converge linearly for smooth and strongly
convex loss functions [6, 7]. However, the global gradient computation at the server requires an
additional communication round.
SCAFFOLD [2], the Stochastic Controlled Averaging algorithm, instead introduces the server con-
trol variate c and the client control variate ck, which are used to estimate the update directions for
the server model and each client model, respectively. The difference c− ck estimates the client drift,
which is used to correct local updates as in FedSVRG. The advantage of SCAFFOLD is that it does not
require the transmission of the exact global gradient ∇f(wt) between server and clients, reducing
one round of communication in each global iteration. Here is an example of SCAFFOLD. At iterate
wt, one uses the control variates as ck = ∇fk(wt−1), c = ∇f(wt−1) with information from the last
iteration, update ck = ∇fk(wt), and send ck to the server along with the new local updatewt

k. The
server updates server variate accordingly as c =∑k

Nk

N ck = ∇f(wt) and wt+1 =
∑

k
Nk

N wt
k. Com-

pared to FedSVRG, SCAFFOLD only converges sublinearly. Note that different control variates can
be used. In this paper, we consider ck = ∇fk(wt−1) and c = ∇f(wt−1).
Both FedSVRG and SCAFFOLD significantly improve convergence over FedAvg [2, 7]. The sum-
mary of FedSVRG and SCAFFOLD is as follows: the local updates can be regarded as (stochastic)
gradient descent on the following objective functions:

• FedSVRG: fk(w) + ⟨∇f(wt)−∇fk(wt),w⟩;
• SCAFFOLD: fk(w) + ⟨c− ck,w⟩;
• SCAFFOLD (this paper): fk(w) + ⟨∇f(wt−1)−∇fk(wt−1),w⟩.

The gradients of these new local functions approximate the global gradients∇f(w) such that when
wt is close to the globalminimizerw∗, the corrected local gradient is close to global gradient∇f(wt)
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even though the local gradientsmight bemuch larger than it. Thus, FedAvg often requires the use of
a small or diminishing local stepsize to reach the global minimizer while FedSVRG and SCAFFOLD
allow “aggressive” local updates and faster convergence.
Although FedSVRG and SCAFFOLD improve the convergence of FedAvg in the data heterogeneous
configuration, they are still first-order FL methods and can take many iterations to converge. This
motivates us to develop acceleration methods without losing the simplicity of first-order methods.

2.2. Anderson Acceleration
Anderson acceleration (AA) is a scheme developed to accelerate the convergence of conventional
fixed-point iterations by mixing history points. Let w = g(w) denote the fixed-point mapping and
r(w) = g(w) −w denote the residual. We note that gradient descent steps wt+1 = wt − η∇h(wt)
to minimize a general function h can be regarded as fixed-point iterations, also known as Picard
iterations, on mapping w 7→ w − η∇h(w) whose the residual function is −η∇h(w). Additionally,
with a proper local learning rate η, this mapping is contractive, as shown in [2, Lemma 6].
Now, we introduce the main idea of AA. At iterationwt, assume that we havem+ 1 history points
{wt−i}mi=0 and residuals {r(wt−i)}mi=0. AA is amixing scheme that aims to find a linear combination
of history points that has minimal residual. The mixing coefficient α is determined by solving a
constrained least squares (LS) problem

αt = arg min
α∈Rm+1

∥∥ m∑
i=0

αir(w
t−i)

∥∥2 s.t.
m∑
i=0

αi = 1. (2)

The AA update wt+1 is computed by mixing the fixed-point evaluations of history points with co-
efficients α, i.e.,

wt+1 =
∑m

i=0 α
t
ig(w

t−i) =
∑m

i=0 α
t
iw

t−i +
∑m

i=0 α
t
ir(w

t−i), (3)
which is often closer to the solution than the history points or their linear combination∑m

i=0 α
t
iw

t−i.
AA can be reformulated as a multisecant quasi-Newton method. Specifically, let S :=
[s0, s1, . . . , sm−1] ∈ Rd×m and Y := [y0,y1, . . . ,ym−1] ∈ Rd×m with si = wt−i − wt−i−1 and
yi = r(wt−i)− r(wt−i−1). The AA update wt+1 in (3) can be written as

wt+1 = wt −H−1r(wt), (4)
where H−1 = I + (S − Y )(Y TY )−1Y T . (5)

It can be verified that H−1 is an approximate Hessian inverse that satisfies the inverse multise-
cant equation H−1Y = S. Thus, AA can exploit the curvature information to accelerate conver-
gence as other quasi-Newton methods. Meanwhile, we have ∥r(wt) − Y (Y TY )−1Y T r(wt)∥ =
∥(I − ProjY )r(wt)∥ =

∥∥∑m
i=0 α

t
ir(w

t−i)
∥∥ . The convergence analysis of AA has been a hot topic in

recent years. The local convergence of AA has been established in [24–27], and AA improves the
convergence rate of a fixed-point iteration to first order by a factor of the optimization gain [26], a
special term arising in AA defined as ∥(I − ProjY )r(wt)∥/∥r(wt)∥.

