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1 Introduction

These notes address mathematical issues that arise when one attempts to
incorporate shock waves into Einstein’s theory of General Relativity. At the
start, one is led to consider solutions of the Einstein equations when the
spacetime metric is only Lipschitz continuous, and this is the main topic
of this article. In Section 1, (which is taken from [36]), we introduce Gen-
eral Relativity and the Einstein equations, and then we begin the discus-
sion in Subsection 2.2, (taken from [9]), by writing down the Einstein equa-
tions for a perfect fluid assuming spherical symmetry, and assuming standard
Schwarzschild coordinates. We point out that the equations imply that the
metric components of solutions can be at best Lipschitz continuous functions
of the coordinates when shock waves are present, (that is, the metric com-
ponents, viewed as functions of the spacetime coordinates, lie at best within
the class C0,1 of functions that are continuous with Holder exponent 1, [6]).
We then write down a system of conservation laws with source terms that
is weakly equivalent to these equations, and this helps explain the less than
expected regularity of the metric. A rigorous derivation of the equivalence
of these equations is the topic of Section 5. Now the Lipschitz continuity of
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the metric components is interesting because the curvature tensor, a quan-
tity determined by second derivatives of the metric tensor, must remain free
of delta function sources in order to be a bona fida weak solution of the
equations. This motivates the discussion in Section 2, (taken from [29]),
which presents the general theory of matching spacetime metrics Lipschitz
continuously across smooth shock surfaces. In Section 3, (which is taken
from [31, 36]), we develop a theory for matching a Friedmann-Robertson-
Walker metric of cosmology, to a Tolman-Oppenheimer-Volkoff metric for a
static fluid sphere, across a shock wave interface, and in Section 4, (taken
from [30]), we use this theory to derive a class of exact shock wave solutions
of the Einstein equations that model blast waves in General Relativity. In
these exact solutions, the Big Bang singularity of the FRW metric is replaced
by a shock wave explosion, and the outgoing shock wave lies at the leading
edge of what is interpreted as the expansion of the galaxies in the cosmo-
logical interpretation of the FRW metric. The construction of these exact
solutions takes advantage of being able to work with metrics in the lower
smoothness class of C0,1. In Section 5, (taken from [9]), we show that the
spherically symmetric Einstein equations written in standard Schwarzschild
coordinates, (that is, the equations which began the discussion in Section 1),
are weakly equivalent to a system of conservation laws with source terms.
This reformulation of the equations shows that we can expect solutions with
shock waves to exist, and helps explain the Lipschitz regularity of the metric
components when shocks are present. The system of equations derived in
Section 5 is also the starting point for the existence theory given in [10]. The
main theorem in [10] is stated in Subsection 2.2. This result confirms what is
indicated by the equations derived in Section 5, and demonstrates rigorously
that the initial value problem for the Einstein equations, (assuming perfect
fluid and spherical symmetry), is consistent for initial density and velocity
profiles that are discontinuous functions that are only locally of bounded
total variation. Said differently, the result demonstrates that the Einstein
equations of General Relativity are meaningful in the presence of arbitrary
numbers of interacting shock waves, of arbitrary strength.

The class C0,1 is one derivative less smooth than the Einstein equations
suggest the metric components ought to be, and in fact, the singularity the-
orems in [11] presume that metrics are in the smoothness class C1,1, one
degree smoother, c.f. [11], page 284. One of the remarkable features of the
results of Section 2 is that for smooth shock surfaces, there always exist co-
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ordinate transformations that smooth the components of the gravitational
metric to C1,1, and these coordinates can be taken to be the Gaussian nor-
mal coordinates of the surface. However, the Gaussian normal coordinates
break down at points of interaction of shock waves, and thus it remains an
open problem whether general Lipschitz continuous solutions of the Einstein
equations can always be smoothed by coordinate transformation. This leads
to the following interesting dichotomy: If such a coordinate transformation
does not always exist, then solutions of the Einstein equations are one degree
less smooth than previously assumed; and if such a transformation does exist,
then it defines a mapping that takes weak solutions of the Einstein equations
to strong solutions. In the latter case, it follows that the theory of distribu-
tions and the Rankine-Hugoniot jump conditions for shock waves need not be
imposed as extra conditions on the relativistic compressible Euler equations
in General Relativity, but rather must follow as logical consequences of the
strong formulation of the Einstein equations by themselves.

2 Spacetime and the Gravitational Metric Ten-

sor

In Einstein’s theory of General Relativity, all properties of the gravitational
field are determined by the gravitational metric tensor g, a Lorentzian metric
that describes a continuous field of symmetric bilinear forms of signature
(−1, 1, 1, 1), defined at each point of a four dimensional manifold M called
“spacetime.” Freefall paths through the gravitational field are the geodesics
of the metric; the non–rotating vectors carried by an observer in freefall
are those vectors that are parallel transported by the (unique symmetric)
connection determined by g; spatial lengths of objects correspond to the
lengths of the spacelike curves that define their shape—length measured by
the metric g; and time changes for an observer are determined by the length
of the observer’s timelike curve through spacetime, as measured by the metric
g.

The length of a curve in spacetime is computed by integrating the element
of arclength ds along the curve, where, in a given coordinate system on
spacetime, ds is defined by
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ds2 = gijdx
idxj. (2.1)

Here we adopt the Einstein summation convention whereby repeated up-
down indices are assumed to be summed from 0 to 3. A coordinate system on
spacetime is a regular map that takes a neighborhood Ux of spacetime to R4,
x : Ux → R4. Since spacetime is a manifold, it can be covered by coordinate
charts. We let x = (x0, x1, x2, x3) denote both the coordinate map and the
coordinates of a point x(P ) ∈ R4. The functions gij(x), i, j = 0, 1, 2, 3, are
the x-components of the metric g. At each point x, the matrix gij determines
the lengths of tangent vectors in terms of their components relative to the
x-coordinate basis

{
∂
∂xi

}
. That is, in x-coordinates, the tangent vector to a

curve x(ξ), (as parameterized in x-coordinates), is given by X(ξ) = ẋi ∂
∂xi ,

(dot denotes d
dξ

), so that along the curve x(ξ), the increment dxi in the

xi-coordinate, in the direction of the curve, is given by dxi = ẋidξ. Thus,
according to (2.1), the increment in arclength along a curve x(ξ) is given in
terms of the increment in the parameter ξ by

ds2 = gijẋ
iẋjdξ2 = ||X(ξ)||2dξ2,

so that, the length of an arbitrary vector X = X i ∂
∂xi is given by

||X||2 = gijX
iXj,

where again we assume summation over repeated up-down indices. We con-
clude that the length of a curve is just the integral of the g-length of its
tangent vector along the curve. Under change of coordinates x→ y, a vector
X i ∂

∂xi transforms to Xα ∂
∂yα according to the tensor transformation laws

Xα =
∂yα

∂xi
X i,

∂

∂yα
=
∂xi

∂yα
∂

∂xi
. (2.2)

(Our slightly ambiguous notation is that indices i, j, k, ... label components
in x-coordinates, and α, β, γ, ... label components in y-coordinates. So, for
example, X i is the xi-component of the tangent vector X, Xα is the yα-
component of X, etc. This works quite well, but tensors must be re-labeled
when indices are evaluated.) It follows that the metric tensor transforms
according to the tensor transformation law
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gαβ = gij
∂xi

∂yα
∂xj

∂yβ
. (2.3)

That is, at each point, g transforms by the matrix transformation law

ḡ = AtgA

for a bilinear form, because the matrix A = ∂xj

∂yβ transforms the vector com-

ponents of the y-basis
{

∂
∂yα

}
over to their components relative to the x-basis{

∂
∂xi

}
. The Einstein summation convention keeps track of the coordinate

transformation laws as in (2.2) and (2.3) so long as we keep the indices on
coordinate functions “up” (as in xi), coordinate basis indices “down” (as in
∂
∂xi ), indices on vector components “up”, (as in X i so that X = X i ∂

∂xi ),
indices on basis 1-forms “up” (as in dxi), and indices on components of 1-
forms down (as in ωi so that ω = ωidx

i). In general, a tensor of type (k, l)
is said to have k-contravariant indices (up) and l-covariant indices (down)
if the components in a given coordinate system transform according to the
tensor transformation law

Tα1,...,αk
β1,...,βl

= T i1,...,ikj1,...,jl

∂yα1

∂xi1
· · · ∂y

αk

∂xik
∂xj1

∂yβ1
· · · ∂x

jl

∂yβl
.

Here the (matrix) Jacobian satisfies ∂x
∂y

=
(
∂y
∂x

)−1
, and by letting

(gij) = (gij)
−1,

we can raise or lower an index by contracting the index with the metric; that
is, for example,

T ij = Tσjg
σi

raises the index i. In the modern theory of differential geometry, T i1,...,ikj1,...,jl
are

viewed as the components on the tensor products
{

∂
∂xi1

⊗ · · · ⊗ ∂
∂xik

⊗ dxj1 ⊗ · · · ⊗ dxjl
}

which form a basis for the set of operators that act linearly on k copies of
T ∗M and l copies of TM, c.f. [4].

Freefall paths through a gravitational field are geodesics of the spacetime
metric g. For example, the planets follow geodesics of the gravitational met-
ric generated by the Sun, (approximated by the Schwarzschild metric outside
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the surface of the Sun, and by a Tolman-Oppenheimer-Volkoff (TOV) met-
ric inside the surface of the Sun), and according to the standard theory of
cosmology, the galaxies follow geodesics of a Friedmann-Robertson-Walker
(FRW) metric. In spherical coordinates x = (t, r, θ, φ), the Schwarzschild
line element is given by

ds2 = −
(
1− 2GM0

r

)
dt2 +

(
1− 2GM0

r

)−1

dr2 + r2dΩ2, (2.4)

the TOV line element is given by

ds2 = −B(r)dt2 +

(
1− 2GM(r)

r

)−1

dr2 + r2dΩ2, (2.5)

and the FRW line element is given by

ds2 = −dt2 +R(t)2

(
dr2

1− kr2
+ r2dΩ2

)
. (2.6)

The line element determines the metric components gij through the identity
(2.1). Here G denotes Newton’s gravitational constant, M0 denotes the mass
of the Sun (or a star), M(r) denotes the total mass inside radius r, (a function
that tends smoothly to M0 at the star surface), B(r) is a function that

tends smoothly to 1 − 2GM0/r at the star surface, H = Ṙ(t)
R(t)

is the Hubble

“constant”, and dΩ2 = dθ2 + sin2(θ)dφ2 denotes the standard line element
on the unit 2-sphere. (Here 2GM = 2GM

c2
, and we take c = 1, [4].)

Each of the metrics (2.4)-(2.6) is a special case of a general spherically
symmetric spacetime metric of the form

ds2 = −A(r, t)dt2 +B(r, t)dr2 + 2D(r, t)drdt+ C(r, t)dΩ2, (2.7)

where A,B,C,D are arbitrary, smooth, positive functions. A spherically
symmetric metric is said to be in standard Schwarzschild coordinates, (or
the standard coordinate gauge), if it takes the simpler form

ds2 = −A(r, t)dt2 +B(r, t)dr2 + r2dΩ2. (2.8)

It is well known that, in general, there always exists a coordinate trans-
formation that takes an arbitrary metric of form (2.7) over to the simpler
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form (2.8), [42]. In Section 2.2 below we carry out this reduction with an
eye toward anticipating the regularity of the metric components A and B,
[42, 9]).

The geodesics of a metric are paths x(s) of extremal length, determined
by the geodesic equation

d2xi

ds2
= Γijk

dxj

ds

dxk

ds
, (2.9)

where the so called Christoffel symbols or connection coefficients Γijk are
defined by

Γijk =
1

2
gσi {−gjk,σ + gσj,k + gkσ,j} . (2.10)

(Here “, k” denotes the classical derivative in direction xk.) The Christof-
fel symbols Γijk are the central objects of differential geometry that do not
transform like a tensor. Indeed, they fail to be tensorial by exactly the
amount required to convert coordinate differentiation of vector components
into a tensorial operation. That is, for a vector field Y, let Y i denote the
xi-component of Y. The covariant derivative ∇ is defined by

∇ ∂
∂xσ
Y = Z,

where, letting semi-colon denote covariant differentiation, Z defines a vector
field with x-components

Zi = Y i
;σ ≡

∂Y i

∂xσ
− ΓiσkY

k. (2.11)

For arbitrary vector fields X and Y, one defines the covariant derivative ∇XY
by

∇XY = Xσ∇ ∂
∂xσ
Y ≡ XσY i

;σ

∂

∂xi
.

We say that a vector field Y is parallel along a curve whose tangent vector
is X if

∇XY = 0,

all along the curve. It follows that the covariant derivative ∇XY measures
the rate at which the vector field Y diverges from the parallel translation of
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Y in the direction of X. In a similar fashion, one can define the covariant
derivative ∇T of any (k, l) tensor T as the (k, l+ 1) tensor with components

T i1,...,ikj1,...,jl;σ
.

For example, for a (1, 1) tensor T,

T ij;σ = T ij,σ − ΓiτσT
τ
j + ΓτjσT

i
τ . (2.12)

More generally, to compute ∇T for a (k, l) tensor T, include a negative term
for every contravariant index, (contract the index with Γ as above), and a
positive term (as above) for every covariant index in T. We say that T is
parallel along a curve with tangent vector X if ∇XT = 0 all along the curve.
It follows that ∇XT measures the rate at which T diverges from the parallel
translation of T in direction X. For a (2, 0) tensor T we define the covariant
divergence of T to be the vector field defined by

divT = T iσ;σ
∂

∂xi
. (2.13)

The covariant derivative commutes with contraction and the raising and low-
ering of indices, [42], and by (2.12), ∇ reduces to the classical derivative at
any point where the Christoffel symbols Γijk vanish.

It follows from (2.10) that Γijk = 0 at a point in a coordinate system
where gij,k = 0, all i, j, k = 0, ..., 3. The existence of such coordinate frames
at a point follows directly from the fact that the metric components gij
are smoothly varying, and transform like a symmetric bilinear form under
coordinate transformation. If in addition, gij = diag(−1, 1, 1, 1), then such a
coordinate system is said to be locally inertial, or locally Lorentzian at the
point. The notion of geodesics and parallel translation have a very natural
physical interpretation in General Relativity in terms of the locally inertial
coordinate frames. Indeed, General Relativity makes contact with (the flat
spacetime theory of) Special Relativity by identifying the locally Lorentzian
frames at a point as the “locally non–rotating” inertial coordinate systems
in which spacetime behaves as if it were locally flat. Thus physically, the
non–rotating vector fields carried by an observer in freefall should be the
vector fields that are locally constant in the locally inertial coordinate frames
defined at each point along the curve. But since Γijk = 0 at the center of a
locally intertial coordinate system, it follows from (2.11) that a vector field is
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parallel translated along a curve (in the sense that ∇XY = 0 along a curve),
if and only if its components are (locally) constant in the locally inertial
coordinate frames defined at each point along the curve. Thus we see that
the non–rotating vector fields carried by an observer in freefall are exactly
the vectors that are parallel transported by the unique symmetric connection
(2.10) determined by the gravitational metric g. Similarly, the geodesics of
the metric g are just the curves that are “locally straight lines” in the locally
inertial coordinate frames.

The fundamental tenet of General Relativity is the principle that there
is no apriori global inertial coordinate system on spacetime. Rather, in Gen-
eral Relativity, inertial coordinate systems are local properties of spacetime
in the sense that they change from point to point. For example, if there were
a global Newtonian absolute space, then there would exist global coordinate
systems in which freefalling objects do not accelerate, and any two such co-
ordinate systems would be related by transformations from the 10 parameter
Galilean Group–the set of coordinate transformations that do not introduce
accelerations. In Special Relativity, the existence of absolute space would
presume the existence of global coordinate systems related by the transfor-
mations of Special Relativity; that is, in Special Relativity, the 10 parameter
Poincare group replaces the 10 parameter Galilean Group as the set of trans-
formations that introduce no accelerations. The Poincare Group is obtained
from the Galilean group by essentially replacing Euclidean translation in
time by Lorentz transformations, and this accounts for time dilation. The
spacetime metric can then be viewed as a book-keeping device for keeping
track of the location of the local inertial reference frames as they vary from
point to point in a given coordinate system–the metric locates the local iner-
tial frames at a given point as those coordinate systems that diagonalize the
metric at that point, gij = diag(−1, 1, 1, 1), such that the derivatives of the
metric components also vanish at the point. Thus, the earth moves “unac-
celerated” in each local inertial frame, but these frames change from point to
point, thus producing apparent accelerations in a global coordinate system in
which the metric is not everywhere diagonal. The fact that the earth moves
in a periodic orbit around the Sun is proof that there is no coordinate system
that globally diagonalizes the metric, and this is an expression of the fact
that gravitational fields produce non–zero spacetime curvature. Indeed, in
an inertial coordinate frame, when a gravitational field is present, one can-
not in general eliminate the second derivatives of the metric components at a
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point by any coordinate transformation, and the nonzero second derivatives
of the metric that cannot be eliminated, represent the gravitational field.
These second derivatives are measured by the Riemann Curvature Tensor
associated with the Riemannian metric g.

Riemann introduced the curvature tensor in his inaugural lecture of 1854.
In this lecture he solved the longstanding open problem of describing curva-
ture in surfaces of dimension higher than two. Although the curvature tensor
was first developed for positive definite “spatial” metrics, Einstein accounted
for time dilation by letting Lorentz transformations play the role of rotations
in Riemann’s theory, and except for this, Riemann’s theory carries over es-
sentially unchanged. The Riemann Curvature Tensor Ri

jkl(x) is a quantity
that involves second derivatives of gij(x), but which transforms like a tensor
under coordinate transformation; that is, the components transform like a
sort of four component version of a vector field, even though vector fields
are constructed essentially from first order derivatives. The connection be-
tween General Relativity and geometry can be summarized in the statement
that the Riemann Curvature Tensor associated with the metric g gives an
invariant description of gravitational accelerations. The components of the
Riemann Curvature Tensor are given in terms of the Christoffel symbols by
the formula, [41],

Ri
jkl = Γijl,k − Γijk,l +

{
ΓσjlΓ

i
σk − ΓσjkΓ

i
σl

}
. (2.14)

One can interpret this as a “curl” plus a “commutator”.

2.1 Introduction to the Einstein Equations

Once one makes the leap to the idea that the inertial coordinate frames
change from point to point in spacetime, one is immediately stuck with the
idea that, since our non–rotating inertial frames here on earth are also non–
rotating with respect to the fixed stars, the stars must have had something to
do with the determination of our non– accelerating reference frames here on
earth, (Mach’s Principle). Indeed, not every Lorentzian metric can describe
a gravitational field, which means that gravitational metrics must satisfy a
constraint that describes how inertial frames at different points of spacetime
interact and evolve. In Einstein’s theory of gravity, this constraint is given
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by the Einstein gravitational field equations. These field equations were first
introduced by Albert Einstein in 1915 after almost ten years of struggle.

The Einstein equations can be written in the compact form

G = κT. (2.15)

Here G denotes the Einstein curvature tensor, T the stress energy tensor,
(the source of the gravitational field), and κ is the gravitational constant. In
a given coordinate system x, the field equations (2.15) take the component
form

Gij(x) = κTij(x), (2.16)

where

Gij ≡ Rσ
iσj −

1

2
Rστ
στgij, (2.17)

denotes the x-components of the Einstein curvature tensor, and Tij the x-
components of the stress energy tensor. We let 0 ≤ i, j ≤ 3 refer to com-
ponents in a given coordinate system, and again we assume the Einstein
summation convention whereby repeated up-down indices are assumed to be
summed from 0 to 3. The components of the stress energy tensor give the
energy density and i-momentum densities and their fluxes at each point of
spacetime. When the sources are modeled by a perfect fluid, T is given (in
contravariant form) by

T ij = (ρ+ p)wiwj + pgij, (2.18)

where w denotes the unit 4-velocity vector of the fluid, (the tangent vector
to the world line of the fluid particle), ρ denotes the energy density, (as
measured in the inertial frame moving with the fluid), and p denotes the

fluid pressure. The four velocity w has components wi = dxi

ds
when the fluid

particle traverses a (timelike) path x(s) in x-coordinates, and s is taken to
be the arclength parameter (2.1) determined by the gravitational metric g.
It follows that w is a unit timelike vector relative to g, and thus only three
of the four components of w are independent. The constant κ in (2.15) is
determined by the principle that the theory should incorporate Newton’s
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theory of gravity in the limit of low velocities and weak gravitational fields,
(Correspondence Principle). This leads to the value

κ = 8πG/c4.

Again, c denotes the speed of light and G denotes Newton’s gravitational
constant.

Newton’s constant first appears in the inverse square force law

Force = Ma = −GMM0

r3
r. (2.19)

In (2.19), M is the mass of a planet, M0 is the mass of the sun, and r is
the position vector of the planet relative to the center of mass of the system.
The Newtonian law (2.19) starts looking like it isn’t really a “fundamental
law” once one verifies that the inertial mass M on the LHS of (2.19) is equal
to the gravitational mass M on the RHS of (2.19), (Equivalence Principle).
In this case, M cancels out, and then (2.19) (remarkably) becomes more
like a law about accelerations than a law about “forces”. That is, once
M cancels out, the force law (2.19) is independent of any properties of the
object (planet) whose motion it purports to describe. Thus, in Newton’s
theory, the “gravitational force”, which is different on different objects of
different masses, miraculously adjusts itself perfectly so that every object,
(subject to the same initial conditions), traverses exactly the same path.
Thus Einstein was led to suspect that the Newtonian gravitational force
was some sort of artificial device, and that the fundamental objects of the
gravitational field were the “freefall paths”, not the forces. From this point
of view, the field equations (2.15) are more natural than (2.19) because they
are, at the start, equations for the gravitational metric, and the gravitational
metric fundamentally describes the paths of “freefalling” objects by means
of the geodesic equation of motion (2.9)—which just expresses “local non—
acceleration in locally inertial coordinate frames”. In Newton’s theory of
gravity, the non–rotating frames here on earth are aligned with the stars
because there is a global inertial coordinate system that connects us. In
contrast, according to the modern theory of cosmology, which is based on
Einstein’s theory of gravity, the non–rotating inertial frames here on earth
are aligned with the stars because the FRW metric (2.15) maintains this
alignment, and (2.15) solves the Einstein equations for an appropriate choice
of R(t)). (This is still a bit unsatisfying!)
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In the limit that a finite set of point masses tends to a continuous mass
distribution with density ρ, Newton’s force law is replaced by the Poisson
equation for the gravitational potential φ,

−∆φ = 4πGρ. (2.20)

Indeed, in the case of a compactly supported density ρ(x), one can use the
fundamental solution of Laplacian to write the solution of (2.20) as

φ(x) =
∫
R3

G
|x− y|

ρ(y)d3y, (2.21)

so the Newtonian acceleration at a point x is given by

a = −∇φ =
∫
R3

G
|x− y|3

(x− y)ρ(y)d3y. (2.22)

Thus we recover (2.19) from (2.22) by approximating ρ in (2.22) by a finite
number of point masses.

