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Abstract

How can we effectively remove or “unlearn” undesirable information, such as specific fea-
tures or individual data points, from a learning outcome while minimizing utility loss
and ensuring rigorous guarantees? We introduce a mathematical framework based on
information-theoretic regularization to address both feature and data point unlearning.
For feature unlearning, we derive a unified solution that simultaneously optimizes diverse
learning objectives, including entropy, conditional entropy, KL-divergence, and the energy
of conditional probability. For data point unlearning, we first propose a novel definition
that serves as a practical condition for unlearning via retraining, is easy to verify, and
aligns with the principles of differential privacy from an inference perspective. Then, we
provide provable guarantees for our framework on data point unlearning. By combining
flexibility in learning objectives with simplicity in regularization design, our approach is
highly adaptable and practical for a wide range of machine learning and AI applications.
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Feature Unlearning

1. Introduction

As machine learning models become more common in sensitive domains, removing specific
features or data points from trained models has become increasingly important. Sensitive
information such as gender, ethnicity, or private data can perpetuate biases and lead to
unfair results. Simply deleting these attributes in raw data is often insufficient, since their
influence may persist through correlated or latent variables. Retraining models without
these attributes can be impractical due to high computational costs. Machine unlearning
provides a systematic way to “forget” specific features or data points, ensuring legal com-
pliance and ethical alignment. It is critical to develop provable methods so that models can
adapt to evolving demands for privacy and fairness.

• Feature Unlearning: In 2014, Amazon built a machine learning based recruit-
ment tool [11, 7]. The system favored male candidates because the training data
came predominantly from men, penalizing words commonly associated with women.
Removing explicit gender references failed, as gender correlated with other features
(e.g., all-female colleges). Unable to resolve these biases, Amazon discontinued the
tool. This example shows that merely dropping a sensitive feature is not enough if
correlated information remains.

• Data Point Unlearning: The General Data Protection Regulation (GDPR) [14]
introduced the “right to be forgotten,” letting individuals request deletion of their
personal data. Although removing raw data is straightforward, it does not eliminate
that data’s effect on a trained model’s parameters. The challenge is how to unlearn
specific data points while preserving overall model performance, highlighting the need
for robust frameworks offering provable compliance and minimal utility loss.

In this work, we introduce a framework for machine unlearning within a probabilistic and
information-theoretic setting, addressing the following question:

Given a dataset denoted by X, an undesirable attribute Z, and a target variable Y , how
can we optimally modify the information in (X,Z) to produce an unlearning outcome
S which retains minimal information about Z while preserving as much information
in X about Y as possible?

For machine unlearning, we consider S = X̂ if the unlearning happens on the data space
X and S = Ŷ if the unlearning happens on the learning outcome space Y (via unlearning on
the model parameter space). Note that the feature or label Z may also represent identity
information, which blurs the line between feature unlearning and data point unlearning,
making the framework applicable to both. Further discussion on applying the framework to
data point unlearning can be found in Section 1.2 below. In the remainder of this work, we
focus on unlearning in settings where relational data (X,Z) and target data Y are available.

To address this problem, we connect modern machine unlearning to classic rate-distortion
theory and data compression [34]. Here, we use data compression in the sense of minimizing
I(S;Z), thereby reducing shared information and effectively removing unwanted details of
Z. We introduce two core concepts inspired by this information-theoretic framework:
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• Unlearning, achieved by compressing the relational data (X,Z) into an unlearning
outcome S such that the compression rate (quantified by mutual information in this
work) between S and the undesirable information Z is minimized.

• Utility, preserved by minimizing the distortion (or maximizing the utility quantifica-
tion) guided by Y , such as the mutual information between S and Y when S = Ŷ .

Following the above information-theoretic perspective, we propose a unified machine un-
learning framework applicable to both feature and data point unlearning for a variety of
downstream tasks.

1.1 Application to Feature Unlearning

For feature unlearning, we define Z as the feature(s) to be unlearned, X as the remaining
available data features, and Y as the target variable to estimate using the information in
(X,Z). Since feature unlearning often involves removing a feature from a dataset intended
for multiple downstream tasks, it is more practical to modify (X,Z) directly in the data
space, producing an unlearning outcome S = X̂. The objective is to generate X̂ that
maximizes utility (considering multiple Y ), while minimizing or compressing the information
related to Z to achieve effective unlearning.

Alternatively, if feature unlearning is performed for a specific Y or a specific model, one
may set S = Ŷ . See Algorithm 2 in Section 4.

1.2 Application to Data Point Unlearning

For data point unlearning, the application is less straightforward and requires a more de-
tailed explanation. Here, we discuss the key distinctions between feature unlearning and
data point unlearning and clarify how the proposed unlearning method can be applied to
data point unlearning by defining a probabilistic data point unlearning guarantee.

First, since data point unlearning operates on the learning outcome space (through
unlearning on the parameter space), we define S = Ŷ for data point unlearning.

It is crucial to emphasize that data point unlearning typically aims to “forget” the
marginal effect of adding/removing a data point on the rest of the dataset, rather than
removing all the information associated with that data point. For example, the baseline
unlearning via retraining approach aims to remove the marginal effect (on training) by
directly removing the data to unlearn from training. Here, we apply information theoretic
regularization and the existing model to directly estimate the marginal effect on learning
outcome and thereby penalize it during training.

A straightforward application of an information theoretic framework, such as via the
information bottleneck, might minimize I(X; Ŷ ), the mutual information between X and Ŷ
(see Appedix A.1 for more details), while maximizing I(X \ {xu}; Ŷ ) [21], where xu repre-
sents the data belonging to the individual requiring unlearning. However, enforcing perfect
unlearning by setting I(X; Ŷ ) = 0 would leave almost no utility in Ŷ . This approach un-
necessarily targets removing all data information rather than focusing solely on unlearning
the marginal effect of xu, leading to an excessive loss of information and failing to balance
unlearning with utility.
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It is thus more reasonable to pursue a probabilistic, information-theoretic approach
which constructs relational data to indicate whether a data point is included in the train-
ing step: I.e., we consider (Xtrain, Z), where Xtrain|Z=1 := X1 := {xi}Ni=1 with xi ∼
Uniform(X\{xu}) and Xtrain|Z=0 := X0 := {xj}2N−1

j=N+1∪{xu} with xj ∼ Uniform(X\{xu}).
In this formulation, perfect unlearning of the marginal effect of xu can be achieved by find-
ing a measurable function f : X → Y that minimizes I(Z; Ŷtrain), where Ŷtrain = f(Xtrain),
without directly conflicting with utility objectives U(Y ; Ŷ ), such as I(Y ; Ŷ ) or ||Y − Ŷ ||ℓ2 .

It is important to highlight that the data point unlearning we propose is fundamentally
distinct from existing approaches (exact or approximate unlearning, see more details in
Section 1.3) that aim to achieve the same result as a retrained model on a dataset excluding
the individual record. Instead, our approach will provide a probabilistic guarantee that
aligns with the principles of differential privacy from an inference perspective. Specifically,
we formalize the data point unlearning guarantee as follows:

Definition 1.1 (ε-Differential Unlearning) Given a dataset X and an individual record
{xi} that requires unlearning, an unlearning output fθ(X,Y,Z) satisfies ε-differential unlearn-
ing if

sup
D∈BŶ

∣∣∣ log

(
P({Xtrain = X0} | Ŷtrain ∈ D)

P({Xtrain = X1} | Ŷtrain ∈ D)

)∣∣∣ ≤ ε. (1)

That is, given any observation of the unlearning output Ŷtrain = fθ(Xtrain) and the knowl-
edge that the training process uses either the original dataset X or the dataset excluding xu,
it is impossible (up to ε inference capability) to determine whether the individual record
xu was included in the training. We briefly summarize the advantages of the proposed
definition:

• Necessary Condition for Exact Unlearning: Under mild assumptions, one can
show that any unlearned model that is assumed to estimate an exact unlearning
outcome (via retraining) can fail the ε-differential unlearning definition only if it is
non-smooth (in particular, violates a Lipschitz condition) and hence suffers from low
generalizability for unseen data (See Lemma 2.2 and its discussion below). This es-
tablishes ε-differential unlearning as a foundational requirement for exact unlearning.