The simplicity and improved convergence rate of AA makes it an attractive choice for accelerat-
ing machine learning applications [20, 21, 28]. However, its application to distributed optimiza-
tion problems, such as FL, has been relatively limited [29, 30] and remains an area ripe for fur-
ther exploration. In practice, AA may become numerically unstable if performed at each iteration.
Instead, a recent work, [22], shows that the alternating Anderson-Picard (AAP) method, where
multiple fixed-point iterations are performed between the AA steps, is more stable in many sce-
narios. More interestingly, AAP is shown to approximate the Newton-GMRES update after each
AA step [22, Theorem 4.5]. At the iterate wt, as an example, given m history points generated by
fixed-point iteration satisfying wt−i+1 = g(wt−i), i = 1, 2, · · ·m, the AA update is equivalent to
wt+1 = wt − pt − [Btpt − r(wt)], where

pt := arg min
p∈Km(Bt,r(wt))

∥Btp− r(wt)∥2
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is the multisecant-GMRES direction. Here, Bt is a multisecant matrix satisfying BtS = Y , and
it converges to the Jacobian r′(wt) when the residual r(wt) goes to zero. The notation Km(A, b)
represents them-th Krylov subspace generated by the matrixA and the vector b, thus pt closely ap-
proximates the Newton-GMRES direction when the residual is small. Meanwhile, the optimization
gain of the AA step converges to the Newton-GMRES gain when GMRES(m) is employed to solve
for a Newton direction at wt:

1

∥r(wt)∥
min

p∈Km(r′(wt),r(wt))
∥r′(wt)p− r(wt)∥, (6)

as shown in [22, Theorem 4.8]. We note that the Newton-GMRES direction here is equivalent to the
Newton-MINRESmethod since the Hessian is symmetric [23]. This approach has been shown to be
efficient and robust by introducing multiple "slow" fixed-point iterations before each AA step [22].

2.3. Proposed Algorithm: FedOSAA
Motivated by the success of Newton-type FLmethods and favorable properties of AAP, we propose,
during local updates, applying one-step AA after multiple variance-reduced first-order iterations
to extrapolate new points and accelerate convergence, aptly called Federated One-Step Anderson Ac-
celeration (FedOSAA).
The algorithm can be regarded as a Federated AAP method. The variance-reduced first-order it-
erations serve to generate local points wt

k,ℓ by (stochastic) gradient descent steps, while the AA
step leverages curvature information from these points and approximately performs the Newton-
GMRES step on the corrected local functions. This enables the algorithm to achieve convergence
performance comparable to that of second-order methods such as GIANT, which follows a local
Newton-CG direction on the corrected local functions; see appendix C for more details. Addition-
ally, FedOSAA can be easily integrated into existing variance-reduced first-order FL algorithms,
enhancing convergence across various local learning rates, as demonstrated in the numerical ex-
amples. However, it is important to note that FedOSAA is not applicable to FedAvg, which has no
gradient correction during local updates (Appendix D.4).
We provide two examples of the proposed FedOSAA algorithm. The first is FedOSAA-SVRG,which
applies AA to the FedSVRG algorithm, as presented in Algorithm 1. The second algorithm is
FedOSAA-SCAFFOLD, which applies AA to the SCAFFOLD algorithm, as shown in Algorithm 2 in
the appendix. The FedOSAA algorithm is highly flexible and there are options to further improve
the performance; see the discussion in Appendix A.

3. Theoretical Analysis
In this section, we analyze the convergence properties of the proposed FedOSAAalgorithm, referred
to as FedOSAA-SVRG with full-batch gradients used in its gradient descent steps, i.e., Bk = Nk.
Assumption 1. Assume that each local function fk is β-smooth and µ-strongly convex, and that its Hessian
∇2fk(w) is Lipschitz continuous. Additionally, the local learning rate satisfies η < 1

β .

Most existing FL algorithms provide convergence guarantees under similar assumptions. For ex-
ample, FedSVRG guarantees linear convergence to the global minimum under smooth and strongly
convex conditions [7]. Similarly, GIANT is shown to have local linear-quadratic convergence guar-
antee under smooth and strongly convex assumptions [13]. Meanwhile, the assumption that fk
has a Lipschitz continuous Hessian is common in Newton-type methods. Furthermore, the upper
bound on η guarantees that the mapping w 7→ w − η∇fk(w) is contractive:

∥ (u− η∇fk(u))− (v − η∇fk(v)) ∥ ≤
√

1− ηµ∥u− v∥, ∀u,v, (8)
as shown in Lemma 6 of [2]. The contractiveness of the mapping and the following assumptions on
the matrices St

k, used in the AA step during local updates, are crucial for ensuring the convergence
of the AAP method; see Theorem 5.5 of [22].
Assumption 2. The condition number of St

k is uniformly bounded for all t and k.
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Algorithm 1 FedOSAA-SVRG: Federated One-Step Anderson Acceleration with SVRG
1: Initialization: w0 ∈ Rd, batchsize Bk, local learning rate η, local epoch L
2: for global iteration t = 0 to T do
3: /∗ Central Server ∗/
4: Compute global gradient ∇f(wt) =

∑K
k=1

Nk

N ∇fk(w
t)

5: Broadcast wt and ∇f(wt) to local clients
6: /∗ Local Updates in Parallel ∗/
7: for each client k ∈ [1,K] do
8: wt

k,0 ← wt

9: /∗ Take L local steps with corrected gradients ∗/
10: for ℓ = 0 to L− 1 do
11: /∗ Compute the same mini-batch gradients where |ζk,ℓ| = Bk ∗/
12: rtk,ℓ ← ∇fk(wt

k,ℓ; ζk,ℓ)−∇fk(wt; ζk,ℓ) +∇f(wt)

13: wt
k,ℓ+1 ← wt

k,ℓ − ηrtk,ℓ
14: end for
15: /∗ Take one Anderson Acceleration step ∗/
16: Set St

k ← [s0, s1, . . . , sL−1]with sℓ ← wt
k,ℓ+1 −wt

k,ℓ

17: Set Y t
k ← [y0,y1, . . . ,yL−1]with yℓ ← rtk,ℓ+1 − rtk,ℓ

18: Compute wt
k ← wt −H−1

k ∇f(wt)where
H−1

k ← ηI + (St
k − ηY t

k)[(Y
t
k)

TY t
k]

−1(Y t
k)