The Einstein equations play the same role in General Relativity that the
Poisson equation (2.20) plays in the Newtonian theory of gravity—except
there is a very significant difference: the Poisson equation determines the
(scalar) gravitational potential φ given the mass density ρ, but in Newton’s
theory this must be augmented by some system of conservation laws in order
to describe the time evolution of the mass density ρ as well. For example, if
we assume that the density evolves according to a perfect fluid with pressure
p and 3-velocity v, then the coupling of Newton’s law of gravity with the
Euler equations for a perfect fluid leads to the Euler-Poisson system

ρt + div(ρv) = 0,

(ρvi)t + div(ρviv + pei) = −ρ∇φ, (2.23)

−∆φ = 4πGρ.

The first four equations are the compressible Euler equations with the grav-
itational forcing term on the RHS. The first equation, the continuity equa-
tion, expresses conservation of mass, the next three express conservation of
i-momentum, i = 1, 2, 3, (for a perfect fluid this really says that the time rate
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of change of momentum is equal to the sum of the force of the pressure gra-
dient plus the force of the gravitational field; ei denotes the i’th unit vector
in R3), and the last equation expresses the continuum version of Newton’s
inverse square force law. Note that for the fluid part of (2.23), information
propagates at the sound (and shock) speeds, but the gravitational potential
φ is updated “instantaneously”, depending only on the density ρ(x, t), ac-
cording to the formula (2.21). In contrast, for Einstein’s theory of gravity,
the time evolution of the gravitational metric is determined simultaneously
with the time evolution of the sources through system (2.15), and all of the
components of the stress tensor directly influence the components of the
gravitational field gij. This principle is the basis for the discovery of the Ein-
stein equations. Indeed, since the 0-column of the stress-energy tensor (2.18)
gives the energy and momentum densities, and the i-column gives the cor-
responding i-fluxes, (in the relativistic sense), it follows that conservation of
energy-momentum in curved spacetime reduces to the statement

Div(T ) = 0, (2.24)

where (capital) Div denotes the covariant divergence for the metric g, so
that it agrees with the ordinary divergence in each local inertial coordinate
frame. In this way equations (2.24) reduce to the relativistic compressible
Euler equations in flat Minkowski spacetime. Since the covariant derivative
depends on the metric components, the conservation equation (2.24) is es-
sentially coupled to the equation for the gravitational field g. But the stress
tensor T is symmetric, Tij = Tji, and so the tensor on the LHS of (2.16) must
also be symmetric, and therefore the Einstein equations (2.16) supply ten in-
dependent equations in the ten independent unknown metric components gij,
together with the four independent functions among ρ and the unit vector
field w. (Here p is assumed to be determined by an equation of state.) But
(2.16) assumes no coordinate system, and thus in principle we are free to give
four further relations that tie the components of G and T to the coordinate
system. This leaves ten equations in ten unknowns, and thus there are no
further constraints allowable to couple system (2.15) to the conservation laws
(2.24). The only way out is to let (2.24) follow as an identity from (2.15),
and this determines the LHS of (2.15), namely, the Einstein tensor Gij is the
simplest tensor constructable from Ri

jkl such that (2.24) follows identically
from the Bianchi identities of Riemannian geometry, (Ri

j[kl,m] = 0, where

14



[kl,m] denotes cyclic sum, c.f., [42]). 4 Thus, the simplest and most natural
field equations of form (2.15) are uniquely determined by the equation count,
[42]. The next simplest tensor for the LHS of (2.15) that meets (2.24) is

Gij + Λgij,

for constant Λ. In these notes we always assume Λ = 0. One can show that in
the limit of low velocities and weak gravitational fields, the equations (2.24)
reduce to the first four equations of (2.23), and the (0, 0) component of the
Einstein equations (2.16) reduces to the Poisson equation (2.20), thus fixing
the choice κ = 8πG/c4, [42]. This establishes the correspondence of Einstein’s
theory of gravity with the Newtonian theory.

2.2 Shock Waves in General Relativity and the Ein-
stein equations in Schwarzschild Coordinates

In Einstein’s theory of gravity, based on (2.15), the conservation of energy
and momentum (2.24) are not imposed, but follow as differential identities
from the field equations (2.15). In a specified system of coordinates, (2.15)
determines a hyperbolic system of equations that simultaneously describes
the time evolution and interaction of local inertial coordinate frames, as
well as the time evolution of the fluid according to (2.24). Since GR is
coordinate independent, we can always view the time evolution (2.15) in local
inertial coordinates at any point in spacetime, in which case (2.24) reduces
to the classical relativistic Euler equations at the point. This tells us that,
heuristically, shock-waves must form in the time evolution of (2.15) because
one could in principle drive a solution into a shock while in a neighborhood
where the equations remained a small perturbation of the classical Euler
equations. (This is much easier to say than to demonstrate rigorously, and
as far as we know, such a demonstration remains a challenging task.) We
conclude from this that shock-waves are as fundamental to the time evolution
of solutions of the Einstein equations for a perfect fluid, as they are for the
time evolution of the classical compressible Euler equations (2.23).

4This is the simplest known route to the field equations (2.15). Of course, since (2.15)
represents a new starting point, it follows that there must be a “conceptual leap” at some
stage of any “derivation” of (2.15).

15



At a shock wave, the fluid variables ρ, w and p are discontinuous. Notice
that (2.15) implies that the Einstein curvature tensor G will be discontinuous
at any point where T is discontinuous. Since G involves second derivatives
of the metric tensor g, the only way (2.15) can hold in the classical pointwise
a.e. sense at the shock is if the component functions gij are continuously
differentiable at the shock, with bounded derivatives on either side, that
is, if gij ∈ C1,1. Thus we expect from (2.15) that the spacetime metric g
should be C1,1 at shock waves. However, we now show that for a spherically
symmetric metric in standard Schwarzschild coordinates (2.8), the best one
can expect is that g ∈ C0,1.

Using MAPLE to put the metric ansatz (2.8) into the Einstein equa-
tions (2.15) produces the following system of four coupled partial differential
equations, (c.f. (3.20)-(3.23) of [9]),

A

r2B

{
r
B′

B
+B − 1

}
= κA2T 00, (2.25)

−Bt

rB
= κABT 01, (2.26)

1

r2

{
r
A′

A
− (B − 1)

}
= κB2T 11, (2.27)

− 1

rAB2
{Btt − A′′ + Φ} =

2κr

B
T 22, (2.28)

where the quantity Φ in the last equation is,

Φ = −BAtBt

2AB
− B

2

(
Bt

B

)2

− A′

r
+
AB′

rB

+
A

2

(
A′

A

)2

+
A

2

A′

A

B′

B
.

Here “prime” denotes ∂/∂r, and again κ = 8πG
c4

is the coupling constant, G
is Newton’s gravitational constant, c is the speed of light, T ij, i, j = 0, ..., 3
are the components of the stress energy tensor, and A ≡ A(r, t), B ≡ B(r, t)
denote the components of the gravitational metric tensor (2.8) in standard
Schwarzschild coordinates x = (x0, x1, x2, x3) ≡ (t, r, θ, φ). The mass function
M is defined through the identity

16



B =
(
1− 2M

r

)−1

. (2.29)

In terms of the variable M, equations (2.25) and (2.26) are equivalent to

M ′ = 1
2
κr2AT 00, (2.30)

and

Ṁ = −1
2
κr2AT 01, (2.31)

respectively. Using the perfect fluid assumption (2.18), the components T ij

satisfy

T 00 =
1

A
T 00
M , (2.32)

T 01 =
1√
AB

T 01
M , (2.33)

T 11 =
1

B
T 11
M , (2.34)

where T ijM denote the components of T in flat Minkowski spacetime. The
components of TM are given by

T 00
M =

c4 + σ2v2

c2 − v2
ρ, (2.35)

T 01
M =

c2 + σ2

c2 − v2
cvρ, (2.36)

T 11
M =

v2 + σ2

c2 − v2
ρc2, (2.37)

where σ2 = p/ρ, c.f., [28, 9]. Here v, taken in place of w, denotes the
fluid velocity as measured by an observer fixed with respect to the radial
coordinate r. It follows from (2.30) together with (2.35)-(2.37) that, if r ≥
r0 > 0, then

M(r, t) = M(r0, t) +
κ

2

∫ r

r0
T 00
M (r, t)r2 dr, (2.38)
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and it follows directly form (2.35)-(2.37) that

|T 01
M | < T 00

M , (2.39)

σ2c2 + (p/ρ)T 00
M < T 11

M < T 00
M , (2.40)

so long as σ < c. Equation (2.38) shows that M(r, t) can be interpreted as
the total mass inside radius r at time t.

Now we are interested in solutions of (2.25)-(2.28) in the case when shock
waves are present. A shock wave in the compressible Euler equations leads
to discontinuities in the fluid density, pressure and velocity, and thus in light
of (2.18), it follows that a shock wave would produce a discontinuity in the
stress tensor T at a shock. But when T is discontinuous, equations (2.25)-
(2.27) above imply immediately that derivatives of the metric components A
and B are discontinuous at shocks. Moreover, if A and B have discontinuous
derivatives when shock waves are present, it follows that (2.28), being second
order, cannot hold classically, and thus equation (2.28) must be taken in the
weak sense, that is, in the sense of the theory of distributions. From these
considerations, we see that the metric components A and B can be at best
only Lipschitz continuous, that is, C0,1, at shock waves. That is, A and B
are one degree less smooth than the general theory suggests they should be,
[11].

The general problem of making sense of gravitational metrics that are
only Lipschitz continuous at shock surfaces was taken up in [30]. The anal-
ysis there identifies conditions that must be placed on the metric in order
to ensure that conservation holds at the shock, and that there do not exist
delta-function sources at the shock, [12]. When these conditions are met,
the methods in [30] imply the existence of a C1,1 coordinate transformation,
(to Gaussian normal coordinates), that improves the level of smoothness of
the metric components from C0,1 up to C1,1 at the shock. All of this is
the subject of Subsection 2.1. However, these results apply only to smooth
interfaces that define a single shock surface for which G = κT holds identi-
cally on either side. For general shock wave solutions of (2.25)-(2.28), (that
can contain multiplicities of interacting shock waves), it is an open question
whether there exists a coordinate transformation that can increase the level
of smoothness of the metric components by one order, because the Gaussian
normal coordinate system for the shock surface breaks down at points where
shock waves interact.
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We conclude this section by showing that the mapping (r, t) → (r̄, t̄) that
takes an arbitrary metric of form (2.7) over to one of form (2.8), implies a loss
of one order of differentiability in the metric components when shock waves
are present. This argues that our results are consistent with the existence
of such a smoothing coordinate transformation, but still leaves open the
problem of the existence of such a transformation.

We review the construction of the mapping (r, t) → (r̄, t̄), [42, 9] with
an eye toward keeping track of the smoothness class of the metric at each
stage. To start, one must assume that the metric component C(t, r) in (2.7)
satisfies the condition that for each fixed t, C increases from zero to infinity
as r increases from zero to infinity, and that

∂

∂r
C(r, t) 6= 0. (2.41)

(These are not unreasonable assumptions considering that C measures the
areas of the spheres of symmetry.) Define

r̄ =
√
C(r, t). (2.42)

Then the determinant of the Jacobian of the mapping (r, t) → (r̄, t) satisfies∣∣∣∣∣∂r̄∂r
∣∣∣∣∣ = ∂

∂r

√
C(r, t) 6= 0,

in light of (2.41). Thus the transformation to (r̄, t) coordinates is (locally) a
nonsingular transformation, and in (r̄, t) coordinates the metric (2.7) takes
the form

ds2 = −A(r, t)dt2 +B(r, t)dr2 + 2E(r, t)dtdr̄ + r2dΩ2. (2.43)

(Here we have replaced r̄ by r and A, B and E stand in for the transformed
components.) It is easy to verify that, to eliminate the mixed term, it suffices
to define the time coordinate t̄ so that, cf. [42],

dt̄ = φ(r, t) {A(r, t)dt− E(r, t)dr} . (2.44)

In order for (2.44) to be exact, so that t̄ really does define a coordinate
function, the integrating factor φ must be chosen to satisfy the (linear) PDE
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∂

∂r
{φ(r, t)A(r, t)} = − ∂

∂t
{φ(r, t)E(r, t)} . (2.45)

But we can solve (2.45) for φ(r, t) from initial data φ(r, t0), by the method of
characteristics. From this it follows that, (at least locally), we can transform
metrics of form (2.7) over to metrics of form (2.8) by coordinate transforma-
tion. To globalize this procedure, we need only assume that Cr(t, r) 6= 0, and
that C takes values from zero to infinity at each fixed t. Now note that in
general φ(r, t), the solution to (2.45), will have the same level of differentia-
bility as A(r, t) and E(r, t); and so it follows that the components of dt and
dr in (2.44) will have this same level of differentiability. This implies that
the t̄ transformation defined by (2.44) preserves the level of smoothness of
the metric component functions. On the other hand, the r̄ transformation
in (2.42) reduces the level of differentiablility of the metric components by
one order. Indeed, the level of smoothness of the transformed metric compo-
nent functions are in general no smoother than the Jacobian that transforms
them, and by (2.42), the Jacobian of the transformation contains the terms
Cr and Ct which will in general be only C0,1 when C ∈ C1,1. Thus, if we
presume, (motivated by [29]), that for general spherically symmetric shock
wave solutions of G = κT, that there exists a coordinate system in which the
metric takes the form (2.7), and the components of g in these coordinates are
C1,1 functions of these coordinates, then it follows that we cannot expect the
transformed metrics of form (2.8) to be better than C0,1, that is, Lipschitz
continuous.

In Section 5 we show that when A and B are Lipschitz continuous func-
tions of (t, r), and T is bounded in L∞, system (2.25)-(2.28) is weakly equiv-
alent to the system obtained by replacing (2.26) and (2.28) by the system
DivT = 0 in the form,

{
T 00
M

}
,0

+


√
A

B
T 01
M


,1

= −2

x

√
A

B
T 01
M , (2.46)

{
T 01
M

}
,0

+


√
A

B
T 11
M


,1

= −1

2

√
A

B

{
4

x
T 11
M +

(B − 1)

x
(T 00

M − T 11
M ) (2.47)

+2κxB(T 00
M T

11
M − (T 01

M )2)− 4xT 22
}
.
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(We use x in place of r when the equations are expressed as a system of
conservation laws.) This is a nice formulation of DivT = 0 because the
conserved variables u = (T 00

M , T
01
M ) are the Minkowski energy and momen-

tum densities, (c.f. (2.35), (2.36)), and thus do not depend on the metric
components A ≡ (A,B). Note that all terms involving Ar, Br and Bt in the
equation DivT = 0 have been eliminated by substitution using equations
(2.25), (2.26) and (2.27). However, DivT = 0 also contains terms that in-
volve At = 0, and there is no At equation among (2.25)-(2.28)— so some
change of variables is required to eliminate such terms from DivT = 0 in
order to close the equations, (c.f. (6.21), (6.22) below). It turns out that
it suffices to choose T 00

M and T 01
M as independent variables; that is, when we

substitute for T 00
M and T 01

M in favor of the original conserved quantities T 00

and T 01, all terms involving At in DivT = 0, , (remarkably), cancel out, thus
allowing the formulation (2.46), (2.47).

When T 11 and T 22 are expressed in terms of u = (u0, u1) ≡ (T 00
M , T

01
M ) in

(2.46), (2.47), (2.25) and (2.27), the equations close, and what results is a
system of conservation laws with source terms that takes the compact form

ut + f(A, u)x = g(A, u, x), (2.48)

A′ = h(A, u, x). (2.49)

The first equation in (2.49) is (2.46),(2.47), and the second equation is
(2.25),(2.27), so that

u = (T 00
M , T

01
M ) ≡ (u0, u1),

A = (A,B),

f(A, u) ≡ (f 0, f1) =

√
A

B

(
T 01
M , T

11
M

)
,

and g = (g0, g1) is determined from the RHS of (2.46), (2.47), while h =
(h0, h1) is determined from the RHS of (2.27), (2.25) upon solving for (A′, B′),
respectively, (c.f. (6.49) below). Note that (2.48), (2.49) do indeed allow
for C0,1 metrics with discontinuous density and velocity based on the con-
servation law structure of these equations, and such solution correspond to
gravitational metrics that are in the smoothness class C0,1. In general, they
do not admit solution metrics smoother than Lipschitz continuous.

21



Solutions to equations (2.48), (2.49) have recently been constructed in
[10] by a fractional step Glimm scheme that is locally inertial. The main
result of that work can be stated as follows, (we refer to [10]) for details):

Assume that

p = σ2ρ, (2.50)

where σ, the sound speed, is assumed to be constant, σ < c. (Examples of
this, including the case σ2 = 1/3, and the case of an isothermal sphere, are
important physically, but here we view (2.50) as a natural model problem
for general relativity because (2.50) keeps wave speeds subluminous, and
prevents the formation of vacuum states, [10]. The assumption of spherical
symmetry together with (2.50) defines the simplest possible setting for shock
wave propagation in the Einstein equations.) The assumption (2.50) implies
that the scalar curvature R is proportional to the density,

R = (c2 − 3σ2)ρ. (2.51)

For the existence theorem, assume the initial boundary conditions

ρ(r, 0) = ρ0(r), v(r, 0) = v0(r), for r > r0,

(2.52)

M(r0, t) = Mr0 , v(r0, t) = 0, for t ≥ 0,

where r0 and Mr0 are positive constants, and assume the no black hole and
finite total mass conditions,

2M(r, t)

r
< 1, lim

r→∞
M(r, t) = M∞ <∞, (2.53)

hold at t = 0. For convenience, assume further that

lim
r→∞

r2T 00
M (r, t) = 0, (2.54)

holds at t = 0. The main result of [10] can be stated as follows:

Theorem 1 Assume that the initial boundary data satisfy (2.52)-(2.54), and
assume that there exist positive constants L, V and v̄ such that the initial
velocity and density profiles v0(r) and ρ0(r) satisfy
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TV[r,r+L] ln ρ0(·) < V, TV[r,r+L] ln

(
c+ v0(·)
c− v0(·)

)
< V, |v0(r)| < v̄ < c,

(2.55)
for all r0 ≤ r < ∞, where TV[a,b]f(·) denotes the total variation of the
function f over the interval [a, b]. Then a bounded weak (shock wave) solution
of (2.25)-(2.28), satisfying (2.52) and (2.53), exists up to some positive time
T > 0. Moreover, the metric functions A and B are Lipschitz continuous
functions of (r, t), and (2.55) continues to hold for t < T with adjusted
values for V and v̄ that are determined from the analysis.

Note that we cannot expect bounded weak solutions for all time T → ∞
because black holes can form in finite time, and the metric component B =(
1− 2GM

r

)−1
→ ∞ at a black hole r = 2GM in standard Schwarzschild

coordinates. By (2.51), the case ρ → ∞ as t → T would correspond to
the formation of a naked singularity. Note that by (2.25) and (2.27), the
metric components A and B will be no smoother than Lipschitz continuous
when shocks are present, and since (2.28) is second order in the metric,
it follows that (2.28) is only satisfied in the weak sense of the theory of
distributions. Note finally that (2.53) says that the total mass is constant in
[0, T ), consistent with the conclusion that there do not exist delta function
sources of mass at shock waves, or at points of shock wave interaction, in
these solutions.

Theorem 1 confirms what is indicated by equations (2.48) and (2.49):
that the Einstein equations are consistent at the level of C0,1 metrics, and
are meaningful in the presence of arbitrary numbers of interacting shock
waves, of arbitrary strength. A careful derivation of (2.48), (2.49) is given in
Section 6, but Theorem 1 will not be discused in these notes. The interested
reader should consult [10] for a detailed proof of Theorem 1.
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3 Weak solutions of the Einstein Equations

when the Metric is only Lipschitz Contin-

uous Across an Interface

In this section we consider a general four dimensional spacetime manifold
with metric tensor g having signature ηij = diag(−1, 1, 1, 1). We look to
characterize solutions of the Einstein field equations (2.16) that are only
Lipschitz continuous across a smooth 3-dimensional surface Σ. To start, recall
that,

Gij ≡ Rij − (1/2)Rgij (3.1)

is the Einstein curvature tensor, where Rij and R denote the Ricci curvature
tensor and Ricci scalar curvature, respectively, formed from the Riemann
curvature tensor of the metric g. The Riemann curvature tensor, with com-
ponents Ri

jkl, is given by

Ri
jkl = Γijk,l − Γijl,k + ΓiσlΓ

σ
jk − ΓiσkΓ

σ
jl, (3.2)

and Rij and R are obtained by the contractions

Rij = Rσ
iσj,

and

R = Rσ
σ.

The Einstein tensor G satisfies the condition divG = 0, where div denotes
the covariant divergence defined in terms of the covariant derivative ∇ of the
metric connection for g. We reiterate that since divG = 0, it follows that
for solutions of (2.16) we must have divT = 0. The distinction here is that
divG = 0 is a geometric identity, independent of the Einstein equations, and
holds as a consequence of the Bianchi identities, while divT = 0 relies on
both the identity divG = 0 as well as the Einstein equations (2.16). In later
sections we will assume the stress tensor for a perfect fluid, which is given in
covariant components as

Tij = (p+ ρc2)uiuj + pgij. (3.3)
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In the case of a barotropic equation of state, p is assumed to be given by a
function of ρ alone, p = p(ρ). In this case, divT = 0 gives four additional
equations which hold on solutions of (2.16). In the case when shock-waves
are present, the Rankine-Hugoniot jump conditions

[Tij]n
i = 0, j = 0, ..., 3. (3.4)

express the weak formulation of conservation of energy and momentum across
shock surfaces, [28]. On solutions of the Einstein equations, (3.4) follows from
the jump conditions

[Gij]n
i = 0, j = 0, ..., 3. (3.5)

(From here on, [·] always denotes the jump in a quantity on either side of an
interface.) The jump condition (3.4) involves the fluid variables, but the jump
condition (3.5) is independent of the fluid variable, and involves the metric
tensor g alone. In the following sections we will generalize the Oppenheimer-
Snyder model by matching two (metric) solutions of the Einstein equations
(2.16) in a Lipschitz continuous manner across a spherical shock surface. It
is not so easy to verify the Rankine-Hugoniot jump relations (3.4) directly in
these examples because (3.4) involves the fluid variables in (3.3), so a direct
verification of (3.4) requires using divT = 0, which is not an identity, and
so cannot be managed without invoking the full Einstein equations (2.16).
However, in the next section we bypass this problem with a general theorem
which implies that (3.4) follows as a geometric identity from the correspond-
ing identities divG = 0 together with geometrical constraints on the second
fundamental form on the shock surface, once one knows that the metric is
Lipschitz continuous across the shock surface.