• Ease of Verification: The definition relies solely on the unlearned model and the
original dataset X, without requiring access to the exact retrained outcome. As a
result, ε-differential unlearning can serve as an efficient preliminary test to assess
unlearning outcomes.

This unlearning concept is inspired by differential privacy [12]. It is instructive to compare
ε-differential unlearning to differential privacy to highlight their differences:

• ε-Differential Unlearning (Remediation via Inference Guarantee): Requires that the
unlearning outcome (via data compression) provides no inference capability about
whether the training process included the individual record requiring unlearning.
Since unlearning is a remedial process, it is more reasonable to consider it from an

inference perspective: supD∈BY | log
(
P({Xtrain=X1}|Ŷtrain∈D)

P({Xtrain=X0}|Ŷtrain∈D)

)
| ≤ ε. Here, (Y,BY) is
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a measurable space for the learning outcome, where BY denotes the sigma-algebra
containing all possible events D that can occur in the outcome space Y.

• ε-Differential Privacy (Prevention via Generative Guarantee): Requires that the learn-
ing outcome (via a randomized algorithm) does not change significantly if an unknown
individual’s data is added to or removed from the training dataset. Since privacy fo-
cuses on prevention, it is more reasonable to provide guarantees from a generative

perspective: supD∈BY | log
(

P(Ŷ ∈D|X)

P(Ŷ ∈D|X′)

)
| ≤ ε, where X ′ is the dataset that differs from

X by one (unknown) data point.

It is worth noting that differential unlearning can also be framed as a straightfor-
ward extension of the original differential privacy definition from a generative perspective:

| log
(

P(Ŷ |X)

P(Ŷ |X\{xu})

)
| < ε implies that the unlearning outcome Ŷ should remain largely un-

changed if X is replaced with X \{xi} during training or vice versa. While this perspective
offers valuable insights and practical tools for achieving unlearning, we argue that the gen-
erative approach is better understood as a means to unlearning rather than a definition,
because a definition of unlearning should capture the remedial nature inherent to machine
unlearning.

We will demonstrate in Section 2 that the proposed framework naturally produces un-
learning outputs that satisfy the ε-differential unlearning guarantee when applied to data
point unlearning tasks.

1.3 Related Work

The existing body of work on unlearning can be separated into feature unlearning and
machine unlearning:

1.3.1 Machine Unlearning

Machine Unlearning focuses on removing data points’ influence during training on the model
and thereby the learning outcome, mainly to comply with regulations such as GDPR’s “right
to be forgotten.” The current study can be separated into exact unlearning and approximate
unlearning:

Exact unlearning [3, 4, 44, 19, 32, 15, 6, 5] approaches ensure the removal of data
influence from the model by separating the model into sub-models (via subsets of training
data in SISA training, parameters, or training steps in amnesiac unlearning) which allow
fast retraining by only retraining the affected sub-models or training steps. While effective,
these methods are computationally expensive, particularly in scenarios with multiple data
removal requests.

Approximate unlearning methods try to keep the probabilistic similarity quantification
between the unlearning outcome and the retraining outcome (also known as data point
influence quantification). The main current approaches include: (1) using the influence
function [40] to estimate the influence of the data point and thus remove its effect on the
model [20, 33, 35, 29, 41, 36, 39]; (2) using the scrubbing function to enforce similarity
between the network weights and the retraining weights [16, 17].
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While these methods are effective in approximating the retrained model, each has prac-
tical limitation(s), such as significant performance degradation, high computational cost,
limited compatibility with learning objectives, or restricted evaluation capability on simple
datasets [30, 38]. More importantly, due to the aim to estimate the unknown (due to the
complexity of algorithms, objective functions, and data influence) retraining outcome, the
provable unlearning guarantees rely heavily on impractical assumptions such as convexity
of the objective function and Lipschitz condition on Hessian matrices. [42]

In comparison, the proposed method can be considered as using mutual information to
quantify the marginal effect of adding or removing the data point to unlearn in training,
thereby more effectively removing the influence of the data to unlearn by diminishing the
marginal effect. Furthermore, since the proposed unlearning definition (Definition 1.1)
does not explicitly depend on the unknown retraining outcome, its provable guarantees
avoid strong assumptions and become more practical to achieve. Finally, we establish a
connection to retraining by demonstrating that Definition 1.1 serves as a necessary condition
for a “good” retrained model (Lemma 2.2 and the discussion below).

Recent unlearning methods have leveraged the information bottleneck [26, 21] to avoid
utility degradation by addressing both the utility and influence function. While at first
glance these information bottleneck-based methods may seem similar to our proposed
method, there is a fundamental difference. In particular, these information bottleneck
methods aim to unlearn the information of that data point itself, such as minimizing the
mutual information between the remaining target variable and the model parameter [21] or
the mutual information between the data to unlearn and the unlearning latent representa-
tions [26]. In comparison, our regularization tries to help unlearn (or learn) the marginal
effect of adding (removing) the data point.

1.3.2 Feature Unlearning and Statistical Parity in Machine Learning
Fairness

Feature Unlearning and Statistical Parity in Machine Learning Fairness aim to remove the
influence of a feature in the learning outcome [39, 21]. It is closely related to machine learn-
ing fairness when fairness is defined as statistical parity [13]. In particular, our framework
when applied to feature unlearning is closely related to the Wasserstein barycenter charac-
terization of both the optimal statistical parity learning outcome [8, 18] and the optimally
fair data representation [43].

1.4 Our Contributions

Our contributions in this paper are as follows:

• We propose ε-Differential Unlearning, a novel probabilistic guarantee for data point(s)
unlearning that reflects the remedial nature of machine unlearning, inspired by the
protection guarantees of differential privacy.

• We propose a unified machine unlearning framework, inspired by rate-distortion theory
in data compression, for both feature and data point unlearning. The framework is
compatible with diverse target information and utility quantifications, and hence with
a range of downstream tasks for the unlearned output.
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• For feature unlearning, we demonstrate the existence of a unified analytic solution
across multiple utility objectives and arbitrary target variables.

• For data point unlearning, we provide a provable ε-differential unlearning guarantee
using compression rate and, thereby, provide a sufficient condition for the proposed
unlearning framework to generate an ε-differential unlearning guaranteed result.

1.5 Some Tools and Notation

Before we proceed, we introduce some tools used later and fix some notation. Let P(X )
be the set of probability measures on a metric space (X , d). The p-Wasserstein distance
between µ, ν ∈ P(X ) is defined as

Wd,p(µ, ν) =
(

inf
λ∈Π(µ,ν)

∫
X×X

d(x1, x2)
p dλ(x1, x2)

) 1
p
,

where Π(µ, ν) denotes the set of all couplings of µ and ν. Let P2,ac(X ) be the subset of
measures with finite second moments that are absolutely continuous w.r.t. the Lebesgue
measure. For random variables X1, X2, we write Wd,p(X1, X2) := Wd,p(L(X1),L(X2)),
where L(X) denotes the law of X. For simplicity, we let Wd := Wd,1. Also, W2 := Wl2,2

when d(x, x′) := ||x − x′||l2 . Given a family of measures {µz}z∈Z ⊂ P2,ac(X ) with weights
λ, their Wasserstein barycenter µ̄ is the minimizer of

∫
ZW

2
2 (µz, µ) dλ(z). We define X̄ as

the random variable distributed according to µ̄ and satisfy X̄z = Tz(Xz), where Tz is the
optimal transport map from L(Xz) to µ̄. More details can be found in Appendix B.1.