T (7)
19: Send local update wt

k to the central server
20: end for
21: /∗ Central Server ∗/
22: Update wt+1 ←

∑
k

Nk

N wt
k

23: end for

3.1. Convergence Analysis
In this subsection, we first show the gain from the AA step on the local updates and then provide
the convergence analysis of FedOSAA. Recall that the local points are equivalent to GD iterations
on the corrected local function:

f t
k(w) := fk(w) + ⟨∇f(wt)−∇fk(wt),w⟩,

satisfying ∇f t
k(w

t) = ∇f(wt) and ∇2f t
k(w

t) = ∇2fk(w
t). For the AA step, we define the local

optimization gain as

θtk :=
∥(I − ProjY t

k
))∇f t

k(w
t)∥

∥∇f t
k(w

t)∥
=
∥(I − ProjY t

k
))∇f(wt)∥

∥∇f(wt)∥
≤ 1, (9)

which converges to the local Newton-GMRES gain defined in (10). We further define constants

δtk :=
∥∇f t

k(w
t
k)∥

∥∇f t
k(w

t)∥
=
∥∇f t

k(w
t
k)∥

∥∇f(wt)∥
, and ρt := min

k

[
(1− δtk)

2

L
− (1 + δtk)δ

t
k

µ
− L(1 + δtk)

2

2µ2

]
.

Lemma 3. Under Assumptions 1 and 2, given that ∥∇f(wt)∥ is sufficiently small, we have δtk ≈√
1− µη θtk ≤ 1. Further, if fk is quadratic, δtk =

√
1− µη θtk ≤ 1.

The following theorems demonstrate that our algorithm converges to the global minimum f∗ with
a linear convergence rate in two scenarios according to Lemma 3.
Theorem 4 (Quadratic loss). Under Assumptions 1 and 2, assume that each fk is quadratic. If 0 < ρt < 1,

f(wt+1)− f∗ ≤ (1− ρt

2µ
)(f(wt)− f∗).
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Theorem 5 (General loss). Under Assumptions 1 and 2, ifw0 is sufficiently close to the global minimizer
and 0 < ρt < 1, we have

f(wt+1)− f∗ ≤ (1− ρt

2µ
)(f(wt)− f∗).

The proofs of the results above can be found in Appendix B.

3.2. The Constant δtk
We can see that the convergence rate is directly influenced by the constant δtk, which is shaped by
the product of two terms: √1− ηµ and the local optimization gain θtk. The first term

√
1− ηµ comes

from the Lipschitz constant of the fixed-point mapping as in Equation (8). The local optimization
gain can be estimated by the local Newton-GMRES gain. Specifically, based on Theorem 4.8 of [22],
and given that ∇f t

k(w
t) = ∇f(wt) and ∇2f t

k(w
t) = ∇2fk(w

t), when ∇f t
k(w

t) is sufficiently small,
θtk converges to the local Newton-GMRES gain

θ̂tk :=
1

∥∇f(wt)∥
min

p∈KL(∇2fk(wt),∇f(wt))
∥∇2fk(w

t)p−∇f(wt)∥. (10)

When∇2fk(w
t) is positive definite, this Newton-GMRES gain can be bounded by θ̂tk ≤ 2

(√κ−1√
κ+1

)L
=

2
(
1− 2√

κ+1

)L
, where κ is the condition number of ∇2fk(w

t) [23]. The distance between θtk and θ̂tk
is bounded by O(η∥∇f t

k(w
t)∥) [22], thus we have

θtk ≤ 2
(√κ− 1√

κ+ 1

)L
+O(η∥∇f t

k(w
t)∥).

Recall that ∇f t
k(w

t) = ∇f(wt). Thus, when the global gradient ∇f(wt) is small enough, we have

δtk ≲ 2
√

1− ηµ
(
1− 2√

κ+ 1

)L
.

A smaller learning rate η may slightly worsen the bound and slow the convergence as shown in the
numerical section. Further discussion on the comparison of FedOSAA with existing work such as
DANE, GIANT, FedSVRG can be found in Appendix C, as well as the convergence properties of
other FedOSAA variants.

4. Numerical Experiments
In this section, we shownumerical comparisons on regularized logistic regression problems to show
the superiority of the proposed FedOSAA algorithms. More experiments such as the performance
of training neural networks (NNs) can be found in Appendix D. By default, the data are randomly
and equally partitioned among K local clients, mimicking an IID (independently and identically
distributed) data distribution. The loss functions are still heterogeneous under this setting.
We compare the FedOSAA algorithms with various state-of-the-art methods, including first-order
methods such as FedAvg, FedSVRG and SCAFFOLD, as well as second-order methods such as L-
BFGS,Newton-GMRES andGIANT. The default FedOSAA algorithm is referred to as FedOSAA-
SVRG with full-batch gradients used in its gradient descent steps. The details of these algorithms
including the communication cost can be found in Appendix D.1. Here, GIANT corresponds to the
Newton-CG method [13]. The larger the local epoch L (the number of CG iterations, q, in GIANT;
the number of GMRES iterations, q, in Newton-GMRES), the more local computation time is used.
Each aggregation round, or equivalently, each global iteration, corresponds to two communication
rounds for all algorithmsmentioned above, except for SCAFFOLD and FedOSAA-SCAFFOLD.Note
that both Newton-GMRES and GIANT require access to the Hessian matrix. Moreover, since the
Hessian matrix is symmetric, the Newton-GMRES method is equivalent to the Newton-MINRES
algorithm [31]. In all algorithms, we set the default L = q = 10 such that the local computation cost
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of each algorithm is roughly the same, and the default learning rate η = 1. See Appendix D.3 for a
detailed explanation.
The logistic regression problem with ℓ2 regularization can be formulated as

min
w∈Rd

1

N

∑N
j=1 log

(
1 + exp

(
−yjwTxj

))
+

γ

2
∥w∥22, (11)

wherexj ∈ Rd is a feature vector and yj ∈ {−1, 1} is the corresponding response. For an unseen fea-
ture x̂, the logistic regression learns a binary classifier that makes the prediction by ŷ = sgn