The second fundamental formK : TΣ → TΣ on a co-dimension one surface
Σ with normal vector field n, imbedded in an ambient Riemannian space with
metric tensor gij, is a tensor field defined on the surface in terms of the metric
g, and describes how the surface is imbedded in the ambient spacetime. Here,
TΣ denotes the tangent space of Σ. The second fundamental formK is defined
by the condition

K(X) = −∇Xn, (3.6)

for X ∈ TΣ. When the metric is only Lipschitz continuous across a co-
dimension one surface, the second fundamental form K is determined sep-
arately from the metric values on either side. In the next section we give
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necessary and sufficient conditions (the Israel conditions) for conservation
to hold at a Lipschitz continuous shock-wave interface, the condition being
given in terms of geometric conditions on the jump in the second fundamental
form across the surface. The conditions are that

[tr(K2)− (trK)2] = 0, (3.7)

[divK − d(trK)] = 0, (3.8)

where tr denotes trace, div denotes covariant divergence, and d denotes ex-
terior differentiation in the surface. We conclude that the physical conser-
vation laws (3.4) turn out to be a consequence of geometrical constraints
built apriori into the Einstein tensor, together with geometrical constraints
that describe how the shock surface is imbedded in the ambient spacetime
manifold. We note that a sufficient condition for conservation is that [K] = 0
everywhere across the surface. In fact, this implies that in Gaussian normal
coordinates the metric will then be in C1 because Kij = gij,n in these coordi-
nates, where , n denotes differentiation in the direction normal to the surface.
(See [12, 22, 41, 42].) As we point out in the next section, the transformation
to Gaussian normal coordinates is in general only a C1,1 coordinate transfor-
mation, but once this transformation is made, the C∞ coordinate transfor-
mations alone are sufficient to describe the locally Lorentzian properties of
the spacetime. (Recall that by C1,1 we mean C1 with Lipschitz continuous
derivatives.) In the case of metrics that are only Lipschitz continuous, the
natural class of coordinate transformations is the class of C1,1 transforma-
tions. Indeed, if the mapping x → y is C1,1, then ∂x/∂y and ∂y/∂x are
Lipschitz continuous, and thus Lipschitz continuous tensors are mapped to
Lipschitz continuous tensors under the mapping x→ y, and this is the least
smooth class of transformations that preserves this mapping. Note that by
allowing C1,1 transformations, we allow derivatives of ∂x/∂y and ∂y/∂x to
jump, and this allows us to adjust the jump in the derivatives of tensors
across a shock surface. For example, if g = gL ∪ gR, then

gij = gαβ
∂yα

∂xi
∂yβ

∂xi
,

so the jumps in the derivatives of ∂yα

∂xi change the jumps in the derivatives of
gij across Σ, and Israel’s result states that within the class of C1,1 transfor-
mations, we can match the derivatives in g across Σ if and only if [K] = 0,
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the map to Gaussian normal coordinates being C1,1. Now in the Einstein
equations Gij = κTij, Gij is the image of a second order differential operator
on the metric entries gij, and thus in general we expect metrics that are Lip-
schitz continuous across Σ to have delta function sources in G, and hence in
the fluid variables T, on Σ. natural to ask, first, when do such delta function
sources appear at a shock- wave Σ given that the metric is only Lipschitz con-
tinuous across Σ, and second, what is the physical significance of such delta
functions sources when they do appear? For the first question, we present a
proof in the next section that if g = gL ∪ gR is Lipschitz continuous across
Σ in a coordinate system x, then delta function sources appear in G on Σ in
x-coordinates if an only if [K] 6= 0, (c.f. [22]). For the physical interpretation
of the delta function sources in G, and hence in T, when [K] 6= 0 at Σ, we
comment that the equivalence of the jump conditions [Gi

j]ni = 0 = [T ij ]ni,
and the weak formulation of divG = 0 at a point P in spacetime is based on
the existence of locally Lorentzian coordinate frames at P ; i.e., coordinates
in which gij,k(P ) = 0. In such coordinate frames, spacetime is locally flat,
and the physical principles of special relativity can thus be identified locally.
In particular, the covariant divergence agrees with the classical divergence in
locally Lorentzian frames, and the global physical conservation laws

∫
∂Ω = 0

of special relativity can be reduced in local form to divT = 0 in curved
spacetime. (It is well known that, except in special cases, there do not exist
global conservation laws in General Relativity.) In the next section we show
that, within the class of C1,1 coordinate transformations, there do not exist
locally Lorentzian coordinate frames in a neighborhood of a point P ∈ Σ
where Gij has a delta function source. Thus, spacetime is not locally flat
at points on a Lipschitz continuous shock-wave where G has delta function
sources. In the Section 5 we show that for spherically symmetric shock-waves,
[Gσ

j ]nσ = 0 implies [K] = 0, and thus conservation implies that there are no
delta function sources in the shock-waves we construct as generalizations of
the Oppenheimer-Snyder case, and thus these solutions are locally Lorentzian
at each point on the shock. It is an interesting open question as to whether
general Lipschitz continuous shocks can evolve from smooth solutions in the
time evolution of G = κT.
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3.1 The General Problem

In this section we give the proof that the jump conditions (3.5) hold at a
Lipschitz continuous shock surface if and only if (3.7) and (3.8) hold. We
formulate the theorem in n-dimensions for a nonsingular metric g of fixed
signature η = diag(ε1, · · · , εn) where each εi =+

− 1. Before stating the the-
orem, we introduce some notation. Thus let y ≡ (y1, · · · , yn) be a smooth
coordinate system defined on an n-dimensional manifold M, y : M → Rn,
and let Σ be a smooth hypersurface in M. Assume that Σ is given locally by
ψ(y) = 0, where ψ is a smooth function satisfying

nidy
i ≡ ∂ψ

∂yi
dyi 6= 0. (3.9)

Let L and R, (for “left” and “right”), denote the two sides of M defined by
the surface Σ, and let gL and gR denote smooth metrics defined on the left
and right side of Σ, respectively. (It suffices to assume gL and gR are at least
C2, with derivatives uniformly bounded at Σ, and we assume this from here
on out.) For completeness, we give a proof of the following theorem due to
Israel, [12, 22].

Theorem 2 Let g = gL∪gR denote a nonsingular metric of arbitrary signa-
ture whose components gij in y-coordinates are smooth on the left and right
sides of Σ, separately, and Lipschitz continuous across the surface. Assume
that Σ is given locally by ϕ = 0, where ϕ is smooth, assume that (3.9) holds,
and assume that the normal vector n is non–null relative to the metric g, so
that (without loss of generality) we may take n to be a unit vector gijn

inj = 1.
Then

[Gi
j(y(P ))]ni(y(P )) = 0 (3.10)

at a point P ∈ Σ if and only if both

[(trK)2 − tr(K2)] = 0, (3.11)

and
[divK − d(trK)] = 0, (3.12)

hold. (Here, the invariant operations div, trace and d on K are restricted to
the surface Σ.)
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Note that by a smooth transformation of the coordinates in a neighborhood
of a point P ∈ Σ we may assume that the surface Σ is given by ϕ = yn = 0,
so that n = ∂/∂yn. In this case, the invariant conditions (3.11) and (3.12)
reduce in y-coordinates to

[(Ki
i(y(P )))− (Ki

i(y(P )))2] = 0, (3.13)

and

[Ki
j;i(y(P ))−Ki

i;j(y(P ))] = 0, , (3.14)

where the summation in (3.13) and (3.14) is assumed to run from 1 to n− 1.

The proof of Theorem 2 will follow as a consequence of several lemmas.
The idea is to construct Gaussian normal coordinates for the surface Σ, these
being coordinates in which the components of the second fundamental form
take the simple form Kij = −1

2
gij,n. We then use this identity to write the

Einstein curvature tensor G and the jump conditions (3.5) in terms of the Kij

and obtain (3.13) and (3.14), [12, 22]. We will use the following identities
for the components of the curvature tensor Gi

j in an arbitrary coordinate
system:

Lemma 1 The components of G are given by

Gi
i = −

∑
σ,τ 6=i

R
[στ ]
[στ ], i = 1, · · · , n (3.15)

Gi
j =

∑
τ 6=i,j

R
[iτ ]
[jτ ], i 6= j, (3.16)

where the square braces [ ] around a set of indices indicates that summation
is to be taken only over the increasing sequences of indices occurring inside
the braces.

Proof: To prove (3.15), we have

Gi
j = Ri

j −
1

2
Rδij. (3.17)

But
Ri
i = Rτi

τi =
∑
τ 6=i

Rτi
τi

29



because Rαβ
γδ is antisymmetric in (αβ) and (γδ). Moreover,

R = Rστ
στ = 2R

[στ ]
[στ ],

and so
Gi
i = R

[τi]
[τi] −R

[στ ]
[στ ] = −

∑
σ,τ 6=i

R[στ ].

To prove (3.16) we have

Gi
j = Ri

j = Rτi
τj =

∑
τ 6=i,j

R
[τi]
[τj]. 2

We now construct a Gaussian normal coordinate system (w1, · · · , wn)
associated with the surface Σ in a neighborhood of P0 ∈ Σ, [41]. To this end,
assume that g has y-components gij, and by making a smooth coordinate
transformation we may assume without loss of generality that Σ is defined,
(near P0), by yn = 0. For each P ∈ Σ let γ

P
(s) denote the geodesic satisfying

γ
P
(0) = P, γ̇P (0) = n,

where n is the normal vector to Σ at P, s is arclength, and for convenience we
assume that n points into the right side of Σ. We define the wn-coordinate in
a neighborhood of P0 ∈ Σ as the “distance from Σ” as follows: if γ

P
(s) = Q,

then set wn(Q) = s. In this way, wn < 0 on the left side of Σ, and wn > 0
on the right side of Σ. Now define the wi-coordinates for i = 1, · · · , n− 1, by
wi(P ) = yi(P ) for P ∈ Σ, and define wi in a neighborhood of Σ by taking
wi to be constant along each γ

P
(s); i.e.,

wi(Q) = wi(P ) if and only if Q = γ
P
(s),

for some P and s, i = 1, · · · , n. The coordinates w = (w1, · · · , wn) are called
Gaussian normal coordinates in a neighborhood of P0 ∈ Σ. Note that the
Gaussian normal coordinates w are in general only C1,1 related to the original
y-coordinates because the geodesics normal to the surface Σ are in general
only C1 curves since the Γijk can in general have jump discontinuities at Σ
when g is only Lipschitz continuous across Σ. (Indeed, to see this, consider
the curves yȳ(s) where ȳ = (y1, ..., yn−1) and (ȳ, 0) ∈ Rn is the coordinate
value of the point P on Σ such that γP (s) = Q has y-coordinates yȳ(s). Thus,
y(P ) = w̄(P ) for P ∈ Σ. But being constructed from families of geodesics on
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each side of Σ, yȳ(s) ≡ ϕ(ȳ, s) is a smooth function of ȳ and s on each side
of Σ separately. It remains to check continuity of derivatives at yn = 0. But,
at s = 0,

∂yi

∂w̄j
=
∂yiȳ
∂ȳj

(s) = δij, (3.18)

because y = (ȳ, 0) at s = 0. Moreover,

∂yi

∂w̄n
=
∂yiȳ
∂s

(s) = ni, (3.19)

where ni denote the y-coordiantes of the normal to Σ at P . Since the metric
is continuous at Σ, this latter derivative is continuous across Σ as well.)

Gaussian normal coordinates satisfy the following well-known lemma,
[29].

Lemma 2 In Gaussian normal coordinates,

ds2 = d(wn)2 + gijdw
idwj, (3.20)

where the summation on i and j is from 1 to n− 1.

Note that Lemma 1 implies that the surfaces wn = const. are orthogonal
to the coordinate directions ∂/∂wi, for i = 1, · · · , n− 1.

For a smooth metric g, the components of the second fundamental form
are given by the following lemma:

Lemma 3 In Gaussian normal coordinates,

Kij = −1

2
gij,n. (3.21)

Proof: We have, for every vector field X i,

−Ki
σX

σ = (∇Xn)i = ni,σX
σ + ΓiσnX

σ = ΓiσnX
σ, (3.22)

so that

Ki
σX

σ = −ΓiσnX
σ. (3.23)

But
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Γiσn =
1

2
giτ{−gσn,τ + gτσ,n + gnτ,σ} =

1

2
giτgτσ,n, (3.24)

where we used the fact that in Gaussian normal coordinates, gin,k = 0, i =
1, · · · , n. Thus

Kiσ = −1

2
giσ,n , (3.25)

as claimed.2
In the Gaussian normal coordinates w associated with a given co-dimension

one surface Σ and a Lipschitz continuous metric g = gL ∪ gR, (where we as-
sume as usual that gL and gR are smooth), the metric g is determined on Σ,
but the first derivatives of the metric suffer a jump discontinuity at Σ. Thus
the second fundamental form K, which depends on the first derivatives of
the ambient metric g, also suffers a jump discontinuity at Σ. In this case it
follows from Lemma 2 that KL and KR, the second fundamental forms on
Σ for the metrics gL and gR, respectively, are given by (3.25), for g = gL, gR,
respectively. Thus the following corollary of Israel is immediate.

Corollary 1 The metric components of g = gL ∪ gR in Gaussian normal
coordinates are C1 functions of the coordinate variables if and only if [K] =
(KR −KL) = 0 at each point on the surface Σ.

The next lemma expresses the components of the connection coefficients
for the ambient metric g in Gaussian normal coordinates in terms of quanti-
ties intrinsic to the shock surface. We state this for a smooth metric, and see
that it applies to each side g = gL and g = gR separately when the metric is
only Lipschitz continuous.

Lemma 4 The components in Gaussian normal coordinates of the connec-
tion coefficients for a metric g at a point P ∈ Σ are given by

Γkij = Γ̃kij, i, j, k 6= n, (3.26)

Γnij = Kij, i, j 6= n, (3.27)

Γkin = −Kk
i , i, k 6= n, (3.28)
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Γnin = 0. (3.29)

Here, Γ̃ denotes the (n − 1)-dimensional connection coefficients computed
from the intrinsic metric g̃ on Σ with w-components g̃ij, i, j = 1, · · · , n− 1.

Proof: To obtain (3.26), use (2.10) to write

ΓKij =
1

2
gkσ{−gij,σ + gσi,j + gjσ,i}. (3.30)

Since gkσ = 0 when σ = n and k 6= n, it follows that

Γkin = Γ̃kin, (3.31)

which is (3.26). Similarly, statement (3.27) follows from

Γnij =
1

2
gnσ{−gij,σ + gσi,j + gjσ,i}; (3.32)

statement (3.28) follows from

Γkin =
1

2
gkσ{−gin,σ + gσi,n + gnσ,i}; (3.33)

and statement (3.29) follows from

Γnin =
1

2
gnσ{−gin,σ + gσi,n + gnσ,i}, (3.34)

upon noting that in Gaussian normal coordinates w we have gnα = 0 unless
α = n, and gαn,β = 0 for α, β = 1, · · · , n. 2

The next lemma uses Lemmas 1 and 4 to expresses the components in
Gaussian normal coordinates of the Riemann curvature tensor for the am-
bient metric g in terms of quantities intrinsic to the shock surface (Gauss-
Codazzi Equations). Again we state this for a smooth metric, and see that
it applies to each side g = gL and g = gR separately when the metric is only
Lipschitz continuous.

Lemma 5 The components in Gaussian normal coordinates of the Riemann
curvature tensor for a metric g at a point P ∈ Σ are given by

Ri
jkl = R̃i

jkl +Ki
lKjk −Ki

kKjl, i, j, k, l 6= n, (3.35)
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which is equivalent to

Rij
kl = R̃ij

kl +Ki
lK

j
k −Ki

kK
j
l , i, j, k, l 6= n; (3.36)

moreover,

Rn
ijk = Kik;j −Kij;k, i, j, k 6= n (3.37)

where in (3.37), the semicolon denotes covariant differentiation in the surface
Σ. Statement (3.37) is equivalent to

Rni
jk = Ki

k;j −Ki
j;k. i, j, k 6= n (3.38)

Proof: For (3.35), write

Ri
jkl = Γijl,k − Γijk,l + ΓiσkΓ

σ
jl − ΓiσlΓ

σ
jk.

Thus, since only σ can be n, we have

Ri
jkl = R̃i

jkl + ΓinkΓ
n
jl − ΓinlΓ

n
jk,

which by (3.26) gives (3.35). Statement (3.36) follows because gin = 0 for
i 6= n. For (3.37), write

Rn
ijk = Γnik,j − Γnij,k + ΓnσjΓ

σ
ik − ΓnσkΓ

σ
ij,

which gives (3.37) on applying (3.27). In this case as before, (3.38) follows
from (3.37) because g̃in = gin when i 6= n. 2

The next lemma uses (3.36) and (3.38) to expresses the components in
Gaussian normal coordinates of the Einstein curvature tensor for the ambient
metric g in terms of quantities intrinsic to the shock surface. Again we state
this for a smooth metric, and see that it applies to each side g = gL and
g = gR separately when the metric is only Lipschitz continuous, (c.f. [22]).

Lemma 6 The components in Gaussian normal coordinates of the Einstein
curvature tensor for a metric g at a point P ∈ Σ are given by

Gn
n =

1

2
{(trK)2 − tr(K2)} − 1

2
R̃, (3.39)

Gn
i = −{(trK);i + (divK)i}, (3.40)

where R̃ denotes the curvature scalar for the metric g̃ intrinsic to Σ, and the
semicolon denotes covariant differentiation in the surface Σ.
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Proof: To prove (3.39), use (3.22) to write

Gn
n = −

∑
σ,τ 6=n

R
[στ ]
[στ ],

so that by (3.36)

Gn
n = −

∑
σ,τ 6=n

R̃
[στ ]
[στ ] +

∑
σ,τ 6=n

{K [σ
σ K

τ ]
τ −K [σ

τ K
τ ]
σ }, (3.41)

where the sum must be taken over indices σ < τ. But by definition,

R̃ = R̃ij
ij = 2

∑
σ,τ 6=n

R̃
[στ ]
[στ ],

and
(trK)2 − tr(K2) = (Ki

i)
2 −Ki

jK
j
i = 2

∑
i<j

{Ki
iK

j
j −Ki

jK
j
i }.

Using these in (3.41) yields (3.39)
To prove (3.40), use (3.23) to write

−Gn
i = −

∑
τ 6=i,n

R
[nτ ]
[iτ ] =

n−1∑
j=1

Rnj
[ij], (3.42)

where we have applied the antisymmetry of the curvature tensor. Thus by
(3.38),

−Gn
i =

n−1∑
j=1

{Kj
j;i −Kj

i;j}, (3.43)

from which (3.40) follows at once. We can now give the

Proof of Theorem 2: Assume that g = gL ∪ gR, where the metric g is
smooth on either side of a co-dimension one shock surface Σ, and is Lipschitz
continuous across the surface. Let w denote the Gaussian normal coordinates
associated with the surface Σ and the metric g. Then we can apply (3.39) and
(3.40) of Lemma 6 to gL from the left and gR from the right of Σ, respectively,
to obtain

[Gn
n] = [

1

2
{(trK)2−tr(K2)}] =

1

2
{(trKR)2−tr((KR)2)}−1

2
{(trKL)2−tr((KL)2)},

(3.44)
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and

[Gn
i ] = [{−(trK),i+(divK)i}] = {−(trKR),i+(divKR)i}−{−(trKR),i+(divKR)i}.

(3.45)
Here we use the fact that R̃ and

∑n−1
j=1{Kkig

ljΓ̃klj −Kkjg
ljΓ̃kli} are equal on Σ

for gL and gR because they depend only on intrinsic properties of the metric
g restricted to Σ, and these agree because of the assumed continuity of g.
But in Gaussian normal coordinates, n = ∂

∂wn , and so the jump conditions
(3.5) in Gaussian normal coordinates reduce to the condition

[Gn
α] = 0, α = 1, · · · , n. (3.46)

Now since G transforms like a tensor under arbitrary C1-coordinate transfor-
mations, the conditions (3.46) are equivalent to the statement [Gα

β ]nα = 0 in
the original y-coordinates. Thus, in light of (3.46), we conclude that (3.11)
and (3.12) of Theorem 2 follow directly from (3.44) and (3.45). 2

In view of Corollary 1 of Lemma 3, we can also conclude the following
corollary of Theorem 2, (due to Israel), which gives a global criterion for
conservation across Σ, [12, 22].

Corollary 2 If [K] = 0 at each point of Σ, then the jump conditions [Gα
β ]nα =

0 must hold at the point P. Moreover, since in this case the metric is C1

in Gaussian normal coordinates, the condition [K] = 0 is also a necessary
and sufficient condition for the original Lipschitz continuous metric com-
ponents gαβ in the y-coordinates to be equivalent to a C1 metric under a
C1,1-transformation of the coordinate variables.

Proof: The sufficiency is clear, and the necessity of this condition follows
because, if the metric is equivalent to a C1 metric under some regular C1,1

coordinate transformation, then the mapping from these coordinates to the
Gaussian normal coordinates is a C2 mapping, and thus the metric in Gaus-
sian normal coordinates will be C1, which implies that the second fundamen-
tal form is continuous across the surface. (Note that [K] = 0 at a point is
not sufficient for conservation [Gi

j]ni = 0 at the point.) 2

We now show that Rij and Gij, viewed as second order operators on the
metric components gij, have delta-function singularities at a point P ∈ Σ if
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and only if [K] 6= 0 at P. Thus, let g = gL∪gR be Lipschitz continuous across
a shock surface Σ in x-coordinates. The strategy is as follows: we first do the
case when x is a Gaussian normal coordinate system defined in a neighbor-
hood of P ∈ Σ. We then show that delta-function sources appear at P ∈ Σ
in x-coordinates if and only if they appear in any coordinate system related
to x by a C1,1 coordinate transformation. Since any coordinate system in
which g is Lipschitz continuous is related to the Gaussian normal coordinates
by a C1,1 coordinate transformation, it follows that delta-functions appear
if and only if [K] 6= 0. We then show that when delta-function singularities
appear in Gij at P ∈ Σ in a given coordinate system x, the metric is not
locally Lorentzian at P in sense that there does not exist a C1,1 coordinate
transformation that takes x-coordinates to coordinates in which the metric
is locally Lorentzian at P, more specifically, such that gij,k(P ) = 0. Finally,
we show , surprisingly, that delta-function singularities never appear in the
scalar curvature R at any point on a shock- wave discontinuity on either side
of which g is smooth, but across which g is Lipschitz continuous, and this is
due to a cancellation of delta-functions in the sum Rσ

σ.

Lemma 7 Let x be the Gaussian normal coordinates containing a point P ∈
Σ, where Σ is any smooth surface, so that ∂

∂n
is the normal direction on Σ.

Then the second order n-derivatives of gij that appear in the formula for the
Ricci tensor Rij, occur only in the terms Rij, i 6= n, j 6= n, and in Rnn, and
these are given by

Rij = −1

2
gij,nn + lower order n− derivatives, i 6= n, j 6= n, (3.47)

and

Rnn =
1

2
gαβgαβ,nn + lower order n− derivatives, (3.48)

where the sum in the last formula is taken over α, β 6= n.