2. A Unified Unlearning Framework

We first introduce our machine unlearning framework, followed by a concrete example il-
lustrating the data compression motivation behind this approach and a brief review of key
technical tools underlying the definitions of utility, unlearning, and admissibility. Next, we
extend the motivational example from feature unlearning (Section 2.1) to the data point
unlearning (Section 2.2) setting. Finally, we generalize the framework to accommodate
different choices of target information and utility quantification for both feature and data
point unlearning.

Definition 2.1 (Optimal Feature Unlearning) Given relational data (X,Z) and a tar-
get variable Y , optimal feature unlearning is defined as the solution, if it exists, to:

sup
f :X×Z→X

{U(Y ; X̂) : X̂ ⊥ Z}, (2)

where X̂ := f(X,Z) is the unlearning outcome, and U : P(Y) × P(X ) → R quantifies the
utility retained in X̂ relevant to Y . The optimization is over all measurable functions f
that remove the information of Z while preserving the information of Y from X.

While setting S = X̂ instead of Ŷ may seem unconventional, this choice ensures compat-
ibility with multiple target variables Y , making it practical for feature unlearning. More-
over, Theorem 3.1 shows that under a wide range of utility functions, the optimal solution
is independent of Y .
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To relax the strict independence constraint in (2), we introduce a soft probabilistic
constraint using mutual information as a compression rate:

sup
f :X×Z→X

U(Y ; X̂)− γI(X̂;Z), (3)

for some γ ≥ 0, allowing a trade-off between utility preservation and unlearning effective-
ness.

For data point unlearning, we follow the setting developed in Section 1.2:

Definition 2.2 (Optimal Differential Unlearning) Given data X, a data point {xu}
to unlearn, and a target variable Y , the optimal differential unlearning is defined as the
optimal solution, if it exists, to the following problem:

sup
f :X→Y

{U(Y ; Ŷ ) : Ŷtrain ⊥ Z}, (4)

where Ŷtrain := f(Xtrain) is the unlearning outcome. The relational data (Xtrain, Z) is
defined by Xtrain|Z=0 = X0 and Xtrain|Z=1 = X1. The optimization is over all measurable
functions f : X → Y of which the goal is to leverage the relational data (Xtrain, Z) to remove
the information of the training data set indicator Z but retain information of Y based on
X.

Similarly to above, we can also relax equation (4) to the following version:

sup
f :X→Y

U(Y ; Ŷ )− γI(Ŷtrain;Z).

Remark 2.1 (Alternative Regularization to Mutual Information) The regulariza-
tion term using mutual information in our framework serves to relax the strict independence
constraint through a soft penalization. While mutual information is a natural choice due
to its strong theoretical foundations in information theory and its connection to data com-
pression that motivates the proposed framework (See Section 2.1 below), it is by no means
the only option. More generally, any quantification of statistical dependence between two
random variables can serve as an alternative regularizer.

For instance, in the binary Z case, one could use the Kullback-Leibler (KL) divergence
between Ŷ0 and Ŷ1, i.e., DKL(Ŷ0||Ŷ1). Alternatively, if the objective is to account for both
distributional differences and geometric distance in the learning outcome space, the Wasser-
stein distance, Wd,p(Ŷ0, Ŷ1), provides a viable alternative. A systematic investigation into
the optimal choice of regularizer for specific utility objectives is an interesting direction for
future research.

2.1 Motivation: Feature Unlearning & Data Compression

To illustrate our framework’s link to data compression, consider the special case where the
target variable is the original data (Y = X) and utility is quantified by mutual information
(U(X; X̂) := I(X; X̂)). We then solve:

sup
X̂=f(X,Z)

{
I(X; X̂) : X̂ ⊥ Z

}
.
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Here, I(X; X̂) measures unlearning quality: larger values indicate X̂ retains more of X.
Meanwhile, X̂ ⊥ Z enforces complete removal of Z by making I(Z; X̂) = 0. Next, we
discuss how utility, unlearning, and admissibility fit into this context.

• Compression Rate via Mutual Information: Mutual information measures shared
information between two variables and is fundamental in data compression [9]. For
dataset X encoded as X̂, the information contained in X is quantified by H(X) where
H(X) is the entropy of X. The conditional entropy H(X|X̂) quantifies the remaining
uncertainty in X given X̂, with higher values indicating less explanatory power of X̂.

The compression ratio, 2H(X)−H(X|X̂) = 2I(X;X̂), reflects how well X̂ retains informa-
tion about X. Higher mutual information implies X̂ generates a finer partition on X,
while lower values indicate better compression. See Appendix A.1 for details.

• Feature Unlearning: To unlearn a feature Z from data X, we minimize I(Z; X̂),
measuring how much information X̂ retains about Z. Perfect unlearning occurs if
I(Z; X̂) = 0, i.e., X̂ ⊥ Z. In practice, partial unlearning is more realistic, balanc-
ing the rate-distortion-like trade-off between removing Z and preserving utility. By
bounding I(Z; X̂) < ε (or equivalently introducing a Lagrange multiplier γ), we ob-
tain supX̂=f(X,Z){ I(X; X̂) − γ I(Z; X̂)}, where γ > 0 governs the trade-off between

minimizing unwanted information and retaining the utility in X̂.

• Admissibility: Since we unlearn the information of Z by compressing relational data
(X,Z), it is natural to require the resulting compressed data X̂ to be measurable with
respect to (X,Z). In particular, for every event or observation A of the compressed
X̂, the information represented by the observation X̂−1(A) := {ω : X̂(ω) ∈ A} comes
from the knowledge of f−1(A) := {(x, z) : f(x, z) ∈ A} based on (X,Z):

{ω : X̂(ω) ∈ A} = X̂−1(A) = (X,Z)−1(f−1(A)) = {ω : (X(ω), Z(ω)) ∈ f−1(A)}.

Here, ω ∈ Ω is the smallest unit of information we can have from the measure space
(Ω,F ,P). From a probability-theoretical perspective, since X̂ is a compression of
(X,Z), it generates a coarser partition (or, more technically, sigma-algebra) than
the original information (X,Z) and we say X̂ is measurable with respect to (X,Z),
denoted by σ(X̂) ⊂ σ((X,Z)). This is equivalent to the existence of a BX ⊗ BZ/BX -
measurable map, denoted by f , such that X̂ = f(X,Z). That is, our admissi-
bility is equivalent to the assumption that the data compression process does not
create information or randomness by itself. Therefore, we define the admissible
unlearning outcome in our framework as follows: A(X,Z) := {X̂ = f(X,Z) :
f is BX ⊗ BZ/BX -measurable} and we use X̂ = f(X,Z) and X̂ ∈ A(X,Z) inter-
changeably.

2.2 Motivation: Data Point Unlearning & Data Compression

We now connect the feature unlearning constraint using mutual information to ε-differential
unlearning (Definition 1.1) and demonstrate that the proposed feature unlearning frame-
work with a mutual information constraint can directly ensure ε-differential unlearning for
data points.
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In particular, we apply the following framework to estimate the optimal differential
unlearning solution:

sup
Ŷ=f(X)

{I(Y ; Ŷ )− γI(Ŷtrain;Z)}, (5)

and then use the following result to provide a provable unlearning guarantee:

Lemma 2.1 (Mutual Information Bound on Unlearning Inference Log Ratio) Let
the proposed unlearning framework (equation (5)) compress (Ŷtrain, Z). Then, for any given
ε > 0, we have

P
(∣∣∣log

(P({Xtrain = X0} | Ŷtrain)

P({Xtrain = X1} | Ŷtrain)

)∣∣∣ ≤ log
(1 + ε

1− ε

))
≥ 1 − 1

ε

(√
1

2
I(Z; Ŷtrain)

)
.