(
wT x̂

).
This is a strongly convex problemwith γ approximating the strongly convex constant. By default, we
set γ = 0.001. The FL algorithms are compared on two classical datasets: Covtype (N = 581, 012 and
d = 54) and w8a (N = 49, 749 and d = 300). Both datasets are available at the LIBSVMwebsite [32].
The initial point is set asw0 = 0. The results are evaluated using the relative error ∥wt−w∗∥/∥w∗∥,
where w∗ denotes the global minimizer.
The first task is to evaluate the improvement of FedOSAA variants over their corresponding first-
ordermethods, specifically FedSVRGand SCAFFOLD.As FedOSAAapproximates the performance
of Newton-GMRES, we also show the performance of Newton-GMRES for comparison. The eval-
uation is conducted by varying the local learning rate η, local epoch L, and the batch size Bk. The
results, presented in Figure 1, demonstrate that FedOSAA significantly outperforms both FedSVRG
and SCAFFOLD in nearly all scenarios and approximates the performance of Newton-GMRESwith
proper learning rates. From Figure 1 (a) and (d), we see that FedOSAA variants improve conver-
gence across a wide range of local learning rates, even when η is as small as 0.01. This observation
aligns with our theory that FedOSAA effectively approximates the local Newton-GMRES method,
even with small learning rates, thereby maintaining its efficiency without accessing Hessian, which
is an advantage of FedOSAA over Newton-GMRES. Note that both methods fail to converge with
a large local learning rate, e.g., η = 5, while the optimal learning rate of the first-order method is
η = 2/β ≈ 4. From Figure 1 (b) and (e), we observe that FedOSAA improves the convergence
of first-order methods significantly even with only a few local epochs. Notably, FedOSAA-SVRG
with L = 3 is comparable to FedSVRG with L = 30, and a similar result is seen for FedOSAA-
SCAFFOLD. This shows the efficiency of FedOSAA in local computation. Finally, as shown in Fig-
ure 1 (c), FedOSAA-SVRG performs well for batch sizes Bk ranging from 5 to 5810. It is important
to note that there is no stochastic process when Bk = 5810. However, while FedOSAA-SCAFFOLD
improves the convergence with full-batch gradient updates, it fails in mini-batch scenarios possibly
due to inaccurate server control variate.
We also compare FedOSAAwith the state-of-the-art methods under various data distributions [33]:

• IID: The default setting.
• Imbalance: In this scenario, some clients have significantly more data than others. The

largest client has 50% of the data, while the smallest has only 0.2%.
• Label-skew: Data are randomly and almost equally partitioned, but each client has data

with the same label.

In all scenarios, the local objective functions are heterogeneous. However, the latter two cases
demonstrate notably higher heterogeneity, as their data distributions are significantly more diverse
in our setting. Here, we set K = 10 for easier adjustment of the extreme imbalance ratio, although
similar results are expected withK = 100. The result is shown in Figure 2. We can see that second-
order methods consistently outperform first-order methods, regardless of the degree of heterogene-
ity. Both our algorithm and GIANT demonstrate comparable convergence efficiency and consis-
tently outperform the one-step L-BFGS method, the classic quasi-Newton approach. Additionally,
in the label-skewed case, GIANT may diverge, as seen in (f). However, FedOSAA still successfully
finds the global minimizer with a small local learning rate and is comparable with GIANT for the
first few iterations.
Further comparisons across different configurations can be found in Appendix D.
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(a) different η (b) different L (c) different Bk

(d) different η (e) different L (f) different Bk

Figure 1: Comparative analysis on the covtype dataset by varying the local learning rate η (first
column), the number of local epochs L (second column), and the batch size Bk (third column).
The first row compares FedOSAA-SVRG with FedSVRG and Newton-GMRES, while the second
row compares FedOSAA-SCAFFOLD with SCAFFOLD. The number of clients is set to K = 100,
with Nk = 5810 data points on each client.

(a) covtype: IID (b) covtype: Imbalance (c) covtype: Label-Skew

(d) w8a: IID (e) w8a: Imbalance (f) w8a: Label-Skew
Figure 2: Comparative analysis on the different datasets and data distributions. We set K = 10.
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5. Conclusion
Weproposed FedOSAA, a novel schemewhich accelerates the convergence of first-order FLmethods
by performing anAA step on each client before aggregation. The convergence property of FedOSAA
is analyzed and the performance of FedOSAA is compared to other state-of-the-art FL solvers for
logistic regression problems with various data distributions. The numerical results demonstrated
that FedOSAA accelerates the convergence of first-order FL solvers and achieves performance com-
parable to a Newton-CG based solver, GIANT, without requiring Hessian information. Future work
includes the incorporation of compression techniques to reduce the communication cost, investiga-
tion of privacy-preserving FLmethods based on FedOSAA, and extension of FedOSAA to the partial
client participation and asynchronous communication scenarios.
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A. FedOSAA-SCAFFOLD and General Strategies for Improving
FedOSAA

Below is the description of FedOSAA-SCAFFOLD, where we apply one-step AA on the SCAFFOLD
method [2] during local training. Here we used local client control variates ck = ∇fk(wt)which is
more stable.