Proof: From (3.29), assuming Gaussian Normal coordinates, we have

Γnin = 0. (3.49)

Consider Rij = Rσ
iσj, which is given by the formulas
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Rα
iβj = Γαij,β − Γαiβ,j + ΓατβΓ

τ
ij − ΓατjΓ

τ
iβ (3.50)

Rij = Rσ
iσj = Γσij,σ − Γσiσ,j + ΓστσΓ

τ
ij − ΓστjΓ

τ
iσ. (3.51)

Now since g is Lipschitz continuous across Σ, and Rij involves second
derivatives of g, it follows that delta-functions in Rij can arise at P ∈ Σ
only in the second order n-derivatives appearing in the formula for Rij. To
see this, note that in Gaussian normal coordinates, gin = δin, and gij are
arbitrary for i, j = 1, · · · , n − 1. Thus the first derivatives in k 6= n are
Lipschitz continuous across Σ because gL = gR on Σ, and thus gij,kn involves
at worst jump discontinuities for k 6= n. Now from (3.51), the second order
n-derivatives can come only from Γσij,σ or Γσiσ,j. In the former, this can only
happen when σ = n, so consider

Γnij,n =
1

2
gσn{−gij,σn + gσi,jn + gjσ,in}. (3.52)

But gσn = 0 unless σ = n, which implies

Γnij,n =
1

2
{−gij,nn + gni,jn + gjn,in}. (3.53)

Thus we conclude that when i = n or j = n, there are no non–zero second
order n-derivatives in Γnij,n, and when i, j 6= n, Γσij,σ gives rise to only one
second order n-derivative, namely, 1

2
gij,nn; i.e.,

Γσij,σ =
1

2
gij,nn + lower order n− derivatives.

Consider now Γσij,nn, which can have second order n-derivatives only for
j = n :

Γσiσ,n =
1

2
gστ{−giσ,τn + gτi,σn + gστ,in}. (3.54)

The first two terms, giσ,τn and gτi,σn, inside the bracket in (3.54), can have
second order n-derivatives only when σ = n or τ = n, in which case σ = n = τ
(because gin = 0), which implies that both of these terms are zero because
Γnin = 0. But the third term gστ,in in the bracket in (3.54) has second order
n-derivatives only when i = n, and thus we have
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Γσnσ,n =
1

2
gαβgαβ,nn + lower order n− derivatives,

and Γσiσ,j is a lower order n-derivative if i 6= n or j 6= n. Thus we conclude
that the second order n-derivatives in the Ricci tensor occur only in the terms
Rij, i 6= n, j 6= n, and in Rnn, and these are given by (3.47) and (3.48). 2

We now consider the scalar curvature R and the curvature tensors Rij

and Gij as second order distribution derivatives of the metric components gij
in Gaussian normal coordinates when g is only Lipschitz continuous on Σ. In
general we expect that second order distribution derivative of g will introduce
delta-function singularities on Σ. The following corollary gives necessary and
sufficient conditions for the appearance of such delta-function singularities
on Σ.

Corollary 3 Let g = gL ∪ gR be any metric that is Lipschitz continuous
across a shock surface Σ, and smooth on either side of Σ. Then in Gaus-
sian normal coordinates the scalar curvature R, viewed as a second order
distribution derivative of the metric components gij, has at worst a jump dis-
continuity at each P ∈ Σ; the Ricci and Einstein curvature tensors Rij and
Gij have delta-function singularities at P ∈ Σ if and only if [K] 6= 0 at P.

Proof: Assuming Gaussian normal coordinates, we have from (3.47) and
(3.48) that

R = gστgστ,nn − gijgij,nn + lower order n− derivatives.

and thus the formula forR in terms of g contains no second order n-derivatives
in Gaussian normal coordinates for any Lipschitz continuous shock-wave, and
hence R is at most discontinuous on Σ. Moreover, in Gaussian normal coor-
dinates Kij = gij,n, i, j 6= n, and hence if [K] 6= 0 at P ∈ Σ, then gij,n must
suffer a jump discontinuity at P for some (i, j), i, j 6= n. Thus by (3.47), Rij is
given by the delta function gij,nn plus a discontinuous function. Conversely,
if [K] = 0 at P ∈ Σ, then gij,nn is at most discontinuous at P, and thus Rij

is at most discontinuous at P. Since Gij = Rij − 1
2
Rgij, and R is at most

discontinuous, we conclude that in Gaussian normal coordinates, Rij and Gij

contain delta-function singularities if and only if [K] 6= 0.2.
Now let R = Ri

jkl denote the components of the full Riemann curvature
tensor in x-coordinates, and let R̄ = R̄α

βγδ denote the components in a coor-
dinate system y related to x by a C1,1 coordinate transformation. Note that
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in any coordinate system, the components of the curvature tensor are given
by (3.50), and hence are determined by the same second order differential
operator L on the metric components, thus R = L[g], and R̄ = L[ḡ]. We
note that the highest order derivative terms in L are of the form a function
of the unknowns gij times linear second order differential operators. Thus it
is possible to define solutions g that have only weak (distributional) deriva-
tives of second order. The following lemma demonstrates that curvature
tensors defined from L in the weak sense continue to transform by the tensor
transformation laws under arbitrary C1,1 transformations of the coordinates.

Lemma 8 Let R be a weak solution of R = L[g] in x-coordinates. Then R̄ =
R∂x

∂y
is a weak solution of R̄ = L[ḡ] for any coordinate system y related to x

by a C1,1 coordinate transformation, where we use the short-hand notation

R∂x
∂y

= Ri
jkl

∂xj

∂yβ
∂xk

∂yγ
∂xl

∂yδ
∂yα

∂xi
,

and multiplication by a function is taken in the weak sense.

Proof: For smooth g and smooth test functions ϕ, let∫
R4
L[g]ϕ =

∫
R4
L∗[g, ϕ],

where L∗[g, ϕ] denotes the expression obtained from L[g] by integrating the
second order derivatives in g once by parts. Since the second order derivatives
in L are given by 4

Ri
jkl = Γijl,k − Γijk,l + l.o.t.′s (3.55)

=
(
giσ{−gjl,σ + gσj,l + glσ,j}

)
,k

(3.56)

−
(
giσ{−gjk,σ + gσj,l + gkσ,j}

)
,l

+ l.o.t.′s (3.57)

= giσ{−gjl,σk + glσjk + gjk,σl − gkσ,jl}+ l.o.t.′s, (3.58)

i.e., are of the form gmngij,kl, it follows that L∗[g, ϕ] contains at worst products
of the metric entries gij, the test function ϕ, and their first derivatives. Thus

4Here “l.o.t.” denotes“lower order terms”, i.e., terms that contain lower order n-
derivatives.
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the integral in the weak formulation
∫
R4 L∗[g, ϕ] is finite for any Lipschitz

continuous metric g and any Lipschitz continuous test function ϕ (of compact
support).

Now assume that R = Ri
jkl is a weak solution of R = L[g], i.e., R is

a linear functional on the space of Lipschitz continuous test functions, (a
distribution), that solves

〈R, ϕ〉 ≡
∫
R4
Rϕ =

∫
R4
L∗[g, ϕ],

for every Lipschitz continuous test function ϕ. Note that if ∂x
∂y

is Lipschitz

continuous, then the derivatives are bounded, and thus if we let ḡ = g ∂x
∂y

be
short-hand notation for

ḡ ≡ ḡαβ = gij
∂xi

∂yα
∂xj

∂yβ
≡ g

∂x

∂y
,

then L∗[g ∂x
∂y
, ϕ] is bounded for any Lipschitz continuous test function ϕ.

So to prove the lemma, let g be an arbitrary (non–degenerate) Lipschitz
continuous metric, let ϕ be an arbitrary Lipschitz continuous test function,
and assume that the coordinate systems x and y are related by a C1,1 coordi-
nate transformation, (so that in particular, both ∂x

∂y
and ∂y

∂x
are regular, Lips-

chitz continuous maps). Let ḡε denote a smooth regularization of the metric
ḡαβ, and let xε(y) denote a regularization of the coordinate map x(y) so that
xε(y) is smooth and has a smooth inverse. We can clearly choose these reg-
ularizations so that ḡεαβ → ḡαβ in C0,1, xε(y) → x(y) in C1,1, ∂x

ε

∂y
(y) → ∂x

∂y
(y)

in C0,1 and ∂y
∂xε (x

ε) → ∂y
∂x

(x) in C0,1. Then

gε ≡ ḡε
∂y

∂xε
→ g,

and
ḡε → ḡ

in C0,1. Define
R̄ε = L(ḡε), (3.59)

and

Rε = R̄ε ∂y

∂xε
. (3.60)
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Now it follows directly from definitions that〈
Rε ∂y

∂xε
, ϕ

〉
=
〈
R̄ε, ϕ

〉
=
∫
R4
L∗[gε

∂y

∂xε
, ϕ]. (3.61)

But (3.61) simply says that Rε ∂y
∂xε is the curvature tensor for the metric

gε ∂y
∂xε , and since everything in (3.61) is smooth, we know from the fact that

the curvature transforms as a tensor that Rε must be the curvature tensor
for the metric gε; i.e., since everything in (3.61) is smooth, we know that
(3.61) holds for every ϕ ∈ C0,1 if and only if

〈Rε, ϕ〉 =
∫
R4
L∗[gε, ϕ] (3.62)

holds for every ϕ ∈ C0,1. Since gε → g in C0,1, (3.62) implies that, as ε→ 0,
Rε tends in the sense of distributions to the distribution T, where T satisfies

〈T, ϕ〉 =
∫
R4
L∗[g, ϕ]. (3.63)

Therefore (3.63) demonstrates that T = R as a distribution. Thus, in the
limit ε→ 0, we conclude from (3.63) thatRε → R, from (3.61) that R̄ε → R̄,
and hence from (3.60) that R̄ = R∂y

∂x
in the sense of distributions. This

completes the proof of the lemma. 2

Theorem 3 Assume that g = gL ∪ gR is smooth on either side of a 3-
dimensional shock surface Σ, and is Lipschitz continuous across Σ. Then the
scalar curvature R, when viewed as a second order operator (in the weak
sense) on the metric components gij, produces at most a jump discontinuity
(i.e., no delta-function singularities) at P ∈ Σ; and the curvature tensors
Ri
jkl, Rij and Gij produce no δ-function singularities at P ∈ Σ if and only if

the jump in the second fundamental form K satisfies [K] = 0 at P.

Proof: By Corollary 1, the theorem is true in Gaussian normal coordinates
x, and thus by Corollary 3 and Lemma 8 it holds in any coordinate system y
which is C1,1 related to x. Since for any metric g = gL ∪ gR which is smooth
on either side of Σ and Lipschitz continuous across Σ, the transformation to
Gaussian normal coordinates is an invertible C1,1 coordinate transformation,
the theorem follows at once.2
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As a direct corollary of Theorem 3 we see that there exists a locally
Lorentzian coordinate frame in a neighborhood of a point P on a Lipschitz
continuous shock surface Σ if and only if [K] = 0 at P ; namely, we have

Corollary 4 Assume that g = gL ∪ gR is smooth on either side of a 3-
dimensional shock surface Σ, and is Lipschitz continuous across Σ in a co-
ordinate system y defined in a neighborhood of P ∈ Σ. Then there exists a
regular C1,1 coordinate transformation y → x such that x is locally Lorentzian
for g at P, (gij = ηij and gij,k = 0 at P ), if and only if [K] = 0 at P.

Proof: Assume [K] = 0 at P, and choose locally Lorentzian coordinates
at P for the smooth metric obtained by restricting g to the surface Σ in a
neighorhood of P in the surface Σ. Extend these coordinates to Gaussian
normal coordinates x based on these surface coordinates, the x coordinates
being defined in an n-dimensional neighborhood of P. Then in x-coordinates
the metric components gij satisfy gij = ηij and Kij = gij,n = 0 at P, and
so x is locally Lorentzian at P. Conversely, assume that [K] 6= 0, but that
there exists a coordinate transformation y → x such that, in x-coordinates,
gij = ηij and gij,k = 0 at P. Then in x-coordinates, g is C1 at P, and hence
there are no delta-function singularities in the components gij of g in x-
coordinates. Thus by Theorem 3, [K] = 0, and hence the locally Lorentzian
coordinates x cannot exist when [K] 6= 0.2

The next result partially validates the statement that real shock-waves
cannot form in solutions of the source free Einstein equations Rij = 0, or
equivalently Gij = 0, by demonstrating that “shock-waves” in solution met-
rics are only coordinate anomalies in the sense that they can be transformed
away by coordinate transformation. Note that the theorem allows for the
possibility that dicontinuities can form in solutions, (which we expect be-
cause the equations are nonlinear quasilinear in nature), but asserts that
if the solution metric is Lipschitz continuous across a smooth surface, but
smooth on either side, then there is a coordinate transformation such that
in the new coordinates, the metric is smooth across the surface.

Corollary 5 Assume that the components of g = gL ∪ gR in a coordinate
system y are Lipschitz continuous across a smooth 3-dimensional shock sur-
face Σ, are Ck functions of y on either side of Σ, and assume that all k
derivatives are continuous up to the boundary Σ from either side of Σ. As-
sume also that g is a weak solution of Rαβ = 0 or Gαβ = 0 when viewed
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as second order operators on the metric components gαβ. Then in Gaussian
normal coordinates x, (which are C1,1 related to the original coordinates), the
metric components gij are actually Ck functions of x across Σ.

Proof: Assume first that g = gL ∪ gR is a weak solution of Rαβ = 0. But
Rij = 0 in the weak sense across Σ implies that there are no δ-function
sources in Rij on Σ, and thus by the previous theorem, [K] = 0 across Σ.
Thus Israel’s result implies that gij,k are all continuous across Σ, and since
Gij ≡ 0, the jump conditions are automatically satisfied across Σ. It follows
from (3.47) and (3.48) that in Gaussian normal coordinates,

Rij = −1

2
gij,nn + lower order n− derivatives, i 6= n, j 6= n, (3.64)

and

Rnn =
1

2
gijgij,nn + lower order n− derivatives. (3.65)

But since the gij,k are continuous across Σ, it follows that the lower order
terms in (3.64) and (3.65) must be continuous functions across Σ, our as-
sumptions implying that the derivatives of g in the surface Σ are the same
for gL and gR. But since Rij = 0 for both gL and gR, we can solve for gij,nn
in (3.64) and (3.65) in terms of lower order derivatives that are continuous
across Σ, and conclude that gij,nn must also be continuous across Σ for all
i, j = 1, · · · , n. (Recall that gni = constant in Gaussian normal coordinates.)
This shows us that k’th order derivatives of gij which are up to second order
in xn, are in fact continuous functions of x across Σ in Gaussian normal co-
ordinates. Now differentiate (3.64) and (3.65) with respect to xn. Then the
differentiated lower order terms in (3.64) and (3.65) are continuous across Σ,
and hence again we can solve for gij,nnn in terms of functions that are con-
tinuous across Σ. Thus we conclude that k’th order derivatives of gij which
are up to second order in xn, are in fact continuous functions of x across Σ
in Gaussian normal coordinates x. Continuing, we see that all the k’th order
derivatives of gij are continuous across Σ in Gaussian normal coordinates.
Since, by Corollary 3, the scalar curvature never contains delta-function sin-
gularities on Σ, the result for Rij implies the same result for Gij.2

The same argument establishes the following more general version of this
corollary:
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Corollary 6 Assume that g = gL ∪ gR is smooth on either side of a 3-
dimensional shock surface Σ, and is Lipschitz continuous across Σ in some
coordinate system y. Assume that g is a weak solution of Gαβ = κTαβ that
contains no delta-function singularities on Σ. Then in Gaussian normal coor-
dinates the metric components gij are C2 functions of x if and only if [G] = 0
across Σ.

Summary: The results of this section are summarized in the following the-
orem:

Theorem 4 Let Σ denote a smooth, 3-dimensional shock surface in space-
time with spacelike normal vector n. Assume that the components gij of the
gravitational metric g are smooth on either side of Σ, (continuous up to the
boundary on either side separately), and Lipschitz continuous across Σ in
some fixed coordinate system. Then the following statements are equivalent:
(i) [K] = 0 at each point of Σ.
(ii) The curvature tensors Ri

jkl and Gij, viewed as second order operators on
the metric components gij, produce no delta function sources on Σ.
(iii) For each point P ∈ Σ there exists a C1,1 coordinate transformation
defined in a neighborhood of P, such that, in the new coordinates, (which can
be taken to be the Gaussian normal coordinates for the surface), the metric
components are C1,1 functions of these coordinates.
(iv) For each P ∈ Σ, there exists a coordinate frame that is locally Lorentzian
at P, and can be reached within the class of C1,1 coordinate transformations.

Moreover, if any one of these equivalencies hold, then the Rankine-Hugoniot
jump conditions, [G]σi nσ = 0, (which express the weak form of conservation
of energy and momentum across Σ when G = κT ), hold at each point on Σ.

Here [K] denotes the jump in the second fundamental form (extrinsic curva-
ture) K across Σ, (this being determined by the metric separately on each
side of Σ because gij is only Lipschitz continuous across Σ), and by C1,1 we
mean that the first derivatives are Lipschitz continuous. Theorem 4 should
be credited mostly to Israel, [12], who obtained results (i)–(iii) in Gaussian
normal coordinates. Our contribution was to identify the covariance class of
C1,1 transformations, and to thereby obtain precise coordinate independent
statements for (ii) and (iii), as well as the equivalence with (iv). As a conse-
quence of this, we obtain the result that the Ricci scalar curvature R never
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has delta function sources at a Lipschitz continuous matching of the metrics,
as well as the results in Corollarys 5 and 6 which validate the statement
that shock-wave singularities in the source free Einstein equations Rij = 0
or Gij = 0 can only appear as coordinate anomalies, and can be transformed
away by coordinate transformation. Note that when there are delta func-
tion sources in G on a surface Σ, the surface should be interpreted as a
surface layer (because G = κT ), and not a true fluid dynamical shock-wave,
[12, 22]. In Theorem 5 below, we show that for spherically symmetric solu-
tions, [G]στn

σnτ = 0 alone implies the absence of surface layers, (and hence
the other equivalencies in Theorem 4), so long as the areas of the spheres of
symmetry match smoothly at Σ. We use this result in our construction of
the shock-waves that extend the Oppenheimer-Snyder model to the case of
non–zero pressure. The following counter-example shows that in general, the
above equivalences can fail even when [Gσ

i ]nσ = 0 holds at each point on Σ.5

For the counter-example it suffices to show that there exist Lipschitz con-
tinuous shock-waves which satisfy the Israel jump relations (3.11) and (3.12)
across a shock-wave interface, but which cannot be transformed to a metric
that is C1 in a neighborhood of each point on the shock. By Corollary 1, it
suffices to construct a shock-wave interface across which the Israel conditions
are satisfied, but such that the second fundamental form K is not continuous
across the interface. To this end, let gij denote the coordinates of a metric
in Gaussian normal coordinates, such that the spacelike normal to the shock
surface is given by n = ∂/∂xn, and gij is of the form

gij =

[
hij 0
0 1

]
. (3.66)

Assume now that the hij are given by

hij =

{
ηij + aijx

n if xn > 0
ηij + bijx

n if xn < 0

}
, (3.67)

where aij and bij are constants to be determined. Thus by Lemma 3, the
second fundamental forms KL and KR on the left and right of the shock
surface are given by KL

ij = aij and KR
ij = bij, i, j = 1, · · · , n − 1. Since KL

ij

5See [12] where such an example is given in which G ≡ 0 on both sides of Σ.
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and KR
ij are constant,

Kσ
i,σ = (trK),i = 0,

for K = KL, KR. Thus the Israel jump conditions (3.11) and (3.12) reduce
to

[(trK)2 − tr(K2)] = 0.

Hence to satisfy the Israel jump conditions it suffices to find a ≡ aij and
b ≡ bij satisfying

(tra)2 − tr(a2) = 0 = (trb)2 − tr(b2).

But in the simplest case where a and b are 2× 2 matrices,

tra = a11 + a22,

and
tr(a2) = a2

11 + 2a21a12 + a2
22,

and so
(tra)2 − tr(a2) = 2det(a).

Thus we can satisfy the Israel jump conditions by choosing a and b to be
any 2 × 2 matrices with zero determinant. If in addition aij 6= bij, then
[K] = KR − KL 6= 0, and so by Theorem 4, conservation [Gn

i ] = 0 holds
across the interface xn = 0, but, in view of Corollary 1, the metric cannot be
transformed to a metric that is globally C1 across the shock.