See proof in Appendix A.3. That is, if the proposed unlearning framework is applied to
penalize the mutual information term I(Z; Ŷtrain) such that it remains relatively small

compared to exp(ε)−1
exp(ε)+1 , then the probability of observing an event in Ŷtrain that grants more

than 1+ε
1−ε inference capability becomes extremely low. By the construction of Ŷtrain, it is

clear that even if we observe the learning outcomes from both the data set including data
point to unlearn and the one excluding the point, one can still not tell whether or not
the model is trained using X0 ∼ X or X1 ∼ X \ {xu}. Therefore, to ensure ε-differential
unlearning with high probability, it suffices to adjust the regularization weight γ such that√

I(Z; Ŷtrain) is small relative to exp(ε)−1
exp(ε)+1 .

Lastly, we connect the proposed ε-differential unlearning definition to the unlearning
via retraining by showing that it serves as a practical necessary condition for a “good”
retraining model. In particular, one can show that if a model, denoted by f : X → Y,
can minimize training loss on the training data, then either the unlearned model satisfies
the ε-differential unlearning definition or it suffers from low generalizability by violating a
Lipschitz condition as described below.

Lemma 2.2 (ε-DU as a Condition for “Good” Retrained Model) Assume f is a re-
trained model with f(X0) and f(X1) both absolutely continuous, then either f violates ε-DU:

supy | log(L(f(X1))(y)
L(f(X0))(y)

)| ≤ ε or f violates the L-Lipschitz condition for any L ≤ L∗ where

L∗(ε) :=
δ
∣∣f(X1)(y

∗)− f(X0)(y
∗)
∣∣

WdX (X1, X0)
=

δ
(
exp(ε)− 1

)
min{f(X0)(y

∗), f(X1)(y
∗)}

WdX (X1, X0)
. (6)

Here, y∗ is the point where the ε-differential unlearning definition is violated, WdX (X0, X1)
is the Wasserstein distance between X0 and X1 on the metric space (X , dX ), and δ is the

radius around y∗ where sign(log(L(f(X0))(y)
L(f(X1))(y)

)) = sign(log(L(f(X0))(y∗)
L(f(X1))(y∗)

)).

See proof in Appendix A.4. The above result implies that, if we assume that there
is a significant marginal effect of adding/removing (xu, yu) relative to the original dataset
(otherwise there is no significant need for unlearning) and the retrained model f achieves a
low training loss on the remaining dataset, then one cannot simultaneously have all of the
following: (1) truthful revealing of (xu, yu): f(xu) = yu; (2) ε-DU, (3) good generalizability
of f with low Lipschitz constant. That is, if we require (2), then a retrained model with
good generalizability cannot reveal (xu, yu).

11
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Proposition 2.1 (ε-DU Reduces Utility on the Data to Unlearn) Assume f(X1) =

Y1 and supy | log(L(f(X0))(y)
L(f(X1))(y)

)| ≤ ε such that L∗(ε) > 1, but Y0 satisfies δ|Y0(y) − Y1(y)| >
WdX (X0, X1) for some y ∈ Y, then f(X0) ̸= Y0.

Proof This is a direct corollary of Lemma 2.2.

In other words, if a retrained model achieves good training performance on the remain-
ing data set (f(X1) = Y1) and satisfies the proposed ε-differential unlearning for small
enough ε (L∗(ε) > 1), but there is a significant marginal training signal (δ|Y0(y)− Y1(y)| >
2WdX (X0, X1)) resulting from adding/removing the data to unlearn (to the existing data
set), then f(X0) cannot reveal Y0 truthfully. That further implies f(xu) cannot reveal yu
truthfully by the construction of (X0, Y0).

Finally, by enforcing ε-DU by mutual information regularization while preserving utility
on the remaining data, the proposed framework achieves unlearning by only diminishing the
marginal utility at the data point to be unlearned. But we further notice that the utility
via our approach can decrease further than the retrained (from scratch) model in practice.

2.3 Versatile Utility

In our feature unlearning setting, often the target variable Y lives in a different space from
X, and mutual information may not suffice to capture how X̂ relates to Y . Thus, we
consider

sup
X̂=f(X,Z)

{U(Y ; X̂) : X̂ ⊥ Z}, (7)

where U(Y ; X̂) is a user-defined utility. Below are some widely used objectives, each with
a short motivation. For more detailed explanation of each utility below, see Appendix A.5
and Appendix A.6.

• Entropy Maximization: U(Y ; X̂) = H(X̂) preserves the total uncertainty in X̂.

• Mutual Information Maximization: U(Y ; X̂) = I(Y ; X̂) maximizes how much
X̂ reveals about Y .

• KL-Divergence Maximization: U(Y ; X̂) = DKL

(
P(Y | X̂) ∥P(Y )

)
makes P(Y |

X̂) more deterministic relative to P(Y ).

• Conditional Probability Energy Maximization:

U(Y ; X̂) =

{√
E[P(Y ∈ A | X̂)2 ], classification,

−∥Y − E(Y | X̂)∥2, regression,
(8)

improves classification boundaries or reduces mean squared error.

We note that the proposed (feature and data point) unlearning framework supports a
wide range of utility and objective functions beyond the four listed here. The four listed
objectives are selected for their shared analytical optimal solution. As shown in Theorem
3.1, this optimal solution is of particular interest for its independence from the choice of Y ,
even though three of the objectives explicitly involve Y .

12
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3. Theoretical Guarantees

In this section, we provide theoretical guarantees for both feature unlearning and data
point unlearning. Specifically, we leverage optimal transport to derive a unified analytic
solution for feature unlearning under all the listed objectives. For data point unlearning,
we establish a provable guarantee by ensuring that the unlearning outcome satisfies ε-
differential unlearning through the compression rate quantified by mutual information.

3.1 Feature Unlearning: Unified Optimal Solution for Multiple Objectives

The utility objectives outlined earlier are commonly used across fields such as biology,
physics, and AI. See Appendix A.5 for more details. Despite their diverse forms, these ob-
jectives can be unified within a single framework by focusing on the sigma-algebra generated
by the unlearning outcome X̂. This approach allows for a cohesive solution to seemingly dis-
tinct optimization problems, demonstrating the versatility and practicality of the proposed
framework.

We start with the following result, which establishes that the Wasserstein-2 barycenter
generates the finest sigma-algebra among all admissible outcomes:

Lemma 3.1 (Wasserstein-2 Barycenter Generates the Finest Sigma-Algebra) Let
{Xz}z∈Z ⊂ P2,ac(X ). We have σ(X̂) ⊂ σ(X̄) for all X̂ = f(X,Z).

The proof is in the Appendix B.2. The above result demonstrates one feasible optimal
solution. Under the assumption of absolute continuity of marginals, the barycenters of
convex costs also satisfy the invertibility of transport maps, ensuring optimality.

Now, the importance of the above result lies in the monotonicity of the objective func-
tions listed earlier w.r.t. the sigma-algebra generated by random variables. That is, the
fineness of the sigma-algebra is equivalent to the amount of information contained by the
random variable in probability theory. See the following remark for a more detailed expla-
nation.

Remark 3.1 (Sigma-Algebra and Information) In probability theory, a probability space
is often represented as a triple (Ω,Σ,P), where Ω is the sample space, Σ is the sigma-algebra
(a collection of subsets of Ω), and P : Σ→ [0, 1] is a probability measure that assigns prob-
abilities to each event in Σ.

The same sample space can be associated with different sigma-algebras, resulting in dif-
ferent probability spaces. We say that a sigma-algebra Σ1 is finer than Σ2, denoted Σ2 ⊂ Σ1,
if Σ1 contains all events in Σ2. Conversely, we say Σ1 is coarser than Σ2 if Σ1 contains
fewer events than Σ2.

A random variable or random vector X is a measurable function from the probability
space to Rd (or Cd), X : Ω → Rd. The sigma-algebra generated by X, denoted by σ(X),
comprises all possible events that could be defined based on the image of X in Rd (or Cd).
Thus, if X generates a finer sigma-algebra than another variable X ′, denoted σ(X ′) ⊂ σ(X),
then X contains more events and, therefore, more information than X ′.