Algorithm 2 FedOSAA-SCAFFOLD: Federated One-Step Anderson Acceleration with SCAFFOLD
1: Initialization: w0 ∈ Rd, batchsize Bk, local learning rate η, local epoch L, server input c = 0,

client k’s input ck = 0
2: for global iteration t = 0 to T do
3: /∗ Central Server ∗/
4: Broadcast wt and c to local clients
5: /∗ Local Updates in Parallel ∗/
6: for each client k ∈ [1,K] do
7: wt

k,0 ← wt

8: /∗ collect local points and their gradients ∗/
9: for ℓ = 0 to L do
10: /∗ Compute mini-batch gradients where |ζk,ℓ| = Bk ∗/
11: rtk,ℓ ← ∇fk(wt

k,ℓ; ζk,ℓ)− ck + c

12: wt
k,ℓ+1 ← wt

k,ℓ − ηrtk,ℓ
13: end for
14: /∗ take one Anderson Acceleration step ∗/
15: Set St

k ← [s0, . . . , sL−1]with sℓ ← wt
k,ℓ+1 −wt

k,ℓ

16: Set Y t
k ← [y1, . . . ,yL]with yℓ ← rtk,ℓ+1 − rtk,ℓ

17: Compute wt
k ← wt −H−1

k c where
H−1

k ← ηI + (St
k − ηY t

k)[(Y
t
k)

TY t
k]

−1(Y t
k)

T (12)
18: Update ck = ∇fk(wt)
19: Send local update wt

k, ck to the central server
20: end for
21: /∗ Central Server ∗/
22: Update wt+1 ←

∑
k

Nk

N wt
k, c←

∑
k

Nk

N ck
23: end for

Below are options which may further improve the performance of FedOSAA:

• Clients can save historical points for use in the AA step in the next round.
• Use filtering techniques to remove linearly dependent columns in Y t

k and increase the sta-
bility when solving the least square problem in each AA step [34].

• Apply the moving average to the local iterations when using a stochastic gradient [28].
• Apply regularization terms in the AALS problem, apply damping ratio in the AA step [35].
• Apply line search methods, similar to other Newton-based methods, when function evalu-

ations are not expensive.

B. Proofs of Section 3.1
Here we provide the proofs of Lemma 3 and Theorem 4 and 5.
Proof of Lemma 3.

Proof. Note that the local points are generated by gradient descent iterations on the corrected func-
tion f t

k(w) = fk(w) + ⟨∇f(wt) − ∇fk(wt),w⟩, which can be regarded as fixed-point iterations on
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the mapping g(w) = w−η∇f t
k(w). The local updates fromwt towt

k corresponds to one global iter-
ation of the AAP method [22] to solve w = g(w). The residual function of the fixed-point function
is r(w) = −η∇f t

k(w). Additionally, under Assumption 1, it is a contractive fixed-point mapping
with contractive constant √1− ηµ.
Following Theorem 5.2 of [22], we have that when f t

k is quadratic,

∥η∇f t
k(w

t
k)∥ ≤

√
1− ηµθtk∥η∇f t

k(w
t)∥;

whenf t
k is general, denoting the Hessian Lipschitz constant as γ and the condition number of St

k as
κ, we have the residual ∥η∇f t

k(w
t
k)∥ is bounded by two terms:

∥η∇f t
k(w

t
k)∥

≤
√
1− ηµθtk∥η∇f t

k(w
t)∥+

√
1− (θtk)

2∥(Bt
k)

−1∥ · ∥
[
γ

2

√
1− (θtk)

2
∥∥(Bt

k)
−1
∥∥+ γL1.5κ

] ∥∥η∇f t
k(w

t)
∥∥2 .

Here Bt
k is any multisecant matrix satisfies the multisecant equation Bt

kS
t
k = Y t

k and there exists
multisecant matrix Bt

k converges to r′(wt), equivalently −η∇2f t
k(w

t), as the residual ∥η∇f t
k(w

t)∥
goes to 0. Note that ∥r′(w)−1∥ ≤ 1

µ . Thus, under Assumption 2, the coefficient of the second term
is upper bounded when the residual is sufficiently small. It follows that if ∇f t

k(w
t) = ∇f(wt) is

sufficiently small, we have δtk ≈
√
1− µη θtk ≤ 1.

Proofs of Theorem 4 and Theorem 5

We present some useful preliminary results that will be used in the final proof:

• It is straightforward to verify that if each local function fk is β-smooth and µ-strongly con-
vex, then f t

k for all t and the global function f are also β-smooth and µ-strongly convex.
Therefore, we have the following inequalities:〈

∇f t
k (u)−∇f t

k(v),u− v
〉
≥ 1

β

∥∥∇f t
k (u)−∇f t

k(v)
∥∥2 , (13)

∥∇f(w)∥2 ≥ 2µ (f(w)− f∗) , (14)

for all u,v,w ∈ Rd. These results follow from Lemma 5 in [9].
• The Bregman divergence of a function h is defined as:

Dh(u,w) = h(u)− h(w)− ⟨∇h(w),u−w⟩.

If h is β-smooth, we have:
Dh(u,w) ≤ β

2
∥u−w∥2.

• Assuming ∥∇f t
k(w

t
k)∥ = δtk∥∇f t

k(w
t)∥with δtk ≤ 1, we have

– The gradient difference is bounded by:

∥∇f t
k(w

t
k)−∇f t

k(w
t)∥ ≥ (1− δtk)∥∇f t

k(w
t)∥, (15)

∥∇f t
k(w

t
k)−∇f t

k(w
t)∥ ≤ (1 + δtk)∥∇f t

k(w
t)∥, (16)

– The points difference is bounded by:

∥wt
k −wt∥ ≤ 1

µ
∥∇f t

k(w
t
k)−∇f t

k(w
t)∥ ≤ 1 + δtk

µ
∥∇f t

k(w
t)∥ = 1 + δtk

µ
∥∇f(wt)∥.