In this section we restrict to spherically symmetric metrics. The theo-
rem to follow states that in the special case of spherical symmetry, the jump
conditions [Gij]ninj = 0 that express the weak form of conservation across a
shock surface, actually are implied by a single condition, so long as the shock
is non–null, and the areas of the spheres of symmetry match smoothly at the
shock and change monotonically as the shock evolves. Note that in general,
assuming that the angular variables are identified across the shock, we ex-
pect conservation to entail two condtions, one for the time and one for the
radial components. Thus the fact that the smooth matching of the spheres
of symmetry reduces conservation to one conditions can be interpreted as
an instance of the general principle that smoothness in the metric implies
conservation of the sources.
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Theorem 5 Assume that g and ḡ are two spherically symmetric metrics that
match Lipschitz continuously across a three dimensional shock interface Σ to
form the matched metric g ∪ ḡ. That is, assume that g and ḡ are Lorentzian
metrics given by

ds2 = −a(t, r)dt2 + b(t, r)dr2 + c(t, r)dΩ2, (3.1)

and
ds̄2 = −ā(t̄, r̄)dt̄2 + b̄(t̄, r̄)dr̄2 + c̄(t̄, r̄)dΩ2, (3.2)

and that there exists a smooth coordinate transformation Ψ : (t, r) → (t̄, r̄),
defined in a neighborhood of a shock surface Σ given by r = r(t), such that
the metrics agree on Σ. (We implicitly assume that θ and ϕ are continuous
across the surface.) Assume that

c(t, r) = c̄(Ψ(t, r)), (3.3)

in an open neighborhood of the shock surface Σ, so that, in particular, the
areas of the 2-spheres of symmetry in the barred and unbarred metrics agree
on the shock surface. Assume also that the shock surface r = r(t) in unbarred
coordinates is mapped to the surface r̄ = r̄(t̄) by (t̄, r̄(t̄)) = Ψ(t, r(t)). Assume,
finally, that the normal n to Σ is non–null, and that

n(c) 6= 0 (3.4)

where n(c) denotes the derivative of the function c in the direction of
the vector n.6 Then the following are equivalent to the statement that the
components of the metric g ∪ ḡ in any Gaussian normal coordinate system
are C1,1 functions of these coordinates across the surface Σ :

[Gi
j]ni = 0, (3.5)

[Gij]ninj = 0, (3.6)

6I.e., we assume that the areas of the 2-spheres of symmetry change monotonically in
the direction normal to the surface. E.g., if c = r2, then ∂

∂tc = 0, so the assumption
n(c) 6= 0 is valid except when n = ∂

∂t , in which case the rays of the shock surface would
be spacelike. Thus the shock speed would be faster than the speed of light rays if our
assumption n(c) 6= 0 failed in the case c = r2.
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[K] = 0. (3.7)

Here, [f ] = f̄ − f denotes the jump in the quantity f across Σ, and K is the
second fundamental form on the shock interface defined by (3.6).7

Proof: Let (w1, w2, w3) = (z1, θ, ϕ) be a smooth coordinate system on Σ, and
let z = (z0, · · · , z3) denote the extension of these coordinates to a Gaussian
normal coordinate system in a neighborhood of Σ, (where we let ∂

∂z0
≡ ∂

∂zn

when we restrict to spacetime, c.f. [29]). Then by Lemma 2, n = ∂
∂z0
, and

T = ∂
∂z1

is tangent to the shock surface. Now in light of Corollary 2 of
Theorem 2 it suffices to verify that (3.6) implies (3.7). By Theorem 2, in
w-coordinates we have

[Gij]ninj = [G00] = [tr(K2)− (trK)2]. (3.8)

But in Gaussian normal coordinates the metric g∪ḡ is diagonal on the surface
Σ. To see this, note that the restriction of the metric (g ∪ ḡ) to the surface
Σ is diagonal because the off diagonal ϕ and θ components are zero in both
(3.1) and (3.2), and the metric components (g ∪ ḡ)0j, for j 6= 0, are zero
throughout any Gaussian normal coordinate frame in a whole neighborhood
of Σ. Thus, by Lemma 3,

Kij = −1

2
gij,0. (3.9)

Therefore, since g ∪ ḡ is diagonal on Σ, K is also diagonal, and so the only
non–zero components of K are

K11 = −1

2
g11,0, (3.10)

K22 = −1

2
g22,0, (3.11)

and

K33 = −1

2
g33,0. (3.12)

7This does not contradict the spherical shell example of Israel in [12] because (3.3) fails
in that example.
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But, since c and c̄, (defined in (3.1) and (3.2)), transform like functions
under arbitrary (t, r)-transformations, (3.3) implies that c and c̄ define the
same invariant function in a neighborhood of Σ. Thus, by (3.3) and the fact
that c = g22 = c̄ = ḡ22 on Σ, we see that g22,0 = n(c) = ḡ22,0 6= 0 and
g33,0 = n(c)sin2θ = ḡ33,0 6= 0 on the surface Σ, and hence

[K22] = 0 (3.13)

and

[K33] = 0 (3.14)

across Σ. Now we have

0 = [Gij]ninj = [G00] = [tr(K2)− (trK)2] = −2[K11](K22 +K33), (3.15)

and since (K22 +K33) 6= 0, (by the assumption n(c) 6= 0), we conclude that
(3.6) and (3.15) imply

[K11] = 0. (3.16)

Since Kij is diagonal, (3.13), (3.14) and (3.16) imply (3.7), so (3.6) implies
(3.7), and we are done. 2

4 Matching an FRW to a TOV Metric Across

a Shock-Wave

In this section apply the theory of Section 3 to the general problem of match-
ing a Friedmann-Robertson-Walker metric (FRW) to a Tolmann-Oppenheimer-
Volkoff (TOV) metric Lipschitz continuously across a radial shock-wave. We
will first show that given any such metrics, one can always in principle con-
struct a coordinate mapping between the FRW and the TOV coordinates
such that, under this coordinate identification, the FRW and TOV metrics
match Lipshitz continuously across an interface that is implicitly determined.
In order for the matching to describe a true shock-wave, the further constraint
of conservation must be imposed, and this restricts the possible FRW and
TOV metrics that can be matched across a shock-wave. An application of
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Theorem 5 demonstrates that the conservation constraint reduces to a sin-
gle condition, and this allows for the possibility of nontrivial examples. (The
constraint can be viewed as a restriction on the possible equations of state on
either side of the shock). The conservation constraint is shown to reduce to
a quartic equation in the densities and pressures on either side of the shock.
An application of MAPLE shows that the quartic factors, and we use this
to show that two possible types of pressure jumps are allowed, and one of
them can be ruled out by physical considerations. We use this formulation of
the conservation constraint in the next section to construct a simple class of
exact FRW-TOV shock-wave solutions under the assumption that the FRW
and TOV equations of state are each of the form p = σρ, where σ is con-
stant. (That is, in these examples, we assume that the sound speed

√
σ is (a

different) constant on either side of the shock-wave.

4.1 The General FRW-TOV Matching Problem

The FRW metric describes a spherically symmetric spacetime that is homo-
geneous and maximally symmetric at each fixed time, [42]. In coordinates,
the FRW metric is given by,

ds2 = −dt2 +R2(t)
{

1

1− kr2
dr2 + r2dΩ2

}
, (4.1)

where t ≡ x0, r ≡ x1, θ ≡ x2, ϕ ≡ x3, R ≡ R(t) is the ‘cosmological scale
factor’, and dΩ2 = dθ2 + sin2θdϕ2 denotes the standard metric on the unit
2-sphere. The constant k can be normalized to be either +1,−1, or 0 by
appropriately rescaling the radial variable, and each of the three cases is
qualitatively different. This induces a rescaling of R(t), and so alternatively,
R(t) can be rescaled to any positive value at a fixed time, (say R = 1 at
present time), in which case only the sign of k is unchanged. The sign of k
gives the sign of the curvature in the constant curvature surfaces at each fixed
t, and so from (4.1) it is clear that the 3-space at t = const is unbounded
when k ≤ 0, and when k > 0, r = 1/

√
k marks the outer boundary of the

coordinate system in (4.1). In standard theory of cosmology, the k = 0 case
corresponds to critical expansion, k > 0 to a closed universe, and k < 0 to
an open universe. Current estimates of the Hubble constant H = Ṙ/R argue
for an open universe.
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To obtain the equation for R(t) implied by the Einstein equations, assume
that the stress energy tensor is of the form

T ij = p̄gij + (p̄+ ρ̄)uiuj, (4.2)

for a perfect fluid, and that the fluid is co-moving with the metric, [42].
The fluid is said to be co-moving relative to a background metric gij if ui = 0,
i = 1, 2, 3, so that g diagonal and giju

iuj = −1 imply that

u0 =
√
−g00. (4.3)

Substituting (4.1) into the Einstein equations (2.16), and making the
assumption that the fluid is perfect and co-moving with the metric, yields the
following constraints on the unknown functions R(t), ρ(t) and p(t), [42, 30]:

3R̈ = −4πG(ρ+ 3p)R, (4.4)

RR̈ + 2Ṙ2 + 2k = 4πG(ρ− p)R2, (4.5)

together with

ṗR3 =
d

dt
{R3(p+ ρ)}. (4.6)

Equation (4.6) is equivalent to

p = −ρ− Rρ̇

3Ṙ
. (4.7)

Substituting (4.4) into (4.5) we get

Ṙ2 + k =
8πG
3
ρR2. (4.8)

Since ρ and p are assumed to be functions of t alone in (4.1), equations
(4.7) and (4.8) give two equations for the two unknowns R and ρ under the
assumption that the equation of state is of the form p = p(ρ). It follows from
(4.7)-(4.8), c.f., [30], that (R(t), ρ(t)) is a solution if and only if (R(−t), ρ(−t))
is a solution, and that

ρ̇Ṙ < 0. (4.9)
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Thus to every expanding solution there exists a corresponding contracting
solution, and conversely.

The TOV metric describes a time-independent, spherically symmetric
solution that models the interior of a star. In coordinates the components of
the metric are given by

ds̄2 = −B(r̄)dt̄2 + A(r̄)−1dr̄2 + r̄2dΩ2. (4.10)

We write this metric in bar-coordinates so that it can be distinguished from
the unbarred coordinates when the metrics are matched. When M(r̄) ≡
M0 ≡ const, andB = A−1 the metric reduces to the (empty space) Schwarzschild
metric, and the singularity at r̄ = 2GM0 is referred to as the Schwarzschild
radius for the mass M0, and represents the edge of a black hole. (See [33, 34]
for proof that Black Holes cannot form in smooth TOV metrics that solve
the Einstien equations with nonzero sources.) Assuming the stress tensor is
that of a perfect fluid which is co-moving with the metric, and substituting
(4.10) into the field equations (2.16), yields, (c.f. [42]),

A(r̄) =
(
1− 2GM

r̄

)
, (4.11)

where M ≡ M(r̄), ρ̄ ≡ ρ̄(r̄) and p̄ ≡ p̄(r̄) satisfy the following system of
ordinary differential equations in the unknown functions (ρ̄(r̄), p(r̄),M(r̄)) :

dM

dr̄
= 4πr̄2ρ̄, (4.12)

−r̄2dp̄

dr̄
= GMρ̄

{
1 +

p̄

ρ̄

}{
1 +

4πr̄3p̄

M

}{
1− 2GM

r̄

}−1

. (4.13)

Equation (4.13) is called the Oppenheimer-Volkov equation, and is referred
to by Weinberg as the fundamental equation of Newtonian astrophysics. ([42],
page 301).

In this section we assume the case of a barotropic equation of state p̄ =
p̄(ρ̄), in which case equations (4.12), (4.13) yield a system of two ODE’s in
the two unknowns (ρ̄,M). We always assume that

0 <
p̄

ρ̄
≡ µ̄ < 1,

and that the sound speed is less than the speed of light c = 1,
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0 < σ̄ ≡ dp̄

dρ̄
≤ 1.

The total mass M inside radius r̄ is then defined by

M(r̄) =
∫ r̄

0
4πξ2ρ̄(ξ)dξ. (4.14)

The metric component B ≡ B(r̄) is determined from ρ̄ and M through the
equation

B′(r̄)

B
= −2

p̄′(r̄)

p̄+ ρ̄
. (4.15)

In the special case when the density ρ̄ is assumed to be constant, one can
solve the Oppenheimer-Volkoff equations for the pressure, and the result-
ing solution, first discussed by Schwarzschild, is referred to as the Interior
Schwarzschild metric.

We remark that for any given FRW and TOV metrics, there are maximal
domains of definitions for the variables. We assume that the FRW metric
is defined on the maximal interval t− < t < t+ and 0 ≤ r− < r < r+, and
the TOV metric is defined on the maximal interval 0 < r̄− < r̄ < r̄+. For
example, if k > 0, then we must have r < 1√

k
, t must be restricted so that ρ(t)

and R(t) are positive, and by (4.8), we must require 8πG
3
ρ(t)R(t)2 − k ≥ 0.

We now construct a coordinate mapping (t, r) → (t̄, r̄), such that, under
this coordinate identification, the FRW metric (4.1) matches the TOV metric
(4.10) Lipschitz continuously across an interface r = r(t) that arises implicitly
from the matching procedure. That is, we define a coordinate mapping that
takes the unbarred frame of the FRW metric over to a barred TOV coordinate
system that leaves fixed the θ and ϕ coordinates. In order to apply Theorem
5 of Section 3, we require that the areas of the 2-spheres of symmetry of the
FRW (4.1) metric agree with the areas of the 2-spheres of symmetry of the
TOV metric (4.10). Thus to start, assume that

r̄2dΩ2 = R2r2dΩ2,

so that

r̄ = Rr. (4.16)
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That is, we define the first component of the coordinate mapping (t, r) →
(t̄, r̄) by

r̄ = r̄(t, r) = R(t)r. (4.17)

Note that at this stage the transformation r̄ = Rr is defined globally, which
is important in order to appy Theorem 5 of Section 3, which requires that
(4.16) hold not just at the shock surface, but in an open neighborhood of the
shock surface.

We next use (4.16) to rewrite the FRW metric in (t, r̄)-coordinates. We
have from (4.16) that

dr̄ = Rdr + Ṙrdt, (4.18)

so

dr =
1

R
dr̄ − Ṙ

R
rdt, (4.19)

and thus

dr2 =
1

R2
dr̄2 +

Ṙ2

R2
r2dt2 − 2

Ṙ

R2
r̄dtdr̄. (4.20)

Thus, the FRW metric (4.1) is given in (t, r̄)-coordinates by

ds2 = −
{

1− Ṙ2r̄2

R2 − kr̄2

}
dt2 +

R2

R2 − kr̄2
dr̄2− 2RṘr̄

R2 − kr̄2
dtdr̄+ r̄2dΩ2, (4.21)

which, using

{R2 − kr̄2 − Ṙ2r̄2} = R2{1− 8πG
3
ρR2r2},

becomes

ds2 =
1

R2 − kr̄2

{
−R2(1− 8πG

3
ρR2r2)dt2 +R2dr̄2 − 2RṘr̄ dtdr̄

}
+ r̄2dΩ2.

(4.22)
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We can now complete the definition of the coordinate identification (t, r) →
(t̄, r̄) by defining t̄ = t̄(t, r) so as to eliminate the cross term dtdr̄ in (4.22).
We do this first for a general metric of the form

ds̃2 = −C(t, r̄)dt2 +D(t, r̄)dr̄2 + 2E(t, r̄)dtdr̄. (4.23)

It is not hard to verify that if ψ = ψ(t, r̄) is chosen to satisfy the equation

∂

∂r̄
(ψC) = − ∂

∂t
(ψE), (4.24)

then

dt̄ = ψ(t, r̄){C(t, r̄)dt− E(t, r̄)dr̄}, (4.25)

is an exact differential. Since (4.25) defines the coordinate t̄ as a function of
(t, r̄), and we already have r̄ = R(t)r, it follows that (4.24) defines t̄ = t̄(t, r),
thus completing the definition of the sought after coordinate transformation
(t, r) → (t̄, r̄). Assuming (4.25), the (t̄, r̄) line element for (4.23) becomes

ds̃2 = −(ψ−2C−1)dt̄2 +

(
D +

E2

C

)
dr̄2. (4.26)

Now in terms of the metric

ds̃2 = −R2[1− 8πG
3
ρR2r2]dt2 +R2dr̄2 − 2RṘr̄ dt̄dr̄, (4.27)

which appears in (4.22), C, D and E are given by

C = R2{1− 8πG
3
ρR2r2}, (4.28)

D = R2, (4.29)

and

E = −RṘr̄. (4.30)

Thus, using (4.27), the FRW metric in (t̄, r̄)-coordinates becomes

ds2 =
1

R2 − kr̄2

{
−(ψ2C)−1dt̄2 +

(
D +

E2

C

)
dr̄2

}
+ r̄2dΩ2. (4.31)
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But from (4.28)-(4.30) we obtain

D +
E2

C
= R2 +

R2Ṙ2r̄2

R2
(
1− 8πG

3
ρr̄2

) = R2 +
Ṙ2R2r2

1− 8πG
3
ρR2r2

. (4.32)

Now equating the dr̄2 coefficients in the TOV solution (4.10) and the FRW so-
lution (4.31) and using (4.32), we obtain the equation for the shock surface:8

(
R2 − kr̄2

) (
1− 2GM

r̄

)−1

= R2 +
Ṙ2R2r2

1− 8πG
3
ρR2r2

, (4.33)

which, using (4.8) simplifies to

M(r̄) =
4π

3
ρ(t)r̄3. (4.34)

Hence (4.34) defines the shock surface, and the shock surface in (t, r)-coordinates
can be obtained from (4.34) by making the substitution r̄ = R(t)r. (Of course,
additional assumptions are required to insure that the shock surface as de-
fined implicitly by (4.34) is reasonable, for example, stays within the domain
of definition of the FRW metric, namely, 1 − kr2 > 0, when k > 0, etc.) It
remains only to determine ψ from (4.24) so that the dt̄2 terms in the TOV
and FRW metric agree on this surface. To obtain ψ, which determines the
coordinate t̄ in terms of the (t, r) coordinates of the FRW metric in a neigh-
borhood of the shock surface, we solve the equation (4.24) subject to initial
data on the shock surface which is forced upon us by the condition that the
dt̄2 terms match on the shock surface. So, equating the dt̄2 terms in (4.10)
and (4.31), our assumption is that

1

R2 − kr̄2

1

ψ2C
= B(r̄) (4.35)

holds on the shock surface (4.34). Rewrite (4.24) in the form of a first-order
linear partial differential equation for ψ,

Cψr̄ + Eψt = f(t, r̄, ψ). (4.36)

8Note that, interestingly, the dr̄2 coefficients are independent of ψ.

57



Here, C and E are functions of t and r̄ given by (4.28) and (4.30), and thus
we can solve the initial value problem (4.36) in (t, r̄)-coordinates with initial
data (4.35) given on the shock surface (4.34), provided that the shock surface
is non–characteristic for (4.36).

Now the characteristics for (4.36) are given by

λ ≡ dr̄

dt
=
C

E
, (4.37)

so that the function ψ is obtained by solving the ODE

dψ

dµ
= f(t, r̄, ψ), (4.38)

starting with initial values on the shock surface (4.34), where d
dµ

denotes

differentiation in the (E,C)-direction in (t, r̄)-coordinates. Solving (4.35) for
ψ gives the initial values of ψ to be met on the shock surface; namely,

ψ2 =
1

B(R2 − kr̄2)C
. (4.39)

Thus, if dr̄
dt

denotes the speed of the shock surface in (t, r̄)-coordinates, then
the condition that the shock surface be non–characteristic at a point is, by
(4.37), that

dr̄

dt
6= C

E
. (4.40)

If (4.40) holds at a point on the shock surface (4.34), then we can solve (4.36)
uniquely for ψ in a neighborhood of the point, thereby matching the FRW
and TOV solutions in a Lipschitz continuous manner in a neighborhood of
such a point on the surface in the (t̄, r̄)-coordinate system. Since we need
only define local coordinate systems in order to define a spacetime manifold,
the shock surface (4.34) defines a complete Lipschitz matching of the metrics
FRW and TOV at each point of the surface where the non–characteristic
condition (4.40) holds. It is interesting to observe that one need not explicitly
solve the PDE (4.36) for ψ in order to determine the shock surface equation
(4.34), and the solution of (4.34) can be calculated even when we do not have
a closed form expression for t̄ as a function of t and r. That is, we find it
somewhat remarkable that, other than it’s existence, we do not require any
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detailed information about the transformation t̄ = t̄(t, r) in the subsequent
developments.

We shall discuss the condition (4.40) further below in Propositions 2
and 3, but first we discuss the equation for the shock surface (4.34). This
is necessary in order to obtain an expression for the shock speed, and to
motivate the conditions in Propositions 2 and 3 below. Note first that we have
not made any choice regarding whether the FRW metric is on the “inside” or
the “outside” of the TOV solution. For the case of a star, the FRW metric
is on the inside (at small values of r̄ within the shock surface), and the TOV
is on the outside of the shock surface. For definiteness, we will only consider
this case, although the discussion we give below applies equally well to the
case when the FRW metric is on the outside.

The shock position is defined implicitly by (4.34). Note that (4.34) allows
an interpretation of a global principle of conservation of mass in the special
coordinate r̄. Indeed, M(r̄0) is the total mass that would appear inside the
radius r̄0 were the Tolman-Oppenheimer-Volkoff solution continued to values
of r̄ < r̄0. Thus, M(r̄) represents the total mass that is generating the TOV
solution outside the radius r̄ = r̄0. This describes the left-hand-side of (4.34).
The right-hand-side of (4.34) can be interpreted as the total mass inside the
sphere of radius r̄0 at a fixed time t in the Freidmann-Robertson-Walker
solution. That is, if we interpret 4πρR(t)3r3

0 as the total mass behind the
shock at fixed t in the FRW metric, then (4.34) says that this is equal to
the mass M(r0) observed by the TOV metric outside the shock, when the
shock is at position r̄0 = R(t)r0. Thus (4.34) says that the “total mass” is
conserved as the shock propagates outward. Therefore, the total mass in the
TOV solution that an observer sees out at infinity is fixed, and this equals
the total mass in the inside FRW metric plus the total mass in the outside
TOV metric. As an application of this global conservation of mass principle,
we note that since in a “physically relevant” model for a star, the density
ρ̄(r̄) for the TOV metric should be a decreasing function of r̄, the global
conservation principle cannot hold when ρ̄ − ρ ≡ [ρ] = 0 across the shock
surface. Indeed, if dρ̄

dr̄
< 0 for r̄ < r̄0, and ρ(t0) = ρ̄(r̄0), then

4π

3
ρ(t0)r̄

3 =
4π

3
ρ̄(r̄0)r̄

3 <
∫ r̄0

0
4πρ̄(ξ)ξ2dξ = M(r̄0), (4.41)

and so by (4.34), the point (t0, r̄0) cannot lie on the shock surface: the global
conservation of mass principle implies that if dρ̄

dr̄
< 0, then [ρ] 6= 0 across the
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shock.
With this motivation, we can now calculate the shock speed under the

condition [ρ] 6= 0. Indeed, by the implicit function theorem, the shock surface
(4.34) is given by r̄ = r̄(t) provided that

dM

dr̄
− 4πρ(t)r̄2 6= 0. (4.42)

But, using (4.12), (4.42) becomes

4πr̄2(ρ̄− ρ) 6= 0, (4.43)

at a point on the shock surface. Thus, as we have shown above, if we assume
that dρ̄

dr̄
< 0, this condition is always valid on the shock surface. We can

now calculate the speed of the shock s ≡ ˙̄r, (where “dot” denotes d
dt
.) Using

(4.34), which we write in the form

M(r̄(t)) =
4π

3
ρ(t)r̄(t)3, (4.44)

and differentiating with respect to t, we find

s ≡ ˙̄r =
ρ̇r̄

3[ρ]
. (4.45)

Since [ρ] < 0, (we are assuming that dρ̄
dr̄
< 0), the shock speed is negative if

ρ̇ > 0 and is positive if ρ̇ < 0. Observe that, from (4.37), the condition on the
shock speed (4.45) that guarantees that the surface be non–characteristic at
a point is, (c.f. (4.39),

(
ρ̇r̄

3[ρ]

)2

6= C2

E2
=

(
8πG
3
ρr̄2 − 1

)2

8πG
3
ρr̄2 − kr2

, (4.46)

where we have used (4.8), (4.16), (4.28), (4.30). Note that in the classical
theory of shock-waves, the stable shock-waves always advance toward the
side of the shock where the fluid pressure is lower, and the corresponding
shock-waves that move into the higher pressure side are unstable, and are
referred to as rarefaction shocks, [27]. This means that if dρ̄

dr̄
> 0, then the

shock is stable if s > 0, (ρ̇ < 0), and unstable if s < 0, (ρ̇ > 0). We
remark that all of the above development is independent of the equations
of state p = p(ρ) and p̄ = p̄(ρ̄). The famous example of Oppenheimer and
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Snyder [25], is obtained in the limit when the pressure p ≡ 0, and the TOV
solution is replaced by the Schwarzschild metric, (4.10) assuming a constant
mass function M(r̄) ≡ M = const, B = A−1. In this case the FRW solution
satisfies ρ(t)R(t)3 = ρ(0), and so for a particular solution satisfying R(0) = 1,
Ṙ(0) = 0, (4.8) implies that k = 8πG

3
. Thus (4.34) reproduces the well known

result that the radius of the star a at time t = 0 in the Oppenheimer-Snyder
model is given by the relation, (see [42], page 346),

M =
4π

3
ρ(0)a3.

Note that in the Oppenheimer-Snyder limit, the interface must be interpreted
as a contact discontinuity rather than a shock-wave because a ≡ const and
thus no energy or momentum is transported across the interface.

The following proposition gives identities that hold at the shock surface
as a consequence of (4.34) and the coordinate identification (t, r) → (t̄, r̄).
These will be useful in later developments.