In modern probability theory, sigma-algebras facilitate the construction of probability
measures, especially in countably or uncountably infinite spaces (as the concept is trivial
in finite spaces). They satisfy certain axioms, including countable additivity, that link the

13
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set algebra of events in the space to the algebra of their probabilities, particularly through
continuity properties.

As a result, the information quantification discussed in Section 2.3 are naturally mono-
tone w.r.t. the fineness of the generated sigma-algebra. In particular,

Lemma 3.2 (Monotonicity of Information Measures w.r.t. Sigma-Algebra) If σ(X1) ⊂
σ(X2), then:

• H(X1) ≤ H(X2),

• H(Y |X2) ≤ H(Y |X1) for any Y : Ω→ Y,

• I(Y ;X1) ≤ I(Y ;X2) for any Y : Ω→ Y,

• DKL(P(Y |X1)||P(Y )) ≤ DKL(P(Y |X2)||P(Y )),

• ∥P(Y ∈ A|X1)∥22 ≤ ∥P(Y ∈ A|X2)∥22 for any A ∈ σ(Y ).

Informally, Lemma 3.2 shows entropy increases as the sigma-algebra becomes finer,
while conditional entropy decreases, indicating reduced uncertainty. Similarly, mutual in-
formation and conditional probability energy increase, reflecting enhanced informativeness
and predictive utility. Furthermore, as the sigma-algebra generated by X becomes finer,
the conditional prediction of Y given X becomes more deterministic, resulting in a larger
KL-divergence between the conditional distribution and the original distribution of Y .

Combining Lemma 3.1 with Lemma 3.2, we deduce that X̄ is the optimal solution to
all utility objectives discussed in Section 2 and further specified in Problems 1–5 in the
Appendix.

Theorem 3.1 (Unified Optimal Feature Unlearning Solutions) Assume {Xz}z∈Z ⊂
P2,ac(X ). Then the following statements are equivalent:

• σ(X̂) = σ(X̄),

• X̂ ∈ arg maxX̂=f(X,Z){H(X̂) : X̂ ⊥ Z},

• X̂ ∈ arg minX̂=f(X,Z){H(Y |X̂) : X̂ ⊥ Z} for all Y ,

• X̂ ∈ arg maxX̂=f(X,Z){I(Y ; X̂) : X̂ ⊥ Z} for all Y ,

• X̂ ∈ arg maxX̂=f(X,Z){DKL(P(Y |X̂)||P(Y )) : X̂ ⊥ Z} for all Y ,

• X̂ ∈ arg maxX̂=f(X,Z){∥P(Y ∈ A|X̂)∥22 : X̂ ⊥ Z} for all A and Y .

Proof This follows from Lemma 3.1 and Lemma 3.2.
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3.2 Data Point Unlearning: Fine-tuning Guided by Compression Rate

For data point unlearning, we adopt the following framework to fine-tune the trained model
parameters under the guidance of mutual information regularization:

sup
f :X→Y

U(Y ; Ŷ )− γI(Ŷtrain;Z)

The following theorem is now a direct consequence of Lemma 2.1.

Theorem 3.2 (ε-Differential Unlearning Guarantee via Compression Rate) Assume
the unlearning outcome fθ satisfies I(fθ(Xtrain);Z) ≤ µ, then fθ satisfies ε-differential un-

learning with probability at least 1− exp(ε)+1
exp(ε)−1

√
µ
2 .

Therefore, one can achieve ε-differential unlearning based on the compression rate and
choose the hyperparameter γ in the framework according to the required ε and the resulting
trade-off between utility and mutual information.

4. Algorithm Design

Here, we summarize the pseudo-code implementation of the feature and data point unlearn-
ing framework we propose:

4.1 Feature Unlearning

4.1.1 Feature Unlearning on Data via Theorem 3.1

Algorithm 1: Feature Unlearning via Wasserstein Barycenter

Require: Dataset D = (X,Z) = {(xi, zi)}Ni=1, Maximum number of iterations T ,
Convergence threshold ε.

Ensure: Estimated Wasserstein barycenter X̄.
1: Initialize: X̄ ← X̄0 {Random initialization of barycenter}
2: for t = 1 to T do
3: for each unique value of Z: z ∈ unique(Z) do
4: Compute the optimal transport map Tz that maps X̄ to Xz := X|Z=z.
5: end for
6: Compute updated barycenter: X̄new =

∑
z∈unique(Z)

|Xz |
|X| Tz(X̄)

7: Compute convergence criterion: εt =W2(X̄, X̄new).
8: Update barycenter: X̄ ← X̄new.
9: if εt < ε then

10: break {Terminate loop if convergence threshold is met}
11: end if
12: end for
13: Return Estimated Wasserstein barycenter X̄.
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4.1.2 Feature Unlearning on Modal via Regularization

Algorithm 2: Feature Unlearning on Model via Regularization

Require: Dataset D = (X,Y, Z) = {(xi, yi, zi)}Ni=1, loss function −U , learning rate η,
batch size B, number of epochs T , regularization parameter γ.
(Optional:) Pre-trained neural network fθorigin with parameters θorigin.

Ensure: Unlearned model parameters θ.
1: Initialize: θ ← random initialization
2: if pre-trained model available then
3: Load θ ← θorigin
4: end if
5: for t = 1 to T do
6: Shuffle dataset D
7: for each mini-batch d ⊂ D with d = (Xd, Yd, Zd) do
8: Compute predictions: Ŷd = fθ(Xd)
9: Compute loss: Lreg = −U(Ŷd;Yd) + γI(Ŷd;Zd)

10: Compute gradients: ∇θLreg
11: Update parameters: θ ← θ − η∇θLreg
12: end for
13: end for
14: Return Unlearned model parameters θ

4.2 Data Point Unlearning on the Model Parameter Space

Algorithm 3: Data Point Unlearning via Regularization

Require: Remaining dataset R = {(xi, yi)}Ni=1, Unlearning dataset U = {(xi, yi)}N+K
i=N+1,

trained neural network fθorigin with parameters θorigin, loss function −U , learning rate
η, batch size B, number of epochs T , regularization parameter γ.

Ensure: Unlearned model parameters θ.
1: Initialize: Load pre-trained parameters θ ← θorigin.
2: for t = 1 to T do
3: Shuffle datasets R and U .
4: for each mini-batch r ⊂ R and u ⊂ U , where r = (Xr, Yr) and u = (Xu, Yu) do
5: Compute predictions: Ŷr = fθ(Xr) and Ŷu = fθ(Xu).
6: Construct Ŷ0 = concat(Ŷr, Ŷu,dim = 0) and Ŷ1 = Ŷr.
7: Define relational dataset (Ŷtrain, Z) where: Ŷtrain|Z=0 = Ŷ0 and Ŷtrain|Z=1 = Ŷ1.
8: Compute regularized loss: Lreg = −U(Ŷr, Yr) + γI(Ŷtrain;Z).
9: Compute gradients: ∇θLreg.

10: Update model parameters: θ ← θ − η∇θLreg.
11: end for
12: end for
13: Return unlearned model parameters θ.
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5. Numerical Experiments

We conduct numerical experiments on synthetic and real-world datasets to validate the
proposed framework, focusing on its theoretical guarantees and explainability rather than
benchmarking against other methods. A more comprehensive evaluation, including im-
proved barycenter estimation for feature unlearning, optimal regularization selection, and
refined mutual information estimation for data point unlearning, is left for future work. The
code is available at https://github.com/xushizhou/Machine_Unlearn_via_Info_Reg.

5.1 Feature Unlearning

Here, we demonstrate the unified solution using the Wasserstein barycenter on image data
(Celeba [27]) with the following features to unlearn: gender and smile.