(17)
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Proof. Note that ∇f(wt) = ∇f t
k(w

t). Assuming ∥∇f t
k(w

t
k)∥ = δtk∥∇f(wt)∥with δtk ≤ 1, we have,

f(wt
k)

= f(wt) + ⟨∇f(wt),wt
k −wt⟩+Df (w

t,wt
k)

≤ f(wt) + ⟨∇f t
k(w

t),wt
k −wt⟩+ β

2
∥wt

k −wt∥2

≤ f(wt) + ⟨∇f t
k(w

t)−∇f t
k(w

t
k) +∇f t

k(w
t
k),w

t
k −wt⟩+ β(1 + δtk)

2

2µ2
∥∇f(wt)∥2

= f(wt)− ⟨∇f t
k(w

t
k)−∇f t

k(w
t),wt

k −wt⟩+ ⟨∇f t
k(w

t
k),w

t
k −wt⟩+ β(1 + δtk)

2

2µ2
∥∇f(wt)∥2.

By (13), we have the second term satisfies

⟨∇f t
k(w

t
k)−∇f t

k(w
t),wt

k −wt⟩ ≥ 1

β
∥∇f t

k(w
t
k)−∇f t

k(w
t)∥2 ≥ (1− δtk)

2

β
∥∇f(wt)∥2.

The third term can bounded as follows:
|⟨∇f t

k(w
t
k),w

t
k −wt⟩| ≤ ∥∇f t

k(w
t
k)∥∥wt

k −wt∥

≤ δtk∥∇f(wt)∥1 + δtk
µ
∥∇f(wt)∥

=
δtk(1 + δtk)

µ
∥∇f(wt)∥2.

Putting it all together, we have:
f(wt

k) ≤ f(wt)− ρtk∥∇f(wt)∥2 ≤ f(wt)− ρt∥∇f(wt)∥2, (18)

where ρtk =
[
(1−δtk)

2

β − (1+δtk)δ
t
k

µ − β(1+δtk)
2

2µ2

]
By the convexity of the global function f , we have the update wt+1 satisfies

f(wt+1) = f

(∑
k

Nk

N
wt

k

)
≤
∑
k

Nk

N
f(wt

k) ≤ f(wt)− ρt∥∇f(wt)∥2 ≤ f(wt)− ρt

2µ

(
f(wt)− f∗) ,

which implies:
f(wt+1)− f∗ ≤

(
1− ρt

2µ

)(
f(wt)− f∗) . (19)

According to Lemma 3, for quadratic loss, we directly have δtk ≤ 1, and Theorem 4 follows. For
general loss, given that ∥∇f(wt)∥ is sufficiently small, we have δtk ≤ 1 and Theorem 5 follows.

C. Related work

C.1. Connection to Related Work
The (inexact) DANE, Distributed Approximate NEwton, framework [9, 12] is a well-known
communication-efficient distributed method. The core idea is that each local client minimizes a
surrogate local objective function at the global iteration t:

ht
k(w) = fk(w)− ⟨∇fk(wt)− ν1∇f(wt),w⟩+ ν2∥w −wt∥2.

Note that ht
k(w) reduces to f t

k(w) when ν1 = 1 and ν2 = 0. If the local update wt
k satisfies the

inexactness level λ ∈ [0, 1) defined as
∥∥wt

k − ŵt
k

∥∥ ≤ λ
∥∥wt−1 − ŵt

k

∥∥, where ŵt
k := argminht

k(w) is
the minimizer of ht

k, then inexact DANE converges linearly to the global minimizer with the rate:[
(1− λ)2

ν1(β + ν2)
− 2β

(µ+ ν2)2
− 2λ(β + ν2)

ν1(µ+ ν2)2

]
ν21µ. (20)
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Although this bound indicates that a smaller inexactness level λ results in faster convergence, it is
not tight due to the limitations of the proof technique. Identifying the optimal level of inexactness
remains an open problem.
The local minimization problem ht

k(w) can be solved by various algorithms. Consequently, many
existing methods, including our approach, fall within the scope of inexact DANE. Here, we discuss
three key algorithms of interest: FedSVRG, FedOSAA-SVRG and GIANT:

• FedSVRG: The approximate solution is obtained by performing (stochastic) gradient de-
scent iterations starting from wt.

• FedOSAA-SVRG: The approximate solution is obtained by performing(stochastic) gradi-
ent descent iterations starting from wt, followed by one AA step.

• GIANT( Globally Improved Approximate Newton Direction): The approximate solution
is obtained by taking one inexact Newton step atwt. Specifically, Conjugate Gradient (CG)
is employed to solve the Newton problem. As a second-order approach, it requires access
to the Hessian matrix.

We argue that the additional AA step in FedOSAA-SVRG enables faster achievement of the potential
optimal level of inexactness compared to FedSVRG. Note that FedOSAA evaluates L+ 1 gradients.
According to Equation (8), it is straightforward to show that the local update of FedSVRGwithL+1
local epoches satisfies:

∥∇f t
k(w

t
k)∥ ≤ (

√
1− ηµ)L+1∥∇f t

k(w
t)∥,

with the constant (√1− ηµ)L+1 being larger than δtk in FedOSAA-SVRG, as shown in Lemma 3.
Considering that f t

k is strongly convex, this means that the local updates of FedOSAA-SVRG are
closer to the optimal solution of ht

k, leading to faster convergence. This observation is also confirmed
by numerical examples.
The connection between FedOSAA-SVRG and GIANT lies in the fact that both can be viewed as
local inexact Newton methods with the local update wt

k = wt − pt
k where

pt
k ≈ argmin

p
∥∇2f t

k(w
t)p−∇f t

k(w
t)∥,

or equivalently, as ∇f t
k(w

t) = ∇f(wt),
pt
k ≈ argmin

p
∥∇2fk(w

t)p−∇f(wt)∥

= ∇2fk(w
t)−1∇f(wt)

Furthermore, as ∇2f(wt) =
∑

k
Nk

N ∇
2fk(w

t), the core analysis of GIANT states that wt+1 =∑
k

Nk

N wt
k approximates an Newton step of the global function as

∇2f(wt)−1∇f(wt) ≈
∑
k

Nk

N
∇2fk(w

t)−1∇f(wt).