Proposition 1 On the shock surface (4.34), the following identities hold

1

ψ2C2
= B

(
1 +

AE2

C2

)
=
B

A
(1− kr2), (4.47)

C = R2A, (4.48)

E

C
=
−Ṙr
A

, (4.49)

E2

C2
=
−A+ (1− kr2)

A2
, (4.50)

Ṙ2r2 = −A+ (1− kr2), (4.51)

Proof: The transformation Ψ that maps the (t, r)-coordinates of the FRW
metric to the (t̄, r̄)-coordinates of the TOV metric is given by

dr̄ = Ṙrdt+Rdr,

dt̄ = ψCdt− ψEdr̄ = (ψC − ψEṘr)dt− ψERdr,
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where we have used (4.25) together with the fact that r̄ = Ψ2(t, r) = R(t)r.
From these it follows that

∂x̄i

∂xj
=

[
ψC − ψEṘr −ψER

Ṙr R

]i
j

, (4.52)

where in this section we use the notation x = (t, r), x̄ = (t̄, r̄), and x̃ = (t, r̄),
and we supress the (θ, ϕ) coordinates. (Here, the upper i lower j on the
right hand side of (4.52) denotes the (i, j)-entry of the matrix.) From these
relations it follows easily that

∂x̃i

∂xj
=

[
1 0

Ṙr R

]i
j

, (4.53)

and

∂x̃i

∂x̄j
=

[
1
ψC

E
C

0 1

]i
j

. (4.54)

Now in the tr-coordinate plane, the FRW and TOV metrics have components
gijRW and gijIS in x- and x̄-coordinates given respectively by

gijRW =

[
−1 0

0 1−kr2
R2

]ij
, (4.55)

and

gijIS =

[
−B−1 0

0 A

]ij
, (4.56)

where A = 1 − 2GM
r̄
, B satisfies (4.15), and the upper ij denotes the (i, j)

entry of the matrix. Now on the shock surface M = 4π
3
ρr̄3, the metrics gRW

and gIS agree, by which we mean that

gαβRW =
∂xα

∂x̄i
gijIS

∂xβ

∂x̄j
.

Rather than calculate this out directly, we use the fact that the FRW and
TOV metrics must have components that agree on the shock surface in the
x̃-coordinates. Thus we calculate
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g̃αβRW =
∂x̃α

∂xi
gijRW

∂x̃β

∂xj
=

[
−1 −Ṙr
−Ṙr −Ṙ2r2 + (1− kr2)

]αβ
, (4.57)

and

g̃αβIS =
∂x̃α

∂x̄i
gijIS

∂x̃β

∂x̄j
=

[
− 1
ψ2C2B

+ AE2

C2
AE
C

AE
C

A

]αβ
. (4.58)

(Again, the superscript αβ on the RHS of (4.57) and (4.58) denotes the
(α, β) entry of the matrix.) Equating the (0, 1)-entries in (4.57) and (4.58)
we obtain (4.49). Equating the (1, 1)-entries in (4.57) and (4.58) we obtain
(4.51), and this together with (4.49) gives (4.50). Equating the (0, 0)-entries
in (4.57) and (4.58) gives the first equality in (4.47), and applying (4.51)
gives the second. Finally, (4.48) follows from (4.49) together with (4.30),
E = −RṘr. This concludes the proof of Proposition 1.2
Alternatively, we can derive (4.47)–(4.51) directly from (4.11),(4.8) and (4.34),
together with the expressions (4.28),(4.30) and (4.35) for C, E, and B, respec-
tively. To obtain (4.51), solve (4.34) for ρ, solve (4.11) for M, and substitute
these into (4.8). To obtain (4.48), multiply (4.8) by r2, solve for 8πG

3
ρR2R2,

and substitute this into (4.28). Using (4.48) together with (4.30), gives (4.49).
The identity (4.49) together with (4.51), yields (4.50). Statement (4.35) to-
gether with (4.48) gives 1

ψ2C2 = B
A
(1−kr2). Using (4.48) together with (4.30)

and (4.51), in the expression 1 + AE2

C2 gives the last equality in (4.47). 2

We end this section by giving conditions under which the shock surface
is non–characteristic; i.e., that (4.39) holds. We assume here that the shock
surface lies within the domain of definition of the FRW metric if k > 0. The
first proposition gives conditions on the equation of state p̄(ρ̄) that guarantees
the shock surface (4.34) is non–characteristic provided it does not intersect
the Schwarzschild radius, A = 1− 2GM

r̄
= 0, of the TOV solution.

Proposition 2 If the equation of state p̄(ρ̄) satisfies the condition

dp̄

dρ̄
≥ 0,

and
A 6= 0
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everywhere on the shock surface (4.34), then the shock surface is nowhere
characteristic.

Proof: We already have that (c.f., (4.37), (4.30),)

λ =
C

E
=

C

R(−Ṙ)r̄
, (4.59)

and

s =
ρ̇r̄

3[ρ]
. (4.60)

From the Oppenheimer-Volkoff equation (4.13) for dp̄
dr̄
, we see that the sign

of dp̄
dr̄

is positive inside the Schwarzschild radius and negative outside. Thus

sign([ρ]) = sign(dρ̄
dr̄

) = sign(dp̄
dr̄

) = −sign(A). But on the shock surface, we
also have by (4.48)

C = R2A,

and so sign(A) = sign(C). Finally, we also have from (4.9) that Ṙρ̇ < 0.
Thus,

sign(λ)− sign(s) = sign(C)− sign([ρ]) = −{sign(
dp̄

dr̄
+ sign([ρ])} 6= 0.2

(4.61)
We shall also need the following proposition:

Proposition 3 If Ṙ = 0 and A 6= 0 at a point on the shock surface (4.34),
(i.e., the point is not on the Schwarzschild radius), then, if the shock speed is
finite at the point, the shock surface is also non–characteristic at the point.

Proof: By (4.36), the characteristic surfaces satisfy

dr̄

ds
= C = R2A,

dt

ds
= E = −R3Ṙ,
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where we have used (4.48) and (4.49). Therefore, if Ṙ = 0, the characteristic
is tangent to t = constant, and thus any finite speed s = dr̄

dt
is a non–

characteristic speed.2

Summary: The results of this section can be summarized as follows: Let
(4.1) and (4.10) denote arbitrary FRW and TOV metrics that solve the Ein-
stein equations for a perfect fluid. (We make no restriction on the equation of
state at this point.) Then we have identified the following conditions under
which there exists a smooth regular coordinate transformation

Ψ : (t, r) → (t̄, r̄),

and a corresponding shock surface r = r(t) in FRW (t, r)-coordinates, (which
maps to the curve r̄ = r̄(t̄) in TOV barred coordinates by (t̄, r̄(t̄)) = Ψ(t, r(t))),
such that, when written in the same coordinates, the metrics (4.1) and (4.10)
agree and are Lipschitz continuous across the shock surface which is given
implicitly by the equation M = 4πρr̄3. For example, the metrics agree on
the shock surface when both are written in either the barred or unbarred co-
ordinates. We summarize most of the results of this section in the following
theorem:

Theorem 6 Assume that the shock surface r̄ = r̄(t) is defined implicitly by

M(r̄) =
4π

3
ρr̄3 (4.62)

in a neighborhood of a point (t0, r̄0) that satisfies (4.62). Assume that

r̄ = Ψ2(t, r) = R(t)r,

so that the sphere’s of symmetry agree in the barred and unbarred frames, and
the shock surface in (t,r)-coordinates is given by r(t) = r̄(t)/R(t). Assume
finally that both

1− kr(t)2 > 0, (4.63)

A(r̄0) 6= 0, (4.64)

and that the non–characteristic condition
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dr̄

dt
6= C

E
= −Ṙr

A
, (4.65)

hold at t = t0, (c.f., (4.28), (4.30) and 4.49). Then the coordinate t̄ = Ψ1(t, r)
can be defined smoothly and in such a way that Ψ = (Ψ1,Ψ2) is 1-1 and
regular in a neighborhood of the point (t0, r0), (c.f. (4.36)), and the metrics
(4.1) and (4.10) will match in a Lipschitz continuous fashion across the shock
surface r = r(t) in a neighborhood of (t0, r0).

By the implicit function theorem, a sufficient condition for (4.34) to define a
surface locally through (t0, r̄0) is that

∂

∂r̄

M

r̄3
= M − 4π

3
ρ̄ 6= 0. (4.66)

By differentiating (4.34) directly, we obtain the alternative sufficient condi-
tion,

[ρ] 6= 0. (4.67)

4.2 The Conservation Constraint

Assume for this section that we are given smooth FRW (4.1) and a TOV
(4.10) solutions of the Einstein equations (2.16) such that Theorem 6 and

(4.62)-(4.65) hold for all t ∈ (t−, t+), r̄ ∈ (r̄−, r̄+), and r = r̄(t)
R(t)

∈ (r−, r+).

That is, assume that the shock surface r̄ = r̄(t) is defined by (4.34) and that
the metrics agree on this surface throughout this range of variables, when
the unbarred coordinates (4.1) and barred coordinates (4.10) are identified
by the transformation (t̄, r̄) → (t, r) constructed in the last section. Thus
r̄ = r̄(t, r) is given by

r̄ = R(t)r, (4.68)

and the transformation t̄ = t̄(t, r) is assumed to exist throughout this in-
terval in light of the non–characteristic assumption (4.65). Other than it’s
existence, we do not require any detailed information about the t̄ transforma-
tion in the subsequent development. The following theorem gives conditions
under which the matched FRW and TOV metrics define a true shock-wave
solotion of the Einstein equatons: that is, a weak solution such that all of
the equivalencies (i)-(iv) of Theorem 4, section 3 are true, and conservation
of energy and momentum hold at the interface.
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Theorem 7 Let g∪ ḡ denote a metric obtained by matching an FRW metric
g and a TOV metric ḡ Lipschitz continuously across the interface defined
implicitly by (4.34), such that Theorem 6 holds. Assume that at each point
of the interface the condition

[T ij]ninj = (p̄+ ρ)ṙ2 − (ρ̄+ p̄)
(1− kr2)

AR2
˙̄r
2
+ (p− p̄)

1− kr2

R2
= 0, (4.69)

where ṙ, ˙̄r denote the shock speeds dr
dt
, dr̄
dt
, respectively, differentiation being

taken with respect to the unbarred FRW time coordinate t; and [·] denotes the
FRW-TOV jump in a quantity across the interface, as calculated in the same
coordinate system. Then the resulting metric g ∪ ḡ defines a true shock-wave
solution of the Einstein equations in the sense that all of the equivalencies of
Theorem 4 hold, and these imply that the Rankine-Hugoniot jump conditions

[Tij]n
i = 0, i = 0, ..., 3,

hold at the shock.

Proof: Because r̄ = R(t)r holds in a neighborhood of the shock surface,
conditions (3.3) and (3.4) of Theorem 5 is met. Thus, according to Theorem
5, all of the equivalencies of Theorem 4 follow from the single (invariant)
condition

[Gij]n
inj = 0, (4.70)

which is equivalent to

[Tij]n
inj = 0, (4.71)

in light of the fact that both the FRW and TOV metric are assumed to
satisfy the field equations Gij = κTij on either side of the shock. We empha-
size that the indices i, j must refer to components in the same coordinate
system, where coordinates on either side of the shock are identified through
the coordinate transformation (t, r) → (t̄, r̄). To start, use the Einstein equa-
tion G = κT, the condition [Gij]ninj = 0 for conservation across the shock
(c.f.Theorem 5), and the assumption that the source fluid is co-moving with
respect to the metrics on either side of the shock (c.f. (4.2)), to rewrite the
condition for conservation as
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[T ij]ninj = (p− p̄)|n|2 + (ρ+ p)n2
0 − (ρ̄+ p̄)

n̄2
0

B
= 0. (4.72)

Here ni and n̄i denote the i-components of the normal vector n to the
shock surface (4.34) in unbarred (FRW) and barred (TOV) coordinates, re-
spectively, and |n|2 = gijninj. (Note that ui = δi0 in (FRW) coordinates,
ui = B−1/2δi0 in (TOV) coordinates, thus giving rise to the factor B.) Since
ni = 0 = n̄i, i = 2, 3, we need only pay attention to the 0- and 1-components
of n. To verify (4.72), note that, for example, in the (FRW) unbarred frame,
(4.2) gives

T ijninj = pgijninj + (p+ ρ)(uini)
2 = p|n|2 + (p+ ρ)(n0)

2.

Moreover, we need not choose the vector n to be of unit length, so long as
ni and n̄i are the components of the same vector. Since the LHS of (4.72) is
an invariant scalar, so is the RHS. In order to evaluate ni and n̄i, let (4.34)
(formally) define the surface r = r(t), which we can write as the level curve
of the scalar ϕ(t, r) = r − r(t) = 0. Then we can choose nidx

i = dϕ, so that

dϕ = n0dt+ n1dr = −ṙdt+ dr,

which yields

n0 = −ṙ, (4.73)

and

n1 = 1. (4.74)

To obtain n̄i, we write the function ϕ in (t̄, r̄)-coordinates:

ϕ(t̄, r̄) =
r̄

R(t(t̄, r̄))
− r(t(t̄, r̄)). (4.75)

Then

dϕ(t̄, r̄) =

{
− r̄

R2
Ṙ
∂t

∂t̄
− ṙ

∂t

∂t̄

}
dt̄+ n̄1dr̄ = −

˙̄r

R

∂t

∂t̄
dt̄+ n̄1dr̄, (4.76)

so that
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n̄0 = −
˙̄r

R

∂t

∂t̄
. (4.77)

But using the fact that

r̄ = Rr,

together with (4.25),

dt̄ = ψ(t, r̄){C(t, r̄)dt− E(t, r̄)dr̄},

we have

dt = (ψC)−1dt̄+
E

C
dr̄,

which implies

∂t

∂t̄
= (ψC)−1.

Putting this into (4.77) yields

n̄0 = −
˙̄r

RψC
. (4.78)

Using the identity (4.47) of Proposition 1 we obtain

n̄2
0 =

B

A
(1− kr2)r̄2, (4.79)

where −B and A−1 =
(
1− 2GM

r̄

)−1
are the coefficients of dt2 and dr̄2 in the

TOV metric (4.10). Finally, using the FRW metric (5.57) to compute |n|2,
we obtain

|n|2 = −n2
0 +

1− kr2

R2
n2

1 = −ṙ2 +
1− kr2

R2
. (4.80)

Now substituting (4.73), (4.79) and (4.80) into (4.72) yields

[T ij]ninj = (p̄+ ρ)ṙ2 − (ρ̄+ p̄)
(1− kr2)

AR2
˙̄r
2
+ (p− p̄)

1− kr2

R2
= 0. (4.81)
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which is equation (4.69). 2

Equation (4.69) gives the additional contraint imposed by conservation
across the shock in terms of the quantities r = r(t), (the shock position),
and the values that ρ, p, ρ̄, p̄ and R taken on the shock surface. The follow-
ing Proposition explains why the pressure must be taken to be zero in the
Oppenheimer-Snyder model:

Lemma 9 If ρ̄ = p̄ = 0 identically, (so that the TOV solution reduces to
the Schwarzschild solution), and ρ ≥ 0 and p ≥ 0 everywhere, then (4.69)
implies p = 0 and r(t) = const. all along the shock.

Proof: When ρ̄ = p̄ = 0, (4.69) reduces to

ρṙ2 + p
1− kr2

R2
= 0.

Since 1−kr2
R2 > 0 in the FRW metric, the lemma follows at once.2

We now derive an equivalent formulation of the conservation constraint
(4.69).

Lemma 10 The conservation constraint (4.69) has the equivalent formula-
tion

0 = (1− θ)(ρ+ p̄)(p+ ρ̄)2 +
(
1− 1

θ

)
(ρ̄+ p̄)(ρ+ p)2 +(p− p̄)(ρ− ρ̄)2, (4.82)

where

θ =
A

1− kr2
. (4.83)

Before giving a proof of (4.82), we first note that, assuming (4.63) and
(4.64) hold, the condition 0 < θ ≤ 1 is equivalent to the condition

Ṙ2 =
8πG
3
ρR2 − k ≥ 0; (4.84)

that is, equivalent to the condition that the shock surface lies within the
coordinate restriction of the FRW metric. To see this, use the shock surface
equation M = 4πρr̄3 to simplify (4.84) as follows:

Ṙ2 =
8πG
3
ρR2 − k

=
1

r2
{2G
r̄
− kr2}, (4.85)
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and so
Ṙ2r2 = −A+ (1− kr2). (4.86)

This can be written as

Ṙ2r2 = (1− kr2)(1− θ). (4.87)

Thus the condition that
0 < θ ≤ 1 (4.88)

is equivalent to (4.84), in view of our assumptions (4.63) and (4.64). More-
over, since we are assuming (4.62)-(4.65) hold throughout, it is clear that
(4.88) is equivalent to (4.84) when k ≤ 0 as well. When making general
statements about FRW-TOV shock-waves, we always assume (4.88) holds.
2

Proof of Lemma 10: Differentiating (4.34) with respect to t and applying
(4.12) yields

ρ̇ =
3

r̄
(ρ̄− ρ) ˙̄r. (4.89)

Solving for ρ̇ in (4.7) yields

ρ̇ = −3Ṙ

R
(ρ+ p). (4.90)

Combining (4.89) and (4.90) thus gives

˙̄r = Ṙr
(ρ+ p)

(ρ− ρ̄)
. (4.91)

Differentiating r̄ = Rr with respect to t, using (4.91), and solving for ṙ we
get

ṙ =
Ṙr

R

(ρ̄+ p)

(ρ− ρ̄)
. (4.92)

Substituting (4.91) and (4.92) into (4.81), we obtain the following equation,
which is equivalent to the conservation condition [T ij]ninj = 0:

0 =
(

1

1− kr2

)
(ρ+p̄)(p+ρ̄)2− 1

A
(ρ̄+p̄)(ρ+p)2+

1

r2Ṙ2
(p− p̄)(ρ−ρ̄)2. (4.93)
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Equation (4.93) expresses conservation at the shock surface (4.34). But by
(4.91),

Ṙ2r2 = −A+ (1− kr2) (4.94)

holds on the shock surface, and using this we can transform (4.93) into the
final form (4.82).2

For convenience, we summarize the results of this section in the following
theorem:

Theorem 8 Assume that FRW and TOV metrics are given that match Lip-
schitz continuously across the shock surface (4.34) such that (4.62)-(4.65)
hold. Then (i)-(iv) of Theorem 4 hold on the shock surface if and only if
either (4.69) or (4.82) hold on the shock-surface.

We now use the conservation constraint to solve for p as a function of ρ, ρ̄
and p̄. Solving (4.82) for p we obtain

p+
−

=

1
2

{
−(ρ̄+ ρ)2 + 2(θ − 1)ρ̄p̄+ 2(θ + 1

θ
)ρρ̄+ 2(1

θ
− 1)ρp̄ +

− SQ
}

(1− θ)ρ+ (2− θ − 1
θ
)p̄+ (1− 1

θ
)ρ̄

(4.95)

where

SQ = (6ρ̄2ρ2 − 4ρ3ρ̄− 4ρ̄3ρ+ ρ4 + ρ̄4)1/2 = (ρ− ρ̄)2. (4.96)

Thus we conclude that every TOV solution determines two possible FRW
pressures at the shock through the conservation constraint. Since the FRW
pressure is constant on the t = const surfaces, these implicitly determine the
FRW equations of state p = p(ρ) from the TOV density and pressure. Now
the terms in the numerator of (4.95) combine as follows:

−(ρ̄+ ρ)2 +2(θ+
1

θ
)ρρ̄ +

− (ρ− ρ̄)2 = −2(2− θ− 1

θ
)ρρ̄−{2(ρ− ρ̄)2}−, (4.97)

where we use the notation that the bracket {}− is taken to be zero unless
we take the minus sign in (4.95), (and corresponding minus sign in (4.97)).
Using (4.97) in (4.95) gives

p+
−

=
(θ − 1)ρ̄p̄+ (1

θ
− 1)ρp̄− (2− θ − 1

θ
)ρρ̄− {(ρ− ρ̄)2}−

(1− θ)ρ+ (2− θ − 1
θ
)p̄+ (1− 1

θ
)ρ̄
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=
−(1− θ){ρ̄p̄− ρρ̄}+ (1

θ
− 1){ρp̄+ ρρ̄} − {(ρ− ρ̄)2}−

(1− θ){ρ+ p̄} − (1
θ
− 1){p̄+ ρ̄}

=
−(1− θ)ρ̄(ρ+ p̄) + (1

θ
− 1)ρ(p̄+ ρ̄)− {(ρ− ρ̄)2}−

(1− θ){ρ+ p̄} − (1
θ
− 1){p̄+ ρ̄}

,

(4.98)

which upon multiplying the numerator and denominator by θ/(1− θ) yields

p+ =
−θρ̄(ρ+ p̄) + ρ(ρ̄+ p̄)

θ(ρ+ p̄)− (ρ̄+ p̄)
, (4.99)

p− =
−θρ̄(ρ+ p̄) + ρ(ρ̄+ p̄)− { θ

1−θ (ρ− ρ̄)2}
θ(ρ+ p̄)− (ρ̄+ p̄)

. (4.100)

We can further simplify p− as follows. First, one can verify the identity

−θρ̄(ρ+ p̄) + ρ(ρ̄+ p̄)− θ

1− θ
(ρ− ρ̄)2 =

1

1− θ
(θ − ρ̄+ p̄

ρ+ p̄
)(θ − ρ

ρ̄
)(ρ+ p̄)ρ̄.

Substituting this into the numerator of (4.100) yields

p− =
( 1

1−θ )(θ −
ρ̄+p̄
ρ+p̄

)(θ − ρ
ρ̄
)(ρ+ p̄)ρ̄

(ρ+ p̄)(θ − ρ̄+p̄
ρ+p̄

)

=
θρ̄− ρ

1− θ
.

Thus, if we define the variable

Θ ≡ γθ, (4.101)

where

γ ≡ ρ+ p̄

ρ̄+ p̄
, (4.102)

then the pressures p+ and p− take the similar forms

p+ =
Θρ̄− ρ

1−Θ
, (4.103)

p− =
θρ̄− ρ

1− θ
. (4.104)
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In Section 5 we will prove that p = p− or ρ̄ > ρ and leads to dp
dρ
< 0, and

so can be ruled out as physically unlikely possibilities. An easy calculation
gives the equivalent formulation of (4.103) in terms of the TOV pressure p̄,

p̄ =
θγ̄ρ− ρ̄

1− θγ̄
, (4.105)

where

γ̄ =
ρ̄+ p

ρ+ p
. (4.106)

The following two theorems follow directly from (4.103).
Let us now interpret an FRW-TOV shock-wave as the leading edge of an

explosion in which the FRW solution is on the inside, expanding outward
into the static TOV solution. In this case, we can take ρ̄/ρ < 1 as an entropy
condition for such a shock-wave; that is, the density should be greater behind
the shock. The following theorem states that ρ̄/ρ < 1 implies that p > p̄
as well, when we take the pressure to be p = p+ in (4.103), and there is a
constraint on the allowable values of θ.

Theorem 9 Assume (4.62)-(4.65), assume that

z ≡ ρ̄/ρ < 1,

and assume

µ̄ ≡ p̄

ρ̄
.