Figure 1: The above plot shows the Wasserstein Barycenter (Bary(X)) characterization of the optimal feature un-
learning result. In particular, we apply neural optimal transport [24] to learn the optimal transport map from the
smile (female) faces to non-smile (male) faces if smile (gender) is the feature to unlearn, then generate the barycenter
using McCann interpolation [28] with t = 0.5.

We note that the Wasserstein-2 barycenter provides one solution to the optimal feature
unlearning under the utility objectives outlined in Section 2.3. But alternative solutions
can be obtained by selecting a more appropriate metric space, instead of the ℓ2(Rd×d) space
used here, to better align the Wasserstein geodesic path with the natural data manifold
(e.g., the face manifold).

For tabular data, the solution and corresponding experiments closely align with those in
machine learning fairness. We refer interested readers to fairness studies such as [8, 43] for
detailed numerical evaluations of the Wasserstein barycenter approach on datasets including
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Method Epochs Avg. (Std.) Acc. Remain Acc. Unlearn

Original Model 100 0.9334 (0.0017) 0.9676 (0.0300)

Retrain from Scratch 100 0.9334 (0.0018) 0.7848 (0.1901)

Retrain on Original Model 100 0.9452 (0.0000) 0.9999 (0.0000)

Mutual Info Reg. (γ = 4.2) 5 0.9244 (0.0000) 0.7805 (0.0000)

Table 1: Gaussian Mixture Model (GMM) Unlearning. The proposed method effectively
removes the marginal effect of the unlearned data while maintaining high accuracy on the remaining
dataset. In contrast, retraining on the original model fails to remove the effect even after extensive
training.

Method Epochs Avg. (Std.) Acc. Remain Acc. Unlearn Acc. Test

Original Model 100 0.9989 (0.0001) 0.9998 (0.0004) 0.9781 (0.0011)

Retrain from Scratch 100 0.9986 (0.0007) 0.9389 (0.0112) 0.9764 (0.0016)

Retrain on Original Model 100 0.9996 (0.0003) 0.9702 (0.0131) 0.9797 (0.0016)

Mutual Info Reg. (γ = 3.5) 5 0.9976 (0.0013) 0.9418 (0.0309) 0.9736 (0.0045)

Table 2: MNIST Data Point Unlearning. The proposed method effectively removes the marginal
effect of the unlearned dataset while maintaining strong generalization (high test accuracy). In
contrast, retraining from the original model treats the dataset to unlearn as test data after extensive
training.

UCI Adult (unlearn gender), COMPAS (race), LSAC (race), and CRIME (race), along with
comparisons to other fairness-driven feature unlearning methods.

5.2 Data Point Unlearning

To assess the effectiveness and efficiency of the proposed framework for data point unlearn-
ing, we conduct experiments on both synthetic and real-world datasets. First, we generate
synthetic data of size 5000 from a Gaussian mixture model (GMM) with two distinct means
and train a neural network for classification. We then select a data point for unlearning
and compare the predictions of four models: (1) the original classifier, (2) the classifier
retrained from scratch, (3) the classifier retained from the original one, (4) the unlearned
model via our mutual information regularization. See Table 1 for the results averaged over
100 repetitions.

Next, we extend the evaluation to the MNIST [25] dataset. To ensure a significant
difference between the predictions of the original model and those of the retrained-from-
scratch model, we construct the unlearning dataset such that 75% of the samples belong to
the digit 3 class. See Table 2 for the results averaged over 10 repetitions.

As shown in Figure 2, to match the performance of retraining from scratch, careful
tuning of the relaxation parameter γ and proper monitoring of mutual information are
essential.
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Figure 2: Mutual Information vs. Utility in MNIST Unlearning. Mutual information and model utility on
the MNIST unlearning dataset exhibit a strong correlation. The rate of utility reduction can be precisely controlled
by adjusting the regularization parameter γ, allowing for flexible unlearning speed while maintaining accuracy.
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A. Appendix: Supplementary Material for Section 2

A.1 Utility Motivation

Mutual information is a widely used quantification of the common information shared by
two random variables. In particular, given a data set X with a goal to compress X by an
encoding Ŷ , the volume of code needed to encode X is 2H(X) where H(X) is the entropy
of X. Furthermore, from the Chapman-Kolmogorov equation p(Ŷ ) =

∑
x p(Ŷ |x)p(x), the

average volume of x mapped to individual Ŷ is equal to 2H(X|Ŷ ). Here,

H(X|Ŷ ) := −
∑
x

p(x)
∑
Ŷ

p(Ŷ |x) log(p(Ŷ |x)) (9)

is the conditional entropy of X on Ŷ . Intuitively, a higher conditional entropy means more
volume of x are expected to be mapped to individual Ŷ , which implies more randomness of
X remained given the observation of Ŷ . In other words, less X is explained by Ŷ .

Since the volume of code for X is 2H(X) and the average volume of code mapped to each

Ŷ is 2H(X|Ŷ ), the average cardinality of the partition generated by the values of Ŷ on the
values of X is the ratio:

2H(X)

2H(X|Ŷ )
= 2I(X;Ŷ ). (10)

Here, I(X; Ŷ ) = H(X)−H(X|Ŷ ) is the mutual information between X and Ŷ . On the one
hand, higher mutual information implies that Ŷ generates a partition with higher cardinality
(or usually finer partition) on X, which further implies more common information is shared
between X and Ŷ . On the other hand, from a data compression perspective, lower mutual
information means Ŷ generates a partition on Z with lower cardinality, which further implies
a better data compression rate, because Ŷ can compress X into a partition of smaller
cardinality.

As discussed in Section 2, we adopt mutual information to quantify the common infor-
mation and compression rate between random variables. For unlearning quality purposes,
we hope to maintain as much information of X as possible in generating Ŷ . Therefore, to
maximize utility, we should maximize mutual information I(X; Ŷ ) or, equivalently, mini-
mize the compression rate.

A.2 Admissibility

Since we are unlearning the information of Z by compressing relational data (X,Z), it
is natural to require the resulting compressed data X̂ to be measurable with respect to
(X,Z). Intuitively, the compression output X̂ should have its “root” from (X,Z) without
introducing additional randomness by the compression map f itself. Technically speaking,
the “root” here means that for every event or observation A of the compressed X̂, the
information or pre-image represented by the observation X̂−1(A) := {ω : X̂(ω) ∈ A} comes
from the knowledge of f−1(A) := {(x, z) : f(x, z) ∈ A} based on (X,Z):

{ω : X̂(ω) ∈ A} = X̂−1(A)

= (X,Z)−1(f−1(A))

= {ω : (X(ω), Z(ω)) ∈ f−1(A)}. (11)
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Here, ω ∈ Ω is the smallest unit of information we can have from the measure space
(Ω,F ,P). From a probability-theoretical perspective, since X̂ is a compression of (X,Z),
it generates a coarser partition (or, more technically, sigma-algebra) than the original in-
formation (X,Z) and we say X̂ is measurable with respect to (X,Z), denoted by

σ(X̂) ⊂ σ((X,Z)). (12)

This is equivalent to the existence of a BX ⊗ BZ/BX -measurable map, denoted by f , such
that X̂ = f(X,Z). That is, our admissibility is equivalent to the assumption that the data
compression process does not create information or randomness by itself. Therefore, we
define the admissible unlearning outcome in our framework as follows:

A(X,Z) :=
{
X̂ = f(X,Z) : f is BX ⊗ BZ/BX

-measurable
}
.

(13)

and we use X̂ = f(X,Z) and X̂ ∈ A(X,Z) interchangeably.