The result may also apply to FedOSAA with appropriate modifications. Furthermore, the CG
method used in GIANT requires the Hessian to be positive definite, while the AA step in FedOSA
can handle more general problems and does not require explicit access to the Hessian.
In summary, the one-step AA in FedOSAA improves the performance of FedSVRG and achieves a
comparable performance with second-order methods.

C.2. Further Discussion
In this section, we discuss the convergence properties of general FedOSAA algorithms.
FedOSAA-SVRG with stochastic processing can be understood as applying AA with inexact func-
tion evaluation. Specifically, at global iteration t, client k in FedOSAA-SVRG evaluates ∇fk(wt

k,ℓ).
When points are generated by a stochastic process, client k instead evaluates∇fk(wt

k,ℓ; ζk,ℓ). Under

16



standard stochastic algorithm settings, we may assume E(∥∇fk(w; ζk,ℓ) − ∇fk(w)∥) ≤ σ, where
σ represents the variance of noise introduced by the stochastic process. As noted by [36], errors
in function value evaluation can lead to stagnation in the convergence of AA, potentially slowing
down the convergence of FedOSAA, as demonstrated in the numerical session.
FedOSAA-SCAFFOLD can be viewed as a variant of FedOSAA-SVRG where an inexact global gra-
dient is passed to the local clients. Specifically, at global iteration t, FedOSAA-SVRG transmits the
current global gradient ∇f(wt) to each client before local updates, while FedOSAA-SCAFFOLD
transmits its substitute ∇f(wt−1) to each client.
Both cases introduce trade-offs in terms of convergence speed and accuracy, and the analysis of
other FedOSAA variants follows this.

D. Experiments

D.1. The Algorithms Mentioned in Section 4
Here is the summary of the algorithms.

• FedOSAA: There are two variants: FedOSAA-SVRG and FedOSAA-SCAFFOLD. There are
three tuning parameters: the local learning rate η, the local epochs L, and batch size Bk.
The default FedOSAA is FedOSAA-SVRG with no sampling, i.e, Bk = Nk.

• FedAvg: This is the benchmark FL algorithm. It has two tuning parameters: the local learn-
ing rate η, and the local epochs L.

• FedSVRG: These algorithms have two tuning parameters: the local learning rate η, and the
local epochs L.

• SCAFFOLD: These algorithms have two tuning parameters: the local learning rate η, and
the local epochs L.

• GIANT/Newton-CG: This algorithm has one tuning parameter: the number of CG itera-
tions, q. Note that it has to access the true Hessian in a matrix-vector product mannner.

• Newton-GMRES/Newton-MINRES: It replace the CG solver with GMRES in GIANT. This
algorithm has one tuning parameter: the number of GMRES iterations, q. As AAP is shown
to converge to Newton-GMRES method, it servers as a reference of FedOSAA.

• L-BFGS: This is a special one-step L-BFGS method, where we collect local points first as
in FedOSAA and then take the classical two-loop recursion of the L-BFGS method. It has
two tuning parameters: the local learning rate η, and the local epochs L. This servers as a
benchmark quasi-Newton method.

• DANE: It finds the exact minimizer of f t
k during local updates. We used Newton’s method

with line search to solve each local minimization problem. There is no tuning parameter.

The communication cost comparison is summarized in Table 1.

D.2. Data Preparation
For the IID setting, assuming that there areN data points, each client is assignedNk = N/K samples
with the extra data removed.

D.3. Computation Cost of Each Algorithm
For Logistic regression problem, the local computational cost is determined by the number of gra-
dient evaluations. The computational cost for each full gradient evaluation is O(Nkd). The main
computational cost of each AA step with L+1 history is to solve a d×L least square problem, thus
O(dL2). Considering L, d≪ Nk, the time required for the AA step is negligible. The computational

17



Table 1: Comparison of communication costs per aggregation round between different algorithms.
Here d denotes the dimension of the optimization variables (and thus the dimension of the gradi-
ents).

Algorithm Communication round Communication cost
FedOSAA-SVRG 2 2d
FedOSAA-SCAFFOLD 1 2d
FedAvg 1 d
FedSVRG 2 2d
SCAFFOLD 1 2d
GIANT 2 2d
Newton-GMRES 2 2d
L-BFGS 2 2d
DANE 2 2d

(a) (b)
Figure 3: Comparation of FedAVG and FedOSAA-AVG on the Covtype dataset by varying the local
learning rate η, the number of local epochs L (second column) The number of clients is set to K =
100, with each client having Nk = 5810 data points.

cost of L-step CG in the GIANT method is O(LNkd), which is equivalent to the computation cost
of L gradient evaluations. During each local training session, FedOSAA, FedAvg, FedSVRG, SCAF-
FOLD, and L-BFGS perform L + 1 gradient evaluations, whereas Newton-GMRES and GIANT re-
quire the evaluation of the Hessian and the execution of q GMRES/CG iterations. Therefore, for
the logistic regression problem, the local computation cost of FedOSAA, FedAvg, FedSVRG, SCAF-
FOLD, L-BFGS, Newton-GMRES andGIANTwith the same local epochsL (or q inNewton-GMRES
and GIANT) are roughly the same in terms of the number of FLOPs. In all algorithms, we set the
default L = q = 10 to strike a balance between local computation and global model performance,
and the default learning rate η = 1.