Then p+ > 0 if and only if p− p̄ > 0, and this holds if and only if θ1 ≤ θ < 1
at the shock, where

θ1 ≡ θ1(z, µ̄) ≡ 1

γ
=
ρ̄+ p̄

ρ+ p̄
=

1 + µ̄

1 + µ̄z
z. (4.107)

Since the FRW pressure is determined by the TOV solutions according
to (4.103), we now ask what possible pressure jumps can be assigned at an
FRW-TOV shock-wave at a given position. The final theorem of this section
shows that all possible pressure jumps can be assigned as we vary the value
of θ. The pressure jumps that can be assinged at a point can be viewed
as possible initial conditions for the subsequent dymanics of an FRW-TOV
shock-wave solution.
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Theorem 10 Assume (4.62)-(4.65) and that z < 1. Then for every choice
of positive values for ρ̄, p̄ and ρ, the pressure p+ monotonically takes on every
value from [p̄,+∞), and the pressure difference (p+− p̄) monotonically takes
on every value from [0,+∞), as θ ranges monotonically from [1, θ1).

Proof: When ρ > ρ̄, it follows immediately form (4.102) and (4.103) that
p+ > 0 if and only if θ > θ1. To see this, note that the numerator in (4.103)
is always negative because

γθz =
1 + µ̄z

1 + µ̄
γ < 1

when z < 1. Thus by (4.103), p+ > 0 if and only if γθ > 1. Furthermore, if ρ̄,
p̄ and ρ are fixed, then p varies monotonically from p̄ to ∞ as θ varies from
+1 to θ1 because pθ < 0, and when θ = 1,

p+ =

ρ+p̄
ρ̄+p̄

ρ̄− ρ

1− ρ+p̄
ρ̄+p̄

= p̄.

We can perform a similar analysis on the difference (p+ − p̄), because, as is
easily shown,

p+ − p̄ =

(
1− θ

γθ − 1

)
(ρ̄+ p̄)γ.

This completes the proofs of the Theorems 9 and 10.2

Another direct consequence of (4.103), (4.104) is that if A > 0 and θ < 1,
then when ρ > ρ̄, the only shock-waves with positive pressure must satisfy
p = p+ and

Θ ≡ γθ > 1. (4.108)

In this case (4.102) implies

ρ >
1

θ
ρ+ (1 +

1

θ
)p̄. (4.109)
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5 A Class of Solutions Modeling Blast Waves

in GR

5.1 Introduction

In this section we use the theory developed in Section 4 to construct a
class of exact, spherically symmetric, shock-wave solution of the Einstein
equations for a perfect fluid. The solutions are obtained by matching a
Friedman-Roberson-Walker metric (4.1) to a static Tolman-Oppenheimer-
Volkoff metric (4.10) across a shock-wave interface. This is in the spirit of
the Oppenheimer-Snyder solution, except, in contrast to the Oppenheimer-
Snyder model, the pressure p is non–zero. These shock-wave solutions can
be interpreted as simple models for the general relativistic version of an ex-
plosion into a static, singular, isothermal sphere. It is interesting to keep
in mind that shock-waves introduce time-irreversiblity, loss of information,
decay , dissipation, and increase of entropy into the dynamics of a perfect
fluid in general relativity.

The FRW metric is a uniformly expanding (or contracting) solution of
the Einstein gravitational field equations which is generally accepted as a
cosmological model for the universe. The TOV solution is a time-independent
solution which models the interior of a star. Both metrics are spherically
symmetric, and both are determined by a system of ODE’s that close when
an equation of state p = p(ρ) for the fluid is specified. In the solutions that
we construct below, one can imagine the FRW metric as an exploding inner
core, (of a star or the universe as a whole), and the boundary of this inner
core is a shock surface that is driven by the expansion behind the shock into
the outer, static, TOV solution, which we imagine as the outer layers of a
star, or the outer regions of the universe. In these solutions, the shock-wave
emerges from r̄ = 0 at the initial (Big Bang) singularity in the FRW metric,
and so broadly speaking, one can interpret these examples as providing a
scenario by which the Big Bang begins with a shock-wave explosion.

The outer static TOV solutions that appear beyond the shock-wave in
the examples below, are the general relativistic version of a static isothermal
sphere because the metric entries are time-independent, and the constant
sound speed can be interpreted as modeling a gas at constant temperature.
It is singular because it has an inverse-square density profile, and thus the

76



density and pressure tend to ∞ at the center of the sphere. The Newtonian
version of a static singular isothermal sphere is well known, and is relevant
to theories of how stars form from gaseous clouds, [2]. The idea in the New-
tonian case goes as follows: a star begins as a diffuse cloud of gas which
slowly contracts under its own gravitational force by radiating energy out
through the gas cloud as gravitational potential energy is converted into ki-
netic energy. This contraction continues until the gas cloud reaches the point
where the mean free path for transmission of light is small enough that light
is scattered, instead of transmitted, through the cloud. The scattering of
light within the gas cloud has the effect of equalizing the temperature within
the cloud. At this point the gas begins to drift toward the most compact
configuration of the density that balances the pressure when the equation
of state is isothermal; namely, it drifts toward the configuration of a static,
singular, isothermal sphere. Since this solution in the Newtonian case is also
inverse square in the density and pressure, the density tends to infinity at the
center of the sphere, and this ingnites thermonuclear reactions. The result is
a shock-wave explosion emanating from the center of the sphere, and this sig-
nifies the birth of the star. One can interpret the exact solutions constructed
below as general relativistic versions of such shock-wave explosions.

In the construction we assume that the FRW and TOV solutions both
have isothermal equations of state, but at different temperatures. That is,
we assume p = σρ in the FRW solution, and p̄ = σ̄ρ̄ in the TOV solution,
where both the inner FRW sound speed

√
σ and the outer TOV sound speed√

σ̄ are assumed to be constant. Here p denotes the fluid pressure and ρ
the mass-energy density, and again we let the unbarred and barred variables
refer to the standard coordinate systems for the the FRW and TOV metrics
(4.1), (4.10), respectively. We assume throughout that the speed of light
c = 1. The construction is based on exact solutions of FRW and TOV type
that exist for these special equations of state. In Section 4, (4.34), we showed
that in general the shock position r̄ = r̄(t) is given implicitly by the equation
M(r̄) = 4π

3
ρ(t)r̄3, where M(r̄) denotes the total TOV mass inside radius

r̄, and ρ(t) is the FRW density at the shock. For the exact solutions with
constant sound speed constructed here, the shock surface condition implies
that ρ = 3ρ̄ across the shock. Moreover, in order that conservation of energy
and momentum hold across the shock, we show that the sound speeds must
be related by an algebraic equation of the form σ̄ = H(σ), where H ′(σ) > 0,
H(0) = 0, and H(σ) < σ, c.f. Figure 1. Since, at the shock, the inner FRW
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sound speed and density exceed the outer TOV sound speed and density,
respectively, we conclude that the out-going shock-wave is the stable one,
and the larger sound speed in the FRW metric is interpreted as modeling
an isothermal equation of state at a higher temperature (consistent with the
heating of the fluid by the shock-wave). In the limit σ → 0, the model
recovers the Newtonian limit of low velocities and weak gravitational fields.

We verify that there exist two distinguished values of σ, σ1 ≈ .458 <
σ2 =

√
5/3 ≈ .745, such that, if 0 < σ < 1, then the Lax characteristic

condition (that characteristics impinge on the shock, [14]), is satisfied if and
only if 0 < σ < σ1; and the shock speed is less than the speed of light
if and only if 0 < σ < σ2. A calculation gives σ̄1 ≡ H(σ1) ≈ .161, and
σ̄2 ≡ H(σ2) ≈ .236. We conclude that for σ between σ1 and σ2, a new type
of shock-wave appears in which the shock is supersonic relative to the fluid
on both sides of the shock. Thus, in this theory, a fluid with a sound speed
no larger than

√
σ2 ≈

√
.745 can drive shock-waves with speeds all the way

up to the speed of light. The time-reversal and stability properties of these
shocks when σ1 < σ < σ2 remains to be investigated.

Since Lax type shock-waves are time-irreversible solutions of the equa-
tions due to the increase of entropy (in a generalized sense, c.f. [27]), and
consequent loss of information (effected by the impinging of characteristics on
the shock), we infer from the mathematical theory of shock-waves that when
0 < σ < σ1, many solutions must decay time asymptotically to the same
shock-wave. Thus, in contrast to the pure FRW solution, in these models
one should not expect a unique time-reversal of the solution all the way back
to the initial Big Bang singularity when the sound speed lies in the range
0 < σ < σ1.

Note that the TOV solution when p̄ = σ̄ρ̄ is, by itself, of limited physical
value because p̄ = ∞ at r̄ = 0. One can interpret this as saying that this exact
solution is unstable because it requires an infinite pressure at r̄ = 0 to “hold it
up”. In contrast, the shock-wave solution here remove the singularity at r̄ =
0, (for times after some initial time), and so the construction demonstrates
that a shock-wave in the core can supply the pressure required to stabalize a
TOV solution by holding it up.
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5.2 An Exact Solution of TOV Type

We now construct exact solutions of TOV type which represent the general
relativistic version of static, singular isothermal spheres. First assume the
equation of state

p̄ = σ̄ρ̄ (5.1)

for the TOV metric, and assume that the density is of form

ρ̄(r̄) =
γ

r̄2
, (5.2)

for some constant γ. In this case, an exact solution of TOV type was first
found by Tolman 9, [40]; namely, by (4.14),

M(r̄) = 4πγr̄. (5.3)

Putting (5.1)-(5.3) into (4.13) and simplifying, yields the identity

γ =
1

2πG

(
σ̄

1 + 6σ̄ + σ̄2

)
. (5.4)

From (4.11), we obtain
A = 1− 8πGγ. (5.5)

To solve for B, start with (4.15) and write

1

B

dB

dρ

dρ

dr̄
= − 2σ̄

(1 + σ̄)ρ̄

dρ̄

dr̄
, (5.6)

which simplifies to
dB

B
= − 2σ̄

(1 + σ̄)

dρ̄

ρ̄
. (5.7)

This equation has the explicit solution

B = B0

(
ρ̄

ρ̄0

)− 2σ̄
1+σ̄

= B0

(
r̄

r̄0

) 4σ̄
1+σ̄

. (5.8)

9In the case σ̄ = 1/3, this solution was re-discovered by Misner and Zapolsky, c.f. [42],
page 320.
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By rescaling the time coordinate, we can take B0 = 1 at r̄0 = 1, in which
case (5.8) reduces to

B = r̄
4σ̄

1+σ̄ . (5.9)

We conclude that when (5.4) holds, (5.1)-(5.5) and (5.8) provide an exact
solution of the Einstein field equations (2.16) of TOV type. Note that since√
σ̄ is the sound speed of the fluid, (5.1)-(5.3) provide exact solutions for any

sound speed 0 ≤ σ̄ ≤ 1. Note also that when σ̄ = 1/3, the extreme rela-
tivistic limit for free particles, [42], (5.4) yields γ = 3

56πG , (c.f., [42], equation
(11.4.13)). These exact solutions by themselves are not so interesting physi-
cally because the density and pressure are infinite at r̄ = 0 at every value of
time. Our shock-wave construction, given below, removes the singularity at
r̄ = 0 in these solutions, after some initial time.

5.3 An Exact Solution of FRW Type

We now construct exact solutions of FRW type. We restrict to the case k = 0
in (4.1), so that the metric takes the simple (conformally flat) form

ds2 = −dt2 +R2(t)
{
dr2 + r2dΩ2

}
. (5.10)

Now assume an arbitrary equation of state of the form p = p(ρ). We will
obtain a closed form solution of the Einstein equations (2.16) in this case.
By (4.7)-(4.8), it suffices to solve the system of two ODE’s

Ṙ2 =
8πG
3
ρR2, (5.11)

and

p(ρ) = −ρ− Rρ̇

3Ṙ
. (5.12)

Rewrite (5.11) as

Ṙ =+
−

√
8πGρ

3
R, (5.13)

and substitute into (5.12) to obtain

p = −ρ−+
ρ̇√

24πGρ
. (5.14)
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(The upper/lower plus-minus signs will always correspond to the two cases
represented by the upper/lower plus-minus sign in (5.13), respectively.) The
point to be noted here is that when p = p(ρ) is assigned, (5.14) is independent
of R, and thus we can integrate it explicitly; namely, since

dt =−
+

dρ

(ρ+ p)
√

24πGρ
, (5.15)

we obtain

t− t0 =−
+

∫ ρ

ρ0

dξ

(ξ + p(ξ))
√

24πGξ
. (5.16)

Formula (5.16) gives t as a function of ρ, and we can use this, together with
(5.11), to obtain a closed form expression for R as a function of ρ. Thus since

Ṙ =
dρ

dt

dR

dρ
=−

+ (ρ+ p)
√

24πGρdR
dρ
, (5.17)

if we combine this with (5.11), we get

dR

R
=

−dρ
3(ρ+ p)

, (5.18)

which has the explicit solution

R = R0 exp
∫ ρ

ρ0

−1

3(ξ + p(ξ))
dξ. (5.19)

5.4 A Class of Exact Shock-Wave Solutions of the Ein-
stein Equations

We now use the theory developed in [30] to match the above TOV and FRW
type metrics at a spherical interface across which the metrics join Lipschitz
continuously, and such that the conservation constraint (4.34) holds at the
interface. The resulting solution is interpreted as a fluid dynamical shock-
wave in which the increase of entropy in the fluids drives a time-irreversible
gravitational wave.

Assume now that the equation of state for the TOV metric is taken to be

p̄ = σ̄ρ̄
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for some constant σ̄, and that the fixed TOV solution is given by (5.2)-
(5.5) and (5.8). Then, given an arbitrary FRW metric, our results in [30]
imply that we can construct a coordinate mapping (t̄, r̄) → (t, r) such that
the FRW metric matches the TOV metric Lipschitz continuously across the
shock surface (4.34). This applies, in principle, to any equation of state
p = p(ρ) chosen for the FRW metric. Using (5.3) and solving for ρ gives ρ
on the shock surface r̄(t) = r(t)R(t):

ρ =
3

4π

M

r̄(t)3
=

3γ

r̄(t)2
= 3ρ̄. (5.20)

To meet the additional conservation condition, we restrict to FRW metrics
with k = 0, and we use (4.82) to determine the pressure. Substituting
Θ = A = 1 − 8πGγ ≡ const. into (4.82), we see that the resulting equation
is homogeneous of degree three in the ρ, ρ̄ and p, p̄ variables. Since p̄ = σ̄ρ̄,
and

ρ = 3ρ̄

on the shock surface, it is clear from homogeneity that (4.82) can be met if
and only if p = σρ for some constant σ. Substituting this into (4.82) gives
the following relation between σ and σ̄; (c.f. Figure 1)

σ̄ =
1

2

√
9σ2 + 54σ + 49− 3

2
σ − 7

2
≡ H(σ). (5.21)

Alternatively, we can solve for σ in (5.21) and write this relation as

σ =
σ̄(σ̄ + 7)

3(1− σ̄)
. (5.22)

This guarantees that conservation holds across the shock surface, and thus
Theorem 5 holds, and the results of Theorem 4 apply. Note that H(0) = 0,
and to leading order,

σ̄ = H(σ) =
3

7
σ +O(σ2), (5.23)

as σ → 0. It is easy to verify that within the physical region 0 ≤ σ, σ̄ ≤ 1,
H ′(σ) > 0, and σ̄ < σ, as would be expected physically because ρ = 3ρ̄ > ρ̄
at the shock surface. One can verify that when σ = 1/3, we have

σ̄ =
√

17− 4 = .1231...,
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and when σ = 1, we have

σ̄ =

√
112

2
− 5 = .2915....

We now obtain formulas for ρ(t), R(t) and the shock positions r(t) and
r̄(t) = r(t)R(t). Substituting p = σρ into (5.15) and (5.18) yields

dt =−
+

1√
24πG(1 + σ)

ρ−
3
2dρ, (5.24)

and
dR

R
= − 1

3(1 + σ)

dρ

ρ
. (5.25)

Using (5.20) we obtain

ρ−
3
2dρ = − 2√

3γ
dr̄. (5.26)

Putting this into (5.24) gives

dt =−
+

1

(1 + σ)

1√
18πGγ

dr̄. (5.27)

Integrating equation (5.27) gives the formula for the shock position:

r̄(t) =+
−

√
18πGγ (1 + σ)(t− t0) + r̄0. (5.28)

Thus (5.20) gives ρ in terms of t:

ρ(t) =
3γ

r̄(t)2
=

3γ

(+
−
√

18πGγ (1 + σ)(t− t0) + r̄0)2
. (5.29)

Finally, we can use (5.25) to obtain R(t), and the shock position r(t) =
r̄(t)R(t)−1 :

R(t) = R0

(
ρ

ρ0

)− 1
3(1+σ)

= R0

(
r̄(t)

r̄0

) 2
3(1+σ)

, (5.30)

r(t) = r̄(t)R(t)−1 = r̄(t)R−1
0

(
r̄(t)

r̄0

)− 2
3(1+σ)

= r̄0R
−1
0

(
r̄(t)

r̄0

) 1+3σ
3+3σ

. (5.31)
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Differentiating (5.28) and (5.31) gives the speeds of the shock ˙̄r and ṙ in
the (t, r̄)- and (t, r)-coordinate systems, respectively:

˙̄r = 3(1 + σ)

√
σ̄

1 + 6σ̄ + σ̄2
, (5.32)

ṙ =
1 + 3σ

R(t)

√
σ̄

1 + 6σ̄ + σ̄2
, (5.33)

where again, σ̄ = H(σ) is given in (5.21).
Note that the solution (5.28)-(5.31) contains two arbitrary constants

r̄0, R0 or r0, R0, as it should from the initial value problem (5.13), (5.14).
Note also that for an outgoing shock-wave, we choose the plus sign in (5.13)
and (5.28), and in this case there is a singularity in backward time

t∗ = t0 −
r̄0√

18πGγ(1 + σ)
. (5.34)

As t → t∗, it is clear that r̄ → 0, ρ, ρ̄, p, p̄ all tend to infinity, and R, r tend
to zero. If we take this as a cosmological model, then t = t∗ represents the
initial Big Bang singularity in which a shock-wave emerges from r̄ = 0.

We summarize these results in the following theorem:

Theorem 11 Assume an equation of state of the form p̄ = σ̄ρ̄ for the TOV
metric, and p = σρ for the FRW metric, assume (5.21) holds, and take
k = 0. Then the TOV solution given by (5.2), (5.3), (5.5), (5.8), will match
the FRW solution given by (5.29), (5.30), across the shock surface (5.28),
such that conservation of energy and momentum hold across the surface. The
coordinate identification (t, r) → (t̄, r̄) is given by r̄ = Rr, together with a
smooth function t̄ = t̄(t, r) whose existence (in a neighborhood of the shock
surface) is demonstrated in [30].)

By Theorem 5, all of the equivalencies in Theorem 4 hold across the shock
surface. In the next section we show that the shock speeds are less than the
speed of light, and we determine when the Lax characteristic conditions hold.

5.5 The Lax Shock Conditions

To complete the analysis of our shock-wave solution discussed in the last
section, it remains to analyze the shock speed and characteristic speeds on
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both sides of the shock. In classical gas dynamics, characteristics (in the
same family of a shock) impinge on the shock from both sides, leading to
an increase of entropy and consequent loss of information. This is also the
source of the well known time-irreversibility, as well as the stability, of gas
dynamical shock-waves. This interpretation carries over to a general system
of hyperbolic conservation laws. Indeed, this characteristic condition has
been proposed by Lax, [14, 27], as a stability criterion for shock- waves in
settings other than gas dynamics. This “Lax characteristic condition” can be
easily applied in general systems where, either a physical entropy is difficult
to work with, or has not been identified, [27]. Since in gas dynamics the
density and pressure are always larger behind (stable) shock-waves, and in
our example ρ = 3ρ̄, (c.f., (5.20)), we restrict our attention to the case of
an outgoing shock-wave in which the FRW metric is on the inside and the
TOV metric is on the outside of the shock. This is equivalent to taking
the plus sign in (5.13), (and the corresponding upper sign in the equations
(5.14)-(5.16)), and we therefore restrict our attention to this case.

The goal of this section is to show that, in this case, there exist values
0 < σ1 < σ2 < 1, (σ1 ≈ .458, σ2 =

√
5/3 ≈ .745), such that, for 0 < σ < 1,

the Lax characteristic condition holds at the shock if and only if 0 < σ < σ1;
and the shock speed is less than the speed of light if and only if 0 < σ < σ2.
We conclude that our gravitational shock-wave represents a new type of fluid
dynamical shock-wave when σ2 < σ < 1. For the outgoing shock-waves with
σ in this interval, the shock speed exceeds all of the characteristic speeds on
either side of the shock, because both the fast and slow characteristics cross
the shock-wave from the TOV side to the FRW side of the shock. Our first
result is the following lemma:

Lemma 11 For 0 < σ < 1, the shock speed, relative to the FRW fluid
particles, is given by

s = (1 + 3σ)

√
σ̄

1 + 6σ̄ + σ̄2
≡ s(σ), (5.35)

where s(σ) is the function of σ obtained by substituting (5.21) for σ̄ in (5.35).

The function s(σ) is plotted in Figure 2. By numerical calculation we obtain
that 1−s(σ) is monotone for 0 < σ < 1, and becomes negative above σ = σ2,
where, using computer algebra, we find

σ2 =
√

5/3 ≈ .745. (5.36)

85



Therefore, by general covariance, the following theorem is a consequence of
Lemma 11:

Theorem 12 For 0 < σ < 1, the shock speed is less than the speed of light
if and only if σ < σ2.

To prove Lemma 11, we recall that the “speed” of a shock is a coordinate
dependant quantity that can be interpreted in a special relativistic sense at
a point P in coordinate systems for which gij(P )=diag(−1, 1, 1, 1). (We call
such coordinate frames “locally Minkowskian” to distinguish these from “lo-
cally Lorentzian” frames in which gij,k(P ) = 0 as well. Since we are dealing
only with velocities and not accelerations, we do not need to invoke the addi-
tional condition gij,k(P ) = 0 for a local Lorentzian coordinate frame in order
to recover a special relativistic interpretation for velocities.) In such coordi-
nate frames, a “speed” at P transforms according to the special relativistic
velocity transformation law when a Lorentz transformation is performed.
We now determine the shock speed at a point P on the shock in a locally
Minkowskian frame that is co-moving with the FRW metric. To this end, let
(t, r)-coordinates correspond to the FRW metric with k = 0 in (5.10). Let
(t, r̃)-coordinates correspond to a locally Minkowskian system obtained from
(t, r) by a transformation of the form r = ϕ(r̃), so that

ds2 = −dt2 +R(t)2((ϕ′)2dr̃2 + ϕ2dΩ2),

ds2 =
ϕ2

r̃2

(
− r̃

2

ϕ2
dt2 +

R2(ϕ′)2r̃2

ϕ2
dr̃2 + r̃2dΩ2

)
.