A.3 Proof of Lemma 2.1

Proof First, notice that it follows from the construction of relational data (Xtrain, Z) that
{Z = 0} = {Xtrain = X0} and {Z = 1} = {Xtrain = X1}. Also, we have

|P(Z = 0|Ŷ )− P(Z = 1|Ŷ )| = |2P(Z = 0|Ŷ )− 1| (14)

≤ 2|P(Z = 0|Ŷ )− P(Z = 0)|+ 2|P(Z = 0)− 0.5| (15)

≤ ||P(Z|Ŷ )− P(Z)||TV , (16)

where the third line follows from the definition of total variation distance and the prior
information P(Z = 0) = 1

2 . By taking the expectation over Ŷ , we have

EŶ (|P(Z = 0|Ŷ )− P(Z = 1|Ŷ )|) ≤ EŶ (||P(Z|Ŷ )− P(Z)||TV )

≤ EŶ

(√
1

2
KL(P(Z|Ŷ )||P(Z))

)

≤ 1

2

√
EŶ

(
KL(P(Z|Ŷ )||P(Z))

)
=

1

2

√
I(Z; Ŷ ).

Here, the second line follows from Pinsker’s inequality, the third from Jensen’s inequality,
and the fourth from the definition of mutual information. Now, for any fixed ε > 0, it
follows from Markov’s inequality that

P
(
{|P(Z = 0|Ŷ )− P(Z = 1|Ŷ )| ≤ ε}

)
≥ 1− 1

ε

(√
1

2
I(Z; Ŷ )

)
.
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Finally, it follows from

|P(Z = 0|Ŷ )− P(Z = 1|Ŷ )| ≤ ε =⇒ log

(
P(Z = 0 | Ŷ )

P(Z = 1 | Ŷ )

)
≤ log

(1 + ε

1− ε

)
that

{
|P(Z = 0|Ŷ )− P(Z = 1|Ŷ )| ≤ ε

}
⊂

{
| log

(
P(Z = 0 | Ŷ )

P(Z = 1 | Ŷ )

)
| ≤ log

(1 + ε

1− ε

)}
,

and

P

(
{| log

(
P(Z = 0 | Ŷ )

P(Z = 1 | Ŷ )

)
| ≤ log(

1 + ε

1− ε
)}

)
≥ P

(
{|P(Z = 0|Ŷ )− P(Z = 1|Ŷ )| ≤ ε}

)
≥ 1− 1

ε

(√
1

2
I(Z; Ŷ )

)
.

Since {Z = 0} = {Xtrain = X0} and {Z = 1} = {Xtrain = X1} by construction, the proof
is complete.

A.4 Proof of Lemma 2.2

Proof Assume for contradiction that there exists a y∗ ∈ Y such that | log(f(X0)(y∗)
f(X0)(y∗)

)| > ε,

then let δ be the radius around y∗ that satisfies sign(log(f(X0)(y)
f(X1)(y)

)) = sign(log(f(X0)(y∗)
f(X1)(y∗)

)),
we have

WdY (f(X0), f(X1)) > δ

∫
Bδ(y∗)

|f(X0)− f(X1)|(y)dy

≥ δ|f(X0)− f(X1)|(y∗)

Now, if there exits a L ≤ L∗(ε) such that f is L-Lipschitz, then we have

dY(f(x), f(x′)) ≤ LdX (x, x′) ≤ L∗(ε)dX (x, x′). (17)

But that implies

WdY (f(X0), f(X1)) ≤ L∗(ε)WdX (X0, X1)

=
δ
∣∣f(X1)(y

∗)− f(X0)(y
∗)
∣∣

WdX (X1, X0)
WdX (X0, X1)

= δ
∣∣f(X1)(y

∗)− f(X0)(y
∗)
∣∣

which contradicts WdY (f(X0), f(X1)) > δ|f(X0) − f(X1)|(y∗). Therefore, f must violate
L-Lipschitz for any L ≤ L∗(ε).
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A.5 Details on Considered Utility Quantifications

In practical machine unlearning, the utility of unlearning may need to be evaluated with
respect to a different target variable Y rather than the original dataset X. Moreover,
mutual information, while often a natural choice, is not the only metric for quantifying the
relationship between the unlearning outcome X̂ and the target variable Y . To accommodate
diverse objectives, we extend our framework to the general formulation:

sup
X̂=f(X,Z)

{U(Y ; X̂) : X̂ ⊥ Z}, (18)

where U(Y ; X̂) represents a utility quantification, and the constraint X̂ ⊥ Z ensures that the
unwanted information Z is fully removed from X̂. Below, we introduce several commonly
used utility objectives and their corresponding constrained optimization problems, for which
we provide a unified analytic feature unlearning solution in the next section.

Entropy Maximization: The utility is defined as the entropy of the unlearning output,
U(Y ; X̂) = H(X̂), which quantifies the information in X̂. Entropy is commonly used to
balance exploitation and exploration, such as in classifier training [31]. The optimization
problem, Entropy-Maximized Feature Unlearning, is given by supX̂=f(X,Z){H(X̂) : X̂ ⊥ Z}.
Alternatively, it can be interpreted as entropy-regularized mutual information minimization:
supX̂=f(X,Z){−I(Z; X̂) + 1

βH(X̂)}, where β controls the trade-off.

Mutual Information Maximization: The utility is defined as U(Y ; X̂) = I(Y ; X̂), mea-
suring the shared information between the target variable Y and the unlearning outcome
X̂. This objective is widely applied in classification methods such as decision trees [10] and
in deep learning techniques, including Deep InfoMax [23] and information bottleneck meth-
ods [2]. The corresponding optimization problem, Mutual-Information-Maximized Feature
Unlearning, is given by supX̂=f(X,Z){I(Y ; X̂) : X̂ ⊥ Z}. Since I(Y ; X̂) = H(Y )−H(Y |X̂),

this problem is equivalent to minimizing the conditional entropy H(Y |X̂). As a result, it
provides an optimal solution for utility preservation with respect to any target variable Y .

KL-Divergence Maximization: The utility is U(Y ; X̂) = DKL(P(Y |X̂)||P(Y )), where
DKL measures the divergence between the predicted and prior distributions of Y . This ob-
jective is commonly applied in generative models such as Variational Autoencoders (VAEs)
[22]. The corresponding optimization problem, KL-Divergence-Maximized Feature Unlearn-
ing, is formulated as supX̂=f(X,Z){DKL(P(Y |X̂)||P(Y )) : X̂ ⊥ Z}. This problem seeks to

make P(Y |X̂) as deterministic as possible relative to the prior P(Y ), thereby enhancing
the predictive power of X̂ for Y .

Conditional Probability Energy Maximization: The utility is defined as the L2-norm
of the conditional probability P(Y ∈ A|X̂) for classification or the negative mean squared
error (MSE) for regression:

U(Y ; X̂) =


√
EX̂

[
P(Y ∈ A|X̂)2

]
for classification,

−||Y − E(Y |X̂)||2 for regression.
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The corresponding optimization problem, Energy-Maximized Feature Unlearning, is formu-
lated as supX̂=f(X,Z){||P({Y ∈ AY }|X̂)||22 : X̂ ⊥ Z}. A higher L2-norm indicates a more

precise prediction of the event {Y ∈ AY } based on X̂, leading to reduced Bayes error and
improved decision boundaries.

As we show in the next section, when the above-listed objectives are applied, there exists
a universal optimal feature unlearning solution to the general formulation: equation (18)
for arbitrary target variable Y .

A.6 Formulation of Constrained Optimization Problems

Our goal here is to provide theoretical solutions to the following constrained optimization
problems under mild assumptions, thereby developing a unified mathematical framework
for machine unlearning of features and labels under various utility objectives:

Problem 1 (Entropy-Maximized Feature Unlearning)

sup
Ŷ ∈A(X,Z)

{H(Ŷ ) : Ŷ ⊥ Z}.

Here, H denotes the entropy (or differential entropy), which measures the information
contained in the unlearning outcome Ŷ . As discussed, entropy is a fundamental metric
in information theory and probability for quantifying information and randomness. Thus,
Problem 1 seeks to optimally compress (X,Z) to produce Ŷ with the information about Z
effectively removed.

Problem 2 (Conditional-Entropy-Minimized Feature Unlearning)

inf
Ŷ ∈A(X,Z)

{H(Y |Ŷ ) : Ŷ ⊥ Z}.