D.4. Additional Experiments on Logistic Regression Problem

The first step is to demonstrate that the FedOSAA scheme is ineffectivewhen applied to FedAVG. As
is well-known, FedAVG fails to find the global minimizer. Figure 3 shows that FedOSAA-AVG fails
to converge to the global minimizer under various parameter settings as well. The underlying issue
is that both FedAVG and FedOSAA-AVG perform local training by minimizing the local objective
functions without incorporating a gradient correction term. This makes them highly susceptible to
client drift. These results highlight the necessity of incorporating a gradient correction term in local
updates when applying acceleration methods to ensure convergence.
Second, we provide additional comparison FedOSAA with state-of-the-art methods on both
covtype and w8a datasets in Figure 4, Figure 5 and Figure 6. It can be seen that DANE achieves
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the fastest convergence in terms of the aggregation round. However, since it requires one to solve
the local problem exactly, this rapid convergence comes at a high computation cost that limits its
practical applicability, as shown in Figure 6. Also, DANE diverges for some examples which con-
firms that the optimal level of inexactness of the inexact DANE method could be greater than 0. A
poor performance of DANE is also observered in [37].
Our algorithm and GIANT demonstrate comparable convergence efficacy in terms of the aggrega-
tion round and computation time, significantly outperforming first-order methods. Furthermore,
our method is constantly better than the one-step L-BFGS method, which is similar to the classic
quasi-Newtonmethod. This shows the superiority of the AA step when approximating the Hessian
then other quasi-Newton methods.
Furthermore, we demonstrate the advantages of our approach on ill-conditioned problems inwhich
a small regularization term parameter γ gives a poorly conditioned Hessian. Typically, Newton
methods, such as GIANT, require a line search to ensure convergence. We provide an example in
Figure 7, where we employ the same line search strategy as described in the GIANT paper for all
algorithms when indicated. We can see that GIANT with line search achieves the best performance
but requires an additional round of communication and more computation time to calculate the
function value. Without line search, GIANT often diverges, since the solution of Hessian inverse
problem is not stable even with only 10 CG steps. In contrast, our method without line search
achieves relatively good performance.

(a) (b) (c)

(d) (e) (f)
Figure 4: Comparison test on covtype dataset under different γ and number of clients K. The first
row is with a fixed γ = 0.01. The second row is with a fixed local clients K = 100.

D.5. NN Training Problem
Neural network (NN) training is nonlinear, non-convex, and computationally expensive problem,
and acceleration methods play a critical role in improving the efficiency of training. In this subsec-
tion, we evaluate the performance of FedOSAA on a simple NN training problem and demonstrate
its tendency to get trapped in critical points. Here, FedOSAA refers to the FedOSAA-SVRG with a
full-batch gradient update.
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(a) (b)

(c) (d)
Figure 5: Comparison test on w8a dataset. The first row is fixed γ = 0.01. The second row is with a
fixed local clients K = 16.

(a) covtype (b) w8a
Figure 6: Comparison test in terms of computation time comparison examples. (a) is an example
with covtype dataset. Note that the per the aggregation round cost is 51s for DANE, and around
0.8s for other algorithms. (b) is an example with w8a dataset. Note that the per the aggregation
round cost is 20s for DANE, and around 0.2s for other algorithms.
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(a) (b) (c)
Figure 7: Comparison test on ill-conditioned problems in terms of the aggregation round and time.
The result is for the w8a dataset and the value of regularization parameter γ is 1e − 4. (+) means
with line search in figure (c).

We consider an image classification task using the MNIST dataset. The neural network architecture
is a fully connected feedforward neural network (MLP) with N hidden layers, where each hidden
layer consists of 256 neurons with ReLU activations. Specifically, we evaluate two cases: N = 1
(denoted as MLP1) and N = 3 (denoted as MLP3). The cross-entropy loss function is used for the
classification task, and performance is assessed based on the classification accuracy on the training
dataset.
We compare FedOSAA with its first-order variant, FedSVRG, and present the results in Figure 8.
Under both settings, where the number of clients is K = 1 or K = 10, FedSVRG accelerates the
convergence forMLP1 but fails forMLP3. A notable characteristic of FedOSAA is the rapid decrease
in the global gradient norm, as shown in Figure 8(b) and (d). Recall that NN training is a non-
convex problem, where the global gradient norm may remain large across iterations due to the
intricate structure of the loss landscape. This behavior can be observed in Figure 8(b) and (d)where
the global gradient norms of FedSVRG remain large. Especially forMLP3, the global gradient norms
of FedSVRG were relatively small initially but became large later. However, the global gradient
norm of FedOSAA keeps decreasing. This suggests that the iterations might be quickly attracted to
a stationary point, causing the training to fail.
Second-order methods have the potential to improve convergence in non-convex problems by lever-
aging the curvature of the loss landscape. However, their application remains challenging. Except
for the computational efficiency, existingwork often employs strategies such as damping techniques
or moving averages to address the non-convexity of the loss function [28]. In the context of An-
derson acceleration, [35] proposed the Stochastic Anderson Mixing method, which incorporates
damped projections and adaptive regularization to train various neural networks effectively. As
part of our future work, we also aim to build on this approach to design an efficient yet simple
algorithm for neural network training in the federated learning setting.
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(a)K = 1 (centralized) (b)K = 1 (centralized)

(c)K = 10 (d)K = 10

Figure 8: Comparison test on NN training problem. We set η = 0.1, L = 10, and K = 1 or K = 10.
When K = 1, there is only a single local client, which mimics a centralized training setting.
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