In many cases, an unlearning output Ŷ may be used to generate inferences or predictions for
some random variable Y . Thus, it is also desirable to solve Problem 2 for some dependent
variable Y . Notice that, due to I(X;Y ) = H(Y )−H(Y |X), the above problem shares the
same solution as the maximization of mutual information between Y and Ŷ :

Problem 3 (Mutual-Information-Maximized Feature Unlearning)

sup
Ŷ ∈A(X,Z)

{I(Y ; Ŷ ) : Ŷ ⊥ Z}.

Notably, the optimal solution to Problem 2 and 3 does not depend on the specific choice
of Y due to the monotonicity of the functional H(Y |·) with respect to the sigma-algebra
generated by Ŷ . Thus, despite the explicit presence of Y in Problem 2, it provides a
generalized solution for any choice of Y .

Problem 4 (KL-Divergence-Maximized Feature Unlearning)

sup
Ŷ ∈A(X,Z)

{DKL(P(Y |Ŷ )||P(Y )) : Ŷ ⊥ Z}.
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Given a variable of interest denoted by Y , a general downstream machine learning or AI
task may aim to estimate the conditional probability using the unlearning outcome Ŷ .
Therefore, it is desirable to make P(Y |Ŷ ) as deterministic as possible relative to the original
distribution of Y . To quantify this determinism, we use the KL-divergence of P(Y |Ŷ )
relative to P(Y ), leading to the optimization problem above. Intuitively, a more accurate
prediction of P(Y |Ŷ ) implies less randomness relative to P(Y ), which increases the KL-
divergence of P(Y |Ŷ ) relative to P(Y ). Thus, maximizing the KL-divergence enhances the
predictive power of Ŷ for Y . We later show that Problem 4 is also independent of the choice
of Y .

Problem 5 (Energy-Maximized Feature Unlearning)

sup
Ŷ ∈A(X,Z)

{||P({Y ∈ AY }|Ŷ )||22 : Ŷ ⊥ Z}.

Finally, from the perspective of conditional probability estimation, for a given Y and event
AY ∈ BY , it is natural to maximize the energy (or equivalently, the L2 norm) of the condi-
tional probability P({Y ∈ AY }|Ŷ ). Here, a larger L2 norm of the conditional probability
indicates a more precise prediction of the event {Y ∈ AY } based on the information provided
by Ŷ .
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B. Appendix: Supplementary Material for Section 3

B.1 Wasserstein Distance and Barycenter

Given µ, ν ∈ P(Rd) where P(Rd) denotes the set of all the probability measures on Rd,

W2(µ, ν) :=

(
inf

λ∈
∏

(µ,ν)

{∫
Rd×Rd

||x1 − x2||2dλ(x1, x2)
}) 1

2

.

Here,
∏

(µ, ν) := {π ∈ P((Rd)2) :
∫
Rd dπ(·, v) = µ,

∫
Rd dπ(u, ·) = ν}. (P2(Rd),W2) is called

the Wasserstein space, where P2(Rd) :=
{
µ ∈ P(Rd) :

∫
Rd ||x||2dµ < ∞

}
. Also, we use

P2,ac(Rd) to denote the set of probability measures with finite second moments and are
absolute continuous w.r.t. the Lebesgue measure. To simplify notation, we often denote

W2(X1, X2) :=W2(L(X1),L(X2)),

where L(X) := P ◦ X−1 ∈ P(Rd) is the law or distribution of X, X : Ω → X := Rd is a
random variable (or vector) with an underlying probability space (Ω,F ,P). Intuitively, one
can consider the Wasserstein distance as L2 distance after optimally coupling two random
variables whose distributions are µ and ν. That is, if the pair (X1, X2) is an optimal coupling
[37], then

W2(X1, X2) = ||X1 −X2||L2 =

∫
Ω
||X1(ω)−X2(ω)||2dP(ω).

Given {µz}z∈Z ⊂ (P2(Rd),W2) for some index set Z, their Wasserstein barycenter [1] with
weights λ ∈ P(Z) is

µ̄ := argminµ∈P2(Rd)

{∫
Z
W2

2 (µz, µ)dλ(z)
}
. (19)

If there is no danger of confusion, we will refer to the Wasserstein barycenter simply as
barycenter. Also, we use X̄ to denote the random variable such that L(X̄z) = (Tz)♯L(Xz)
where Tz is the optimal transport map from L(Xz) to µ̄. µ̄ is the barycenter of µz = L(Xz)
for all z.

B.2 Proof of Lemma 3.1

Proof See Lemma 5.2 in [43] for the full proof. We provide a sketch here: Under the ab-
solute continuity assumption of Xz’s, we have the Wasserstein-2 barycenter is also absolute
continuous. Therefore, the optimal transport maps between the barycenter and each of the
Xz are invertible (almost everywhere). This implies that there exists invertible measurable
maps between (X̄, Z) and (X,Z) and hence σ((Ŷ , Z)) ⊂ σ((X,Z)) = σ((X̄, Z)). Now,
by the independence constraint, we also have σ((X̄, Z)) = σ(X̄) ⊗ σ(Z) and σ((Ŷ , Z)) =
σ(Ŷ ) ⊗ σ(Z). Therefore, it follows from σ(Ŷ ) ⊗ σ(Z) ⊂ σ(X̄) ⊗ σ(Z) =⇒ σ(Ŷ ) ⊂ σ(X̄)
that σ(Ŷ ) ⊂ σ(X̄) for all admissible Ŷ . That completes the proof.
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B.3 Proof of Lemma 3.2

Proof Assume σ(X1) ⊂ σ(X2). For entropy, we have H(X2) −H(X1) = H(X2|X1) ≥ 0.
Therefore, H(X2)−H(X1).

For mutual information, it follows from the assumption σ(X1) ⊂ σ(X2) that there exists
a measurable function g(X2) = X1. Therefore, given any Y , we have Y is conditionally
independent of X1 given X2 because X1 is a constant given X2. That is, Y → X2 → X1

forms a Markov chain. It follows from the data-processing inequality [9] that I(Y ;X1) ≤
I(Y ;X2).

For the conditional entropy, we have H(Y |Xs) = H(Y ) − I(Y ;Xs) for s ∈ {1, 2}.
Therefore, it follows from I(Y ;X1) ≤ I(Y ;X2) that H(Y |X2) ≤ H(Y |X1).

For KL-divergence, it follows from the convexity of the divergence in the first argument,
the P(Y |X1) = E(P(Y |X2)|X1), and Jensen’s inequality that

DKL(P(Y |X1)||P(Y )) ≤ EX2(DKL(P(Y |X2)||P(Y ))|X1).

Finally, by taking expectation w.r.t. X1 on both sides, we have

DKL(P(Y |X1)||P(Y )) ≤ DKL(P(Y |X2)||P(Y )).

For the conditional probability energy, it follows directly from P({Y ∈ AY |X1}|X) =
E(1Y ∈AY |X) and the tower property of conditional expectation: If σ(X1) ⊂ σ(X2),

E(1Y ∈AY |X1) = E(E(1Y ∈AY |X2)|X1).

B.4 Intuitive Insights into Theorem 3.1

• Among all admissible Ŷ outcomes, X̄ maximizes randomness or information when
quantified by entropy.

• Given X̄, the conditional probability distribution of Y retains the least randomness
among all admissible Ŷ outcomes, with randomness measured by conditional entropy.

• From the information-theoretical perspective, since X̄ contains the most information
among the admissible, it contains the most mutual information to Y compared to
other admissible.

• The conditional probability P(Y |X̄) provides the greatest certainty (or least random-
ness) relative to P(Y ), with the reduction in randomness measured by KL-divergence.

• Assuming sufficiently regularized sensitive distributions with a density function, X̄
achieves higher or equal energy (or L2-norm) in P(Y |X̄) for any random variable Y
and any event generated by Y , compared to other admissible Ŷ outcomes.
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