Choose ϕ so that ϕ2

r̃2
= 1 and R2(ϕ′)2r̃2

ϕ2 = 1 at the point P ; i.e., at P = P (t, r),

set ϕ(r) = r̃, and ϕ′(r) = 1
R(t)

. Thus, in the (t, r̃)-coordinates,

ds2 = −dt2 + dr̃2 + r̃2dΩ2

at the point P, and so the (t, r̃)-coordinates represent the class of locally
Minkowskian coordinate frames that are fixed relative to the fluid particles
of the FRW metric at the point P. (That is, any two members of this class
of coordinate frames will differ by higher order terms that do not affect the
calculation of velocities at P.) Therefore, the speed dr̃

dt
of a particle in (t, r̃)-

coordinates gives the value of the speed of the particle relative to the FRW
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fluid in the special relativistic sense. Since

dr

dt
=
dr

dr̃

dr̃

dt
= ϕ′

dr̃

dt
=

1

R

dr̃

dt
, (5.37)

we conclude that if the speed of a particle in (t, r)-coordinates is dr
dt
, then its

geometric speed relative to observers fixed with the FRW fluid, (and hence
also fixed relative to the radial coordinate r of the FRW metric because the
fluid is co-moving), is equal to Rdr

dt
.

Now consider the shock-wave (5.31), which moves with speed, (c.f. (5.33)),

dr

dt
≡ ṙ =

1 + 3σ

R(t)

√
σ̄

1 + 6σ̄ + σ̄2
. (5.38)

Then by (5.37), the speed of the shock s relative to the FRW fluid particles
must be given by (5.35). A graph of s(σ) is given in Figure 2, from which we
conclude that the shock speed moves with a speed less that one relative to
the FRW fluid if and only if σ < σ2 holds; and for 0 < σ < 1, s(σ) = 1 if and
only if σ = σ2, where numerical symbolic algebra gives σ2 =

√
5/3 ≈ .745.

This completes the proof of Lemma 11.
We next determine when the Lax characteristic condition holds at the

shock. To this end, we first determine the speed of the characteristics rela-
tive to the fixed FRW fluid particles. By (5.37), the characteristic speeds on
the FRW side of the shock must equal the sound speeds +

−
√
σ in the (t, r̃)-

coordinate frame, because the FRW fluid is co-moving with respect to the
(t, r̃)-coordinates. (The characteristic speed is obtained from the fluid speed
and sound speed by the special relativistic summation formula for velocities,
[29].) We conclude that the FRW characteristic speeds, λ̃−FRW , λ̃

+
FRW (the

speeds of the characteristics relative to the FRW fluid), are given, respec-
tively, by the formula

λ̃
+
−
FRW ≡+

−
dr̃

dt
=+
−
√
σ. (5.39)

By (5.37),

λ
+
−
FRW = λ̃

+
−
FRW

1

R
=+
−

√
σ

R
.

Thus, since the (t, r)-coordinates are also co-moving with the fluid, the sound
waves in the (t, r)-coordinates of the FRW metric must move at coordinate
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speed
dr

dt
=+
−

√
σ

R
.

We refer to the −,+ characteristics as being in the 1, 2-characteristic families,
respectively. Now in the one space-one time-dimensional theory of conser-
vation laws, the Lax characteristic condition states that the characteristic
curves in the family of the shock, impinge upon the shock from both sides,
while all other characteristic curves cross the shock, c.f. [27]. Since in our
example, the shock is outward moving with respect to r and r̄, it follows that
on the FRW side, only the 2-characteristic can impinge on the shock, and
thus we must identify the shock-wave as a 2-shock. Thus the Lax character-
istic condition must be interpreted as meaning that the following inequalities
hold:

s < λ̃+
FRW , (5.40)

and
λ̃+
TOV < s. (5.41)

Here λ̃+
TOV refers to the speed of the faster characteristic on the TOV side of

the shock as measured in the (t, r̃)-coordinate system, which is related to the
(t̄, r̄)-coordinate system through the (t, r) → (t̄, r̄) coordinate identification.
By (5.35) and (5.39), (5.40) is equivalent to the condition

λ̃+
FRW − s(σ) ≡ ∆(σ) =

√
σ − (1 + 3σ)

√
σ̄

1 + 6σ̄ + σ̄2
> 0. (5.42)

A numerical plot of the function ∆(σ), given in Figure 3, shows that ∆(σ)
changes from positive to negative at the unique point σ = σ1, where

σ1 ≈ .458. (5.43)

We are now ready to prove the following theorem:

Theorem 13 For 0 < σ < 1, the Lax characteristic conditions (5.40), (5.41)
hold across the shock if and only if 0 < σ < σ1.

Since (5.40) follows from (5.42) and (5.43), the proof of Theorem 13 will
be complete once we prove the following lemma which immediately implies
(5.41).
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Lemma 12 The inequality

λ̃−TOV < λ̃+
TOV < 0 (5.44)

holds for all 0 < σ < 1.

The next theorem is another immediate consequence of Lemma 5.5:

Theorem 14 If σ1 < σ < σ2, then the following inequalities hold:

λ̃−FRW < λ̃+
FRW < s(σ), (5.45)

and
λ̃−TOV < λ̃+

TOV < s(σ). (5.46)

Note that when σ1 < σ < σ2, (5.45),(5.46) describe a new kind of shock-wave
in which the 1- and 2-characteristics both cross the shock because the shock
speed exceeds the characteristic speeds on both sides of the shock. This
occurs even though the sound speeds and shock speed all remain less than
the speed of light. In words, Theorem 14 states that in General Relativity,
a sound speed

√
σ ≈

√
.744 can drive the shock speed all the way up to the

speed of light.
It remains only to give the proof of Lemma 5.5. Let ū denote the velocity

vector for the fluid on the TOV side of the shock, and let α = 0, 1 refer to
components in the (t̄, r̄)-coordinate frame and i = 0, 1 to components in the
(t, r)-coordinate frame. Then a velocity vector tangent to the particle paths
of the fluid on the TOV side of the shock is given by (ū0, ū1) = (1, 0) in barred
coordinates, because the fluid is co-moving relative to the barred coordinate
system on the TOV side of the shock; for brevity we write ūα = (1, 0)α. (Since
our aim is to compute the characteristic speed, which is a ratio of two vector
components, a tangent vector of any length will suffice.) Let xi ≡ (t, r)i and
x̄α ≡ (t̄, r̄)α. Then

ui =
∂xi

∂x̄α
ūα =

∂xi

∂x̄0
ū0 =

∂xi

∂x̄0
. (5.47)

Thus the speed of the TOV fluid as measured in the FRW coordinates (t, r)
is given by

u ≡ u1

u0
=

∂x1

∂x̄0

∂x0

∂x̄0

=
∂r
∂t̄

(t̄, r̄)
∂t
∂t̄

(t̄, r̄)
. (5.48)
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But,
∂t

∂t̄
(t̄, r̄) =

1
∂t̄
∂t

(t, r̄)
, (5.49)

so

u ≡ ∂r

∂t̄
(t̄, r̄) · ∂t̄

∂t
(t, r̄) =

∂r

∂t
(t, r̄). (5.50)

Since

r(t, r̄) =
r̄

R(t)
,

and this holds in a neighborhood of the shock surface, we have

u =
∂r

∂t
(t, r̄) =

∂

∂t

r̄

R(t)
= − r̄Ṙ

R2
. (5.51)

But by (5.30),

Ṙ =
2

r(t)

√
σ̄

1 + 6σ̄ + σ̄2
, (5.52)

so

u ≡ − r̄

R(t)2
Ṙ(t) = − 2

R

√
σ̄

1 + 6σ̄ + σ̄2
. (5.53)

Thus by (5.37),

ũ = −2

√
σ̄

1 + 6σ̄ + σ̄2
, (5.54)

and this gives the TOV fluid speed in the locally Minkowskian frame which is
fixed with the FRW fluid particles. But

√
σ̄ is the sound speed for the TOV

metric; thus
√
σ̄ is the sound speed as measured in the frame obtained from

the (t, r̃) coordinates by a Lorentz transformation for ũ. Therefore, to obtain
the TOV characteristic speed λ̃+

TOV in the frame (t, r̃), we use the relativistic
addition of velocities formula:

λ̃+
TOV =

dr̃

dt
=

ũ+
√
σ̄

1 + ũ
√
σ̄
, (5.55)

and this implies that

λ+
TOV =

dr

dt
=

1

R

ũ+
√
σ̄

1 + ũ
√
σ̄
. (5.56)
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We now calculate λ̃+
TOV . By (5.54), we have

λ̃+
TOV = − 2−

√
1 + 6σ̄ + σ̄2

√
1 + 6σ̄ + σ̄2 − 2σ̄

√
σ̄ ≡ λ̃+

TOV (σ), (5.57)

where again we use (5.21) to eliminate σ̄ in favor of σ. A numerical plot
of λ̃+

TOV (σ) vs σ is given in Figure 4. This verifies that λ̃+
TOV (σ) < 0 for

0 < σ < 1, and thus completes the proof of Lemma 5.5 in light of the
inequality λ̃−TOV < λ̃+

TOV .

5.6 Concluding Remarks

Note that these examples provide a theory of inherently strong shock-waves
because the condition ρ = 3ρ̄ implies that [ρ] → 0 iff ρ→ 0, the latter being
a singular limit, c.f. [27].

Note also that when k > 0, the FRW-TOV shocks-wave solutions de-
scribed in Section 4 reduce to the well known model of Oppenheimer and
Snyder (O-S) when p̄ ≡ 0. It is interesting to note, however, that the O-
S model reduces to flat Minkowski space when we take k → 0 in the O-S
solution, (see Weinberg, [42], page 344, equations (11.9.23) and (11.9.21)).
Moreover, when we take σ̄ → 0 in our solution (5.28)-(5.31), we also get
flat Minkowski space. However, the first limit is singular (because Ṙ = 0
implies R ≡ const. when k = 0, c.f. [42], page 344, equation (11.9.22)); the
second limit is only one way to impose ρ̄ = 0. Indeed, we can obtain a new,
time-reversible O-S type contact discontinuity for the case k = 0 by noting
first from (4.82) that ρ̄ ≡ 0 ≡ p̄ implies p = 0, and thus we can integrate
(5.16) and (5.19) in the case p = 0 to obtain the formulas

ρ(t) =
1

(+
−
√

6πG(t− t0) + 1√
ρ0

)2
, (5.58)

R(t) = R0

(
ρ(t)

ρ0

)−1/3

. (5.59)

The shock surface is then given by

r̄(t) =

(
3

4π

M

ρ(t)

)1/3

, (5.60)
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where M ≡ const when we assume empty space ρ̄ ≡ 0 ≡ p̄. We conclude that
(5.58)-(5.60) defines a non–trivial, time-reversible general relativistic model
that corresponds to the exact shock-wave solution given in (5.28)-(5.31), and
thus defines a new O-S type model of gravitational collapse, c.f., [42], page
345, equation (11.9.25).

We note also that once values for σ and σ̄ = H(σ) are specified, the
formulas (5.28)-(5.31) determine a unique shock-wave solution despite the
appearance of two free parameters, say R0 and r̄0. To see this, note that
after fixing the shock position r̄0, the freedom in R0 is only a coordinate
freedom due to the fact that R(t) → α−1R(t) under the coordinate rescaling
r → αr in the FRW metric (5.10) when k = 0.

6 A Shock Wave Formulation of the Einstein

Equations

6.1 Introduction

In this section we show that Einstein equations (2.25)-(2.28) are weakly
equivalent to the system of conservation laws with time dependent sources
(2.48),(2.49), so long as the metric is in the smoothness class C0,1, and T
is in L∞. Inspection of equations (2.25)-(2.28) shows that it is in general
not possible to have metrics smoother than Lipschitz continuous, (that is,
smoother than C0,1 at shocks), when the metric is written in the standard
gauge. Indeed, at a shock wave where T is discontinuous, Ar, Br and Bt all
have jump discontinuities.

As stated in Section 1, a spacetime metric g is said to be spherically
symmetric if it takes the general form, [42, 41, 11, 22],

ds2 = gijdx
idxj ≡ −A(r, t)dt2 +B(r, t)dr2 +2D(r, t)dtdr+C(r, t)dΩ2, (6.1)

where the components A, B, C and D of the metric are assumed to be
functions of the radial and time coordinates r and t alone, dΩ2 ≡ dθ2 +
sin2(θ)dφ2 denotes the line element on the 2-sphere, and x ≡ (x0, ..., x3) ≡
(t, r, θ, φ), denotes the underlying coordinate system on spacetime. In this
case we assume that the 4-velocity w is radial, by which we mean that the
x-components of w are given by
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wi = (w0(r, t), w1(r, t), 0, 0), i = 0, ..., 3, respectively, (6.2)

for some functions w0 and w1.
Now in Section 1 we showed that, in general, there always exists a coor-

dinate transformation (r, t) → (r̄, t̄) that takes an arbitrary metric of form
(6.1) over to one of the form, [42],

ds2 = gijdx
idxj ≡ −A(r, t)dt2 +B(r, t)dr2 + r2dΩ2. (6.3)

A metric of form (6.3) is said to be in the standard Schwarzschild coordinates,
or (standard coordinate gauge), and it is our purpose here to establish the
weak formulation of the Einstein equations (2.25)-(2.28) for metrics of the
form (6.3) in the case when A and B are finite, and satisfy AB 6= 0.

In Sections 2 and 3 we introduce and verify the equivalence of several
weak formulations of the Einstein equations that allow for shock waves, and
that are valid for metrics of form (6.3), in the smoothness class C0,1. In
Section 4, we show that these equations are weakly equivalent to the system
(2.48)-(2.49) of conservation laws with time dependent sources. This is the
starting point for the existence theory set out in [10].

6.2 The Einstein Equations for a Perfect Fluid with
Spherical Symmetry

In this section we study the system of equations obtained from the Einstein
equations under the assumption that the spacetime metric g is spherically
symmetric. So assume that the gravitational metric g is of the form (6.3),
and to start, assume that T ij is any arbitrary stress tensor. To obtain the
equations for the metric components A and B implied by the Einstein equa-
tions (2.15), plug the ansatz (6.3) into the Einstein equations (2.15). The
resulting system of equations (2.25)-(2.28) is obtained using MAPLE. Equa-
tions (2.25)-(2.28) represent the (0,0), (0,1), (1,1) and (2,2) components of
Gij = κT ij, respectively, (as indexed by T on the RHS of each equation).
The (3,3) equation is a multiple of the (2,2) equation, and all remaining
components are identically zero. (Note that MAPLE defines the curvature
tensor to be minus one times the curvature tensor defined in (2.14).)

We are interested in solutions of (2.25)-(2.28) in the case when shock
waves are present. Since A and B have discontinuous derivatives when shock
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waves are present, it follows that (2.28), being second order, cannot hold
classically, and thus equation (2.28) must be taken in the weak sense, that
is, in the sense of the theory of distributions. To get the weak formulation of
(2.28), multiply through by AB2 to clear away the coefficient of the highest
(second) order derivatives, then multiply through by a test function and
integrate the highest order derivatives once by parts. It follows that if the
test function is in the class C1,1

0 , (that is, one continuous derivative that is
Lipschitz continuous, the subscript zero denoting compact support), and if
the metric components A and B are in the class C0,1, and T ij is in class
L∞, then all terms in the integrand of the resulting integrated expression
are at most discontinuous, and so all derivatives make sense in the classical
pointwise a.e. sense.

In order to account for initial and boundary conditions in the weak for-
mulation, it is standard to take the test function φ to be nonzero at t = 0 or
at the specified boundary. In this case, when we integrate by parts to obtain
the weak formulation, the boundary integrals are non–vanishing, and their
inclusion in the weak formulation represents the condition that the boundary
values are taken on in the weak sense. Thus, for example, if the boundary
is r = r0 ≥ 0, we say φ ∈ C1,1

0 (r ≥ r0, t ≥ 0) to indicate that φ can be
nonzero initially and at the boundary r = r0, thereby implicitly indicating
that boundary integrals will appear in the weak formulation based on such
test functions.

We presently consider various equivalent weak formulations of equations
(2.25)-(2.28), and we wish to include the equivalence of the weak formulation
of boundary conditions in the discussion. Thus, in order to keep things as
simple as possible, we now restrict to the case of weak solutions of (2.25)-
(2.28) defined on the domain r ≥ r0 ≥ 0, t ≥ 0, and we always assume
that test functions φ lie in the space φ ∈ C1,1

0 (t ≥ 0, r ≥ r0) so that initial
and boundary values are accounted for in the weak formulation. (This is the
simplest case in which to rigorously demonstrate the equivalence of several
weak formulations of initial boundary value problems. More general domains
can be handled in a similar manner.)

Note that because (2.25)-(2.27) involve only first derivatives of A and B,
and A,B ∈ C0,1, it follows that (2.25)-(2.27) can be taken in the strong sense,
that is, derivatives can be taken in the pointwise a.e. sense. The continuity
of A and B imply also that the initial and boundary values are taken on
strongly in any C0,1 weak solution of (2.25) − (2.27). On the other hand,
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equation (2.28) involves second derivatives, and so this last equation is the
only one that requires a weak formulation. The weak formulation of (2.28)
is thus obtained on domain t ≥ 0, r ≥ r0 ≥ 0 by multiplying through by a
test function φ ∈ C1,1

0 (r ≥ r0, t ≥ 0) and integrating by parts. This yields
the following weak formulation of (2.28):

0 =
∫ ∞

r0

∫ ∞

0

{
− Btφt
rAB2

− Btφ

r

(
− At
A2B2

− 2Bt

AB3

)
+

A′φ′

rAB2

+ A′φ

(
− 1

r2AB2
− A′

rA2B2
− 2B′

rAB3

)
+

φ

rAB2
Φ +

2κr

B
φT 22

}
drdt

−
∫ ∞

r0

Bt(r, 0)φ(r, 0)

rA(r, 0)B2(r, 0)
dr +

∫ ∞

0

A′(r0, t)φ(r0, t)

r0A(r0, t)B2(r0, t)
dt (6.4)

Our first proposition states that the weak formulation (6.4) of equation (2.28)
may be replaced by the weak formulation of the conservation laws divT = 0,
so long as A and B are in C0,1 and T ij ∈ L∞.

Proposition 4 Assume that A,B ∈ C0,1(r ≥ r0, t ≥ 0), T ij ∈ L∞(r ≥
r0, t ≥ 0) and assume that A, B and T solve (2.25)-(2.27) strongly. Then A,
B and T solve T 1i

;i = 0, (the 1-component of DivT = 0), weakly if and only
if A, B and T satisfy (6.4).

Proof: The proof strategy is to modify (6.4) and the weak form of conser-
vation using (2.25)-(2.27) as identities, and then observe that the two are
identical at an intermediate stage. To begin, substitute for Bt and A′ in
several places in (6.4) to obtain the equivalent condition
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0 =
∫ ∞

r0

∫ ∞

0

{
κT 01ϕt + κT 11ϕ′ +

∂

∂r

(
ϕ

(B − 1)

r2B2

)
+ ϕ

[
− ∂

∂r

(
B − 1

r2B2

)

+
Bt

r

(
At

A2B2
+

2Bt

AB3

)
+ A′

(
− 1

r2AB2
− A′

rA2B2
− 2B′

rAB3

)

+
1

rAB2
Φ +

2κr

B
T 22

]}
dr dt

+κ
∫ ∞

r0
T 01(r, 0)ϕ(r, 0) dr + κ

∫ ∞

0
ϕ(r0, t)

[
T 11(r0, t)

B(r0, t)− 1

r2
0B

2(r0, t)

]
dt

=
∫ ∞

r0

∫ ∞

0

{
κT 01ϕt + κT 11ϕ′ + ϕ

[
B′(B − 2)

r2B3
+ 2

(B − 1)

r3B2

+
Bt

r

(
At

A2B2
+

2Bt

AB3

)
+ A′

(
− 1

r2AB2
− A′

rA2B2
− 2B′

rAB3

)

+
1

rAB2
Φ +

2κr

B
T 22

]}
dr dt

+κ
∫ ∞

r0
T 01(r, 0)ϕ(x, 0) dr + κ

∫ ∞

0
ϕ(r0, t)T

11(r0, t) dt. (6.5)

Now, the weak form of conservation of energy-momentum is given by

0 =
∫ ∞

r0

∫ ∞

0

{
T 01ϕt + T 11ϕ′ −

(
Γii0T

01 + Γii1T
11

+Γ1
00T

00 + 2Γ1
01T

01 + Γ1
11T

11 + 2Γ1
22T

22
)
ϕ
}
drdt

+
∫ ∞

r0
T 01(r, 0)ϕ(x, 0) dr +

∫ ∞

0
ϕ(r0, t)T

11(r0, t) dt. (6.6)

Here, we have used the fact that T 22 = sin2 θT 33, T ij = 0 if i 6= j = 2 or 3,
and Γ1

33 = sin2 θΓ1
22. Next, we calculate the connection coefficients Γijk using

(2.10) to obtain,
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Γii0 = 1
2

(
At

A
+ Bt

B

)
Γii1 = 1

2

(
A′

A
+ B′

B
+ 4

r

)
Γ0

00 = At

2A
Γ0

01 = A′

2A

Γ0
11 = Bt

2A
Γ0

22 = 0 = Γ0
33

Γ1
00 = A′

2B
Γ1

01 = Bt

2B

Γ1
11 = B′

2B
Γ1

22 = − r
B

Γ1
33 = − r sin2 θ

B
.

(6.7)

Substituting the above formulas for Γijk into (6.6) and using (2.25)-(2.27) as
identities to eliminate some of the T ij in favor of expressions involving A, B
and r, we see that (6.6) is equivalent to:

0 =
∫ ∞

r0

∫ ∞

0

{
T 01ϕt + T 11ϕ′ +

ϕ

κ

[
1

2

(
At
A

+
3Bt

B

)
Bt

rAB2

−1

2

(
A′

A
+

2B′

B
+

4

r

)
1

r2B2

(
r
A′

A
− (B − 1)

)
(6.8)

− A′

2r2AB

(
r
B′

B
+ (B − 1)

)
+ 2κ

r

B
T 22

]}
drdt

+
∫ ∞

r0
T 01(r, 0)ϕ(r, 0) dr +

∫ ∞

0
ϕ(r0, t)T

11(r0, t) dt.

After some simplification, it is clear that (6.5) is equal to (6.8). This com-
pletes the proof of Proposition 4. 2
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We next show that the Einstein equations (2.25)-(2.27) together with
DivT = 0 are overdetermined. Indeed, we show that for weak solutions with
Lipschitz continuous metric, either (2.25) or (2.26) may be dropped in the
sense that the dropped equation will reduce to an identity on any solution
of the remaining equations, so long as the dropped equation is satisfied by
either the initial or boundary data, as appropriate. The following proposition
addresses the first case, namely, for weak solutions in which the metric is
Lipschitz continuous, the first Einstein equation (2.25) reduces to an identity
on solutions of (2.26)-(2.27), so long as (2.25) is satisfied by the intial data.

Theorem 15 Assume that A,B ∈ C0,1 and T ∈ L∞ solve (2.26), (2.27)
strongly, and solve DivT = 0 weakly. Then if A,B, and T satisfy (2.25) at
t = 0, then A, B, and T also solve (2.25) for all t > 0.

Proof: We first give the proof for the case when A, B and T are assumed to
be classical smooth solutions of (2.26), (2.27) and DivT = 0. This is followed
by several lemmas necessary for the extension of this to the weak formulation,
which is given in the final proposition. So to start, assume that A,B, and T
are all smooth functions, and thus solve DivT = 0 strongly. For the proof in
this case, define

H ij ≡ Gij − κT ij. (6.9)

Because (2.26) and (2.27) hold, H01 ≡ H11 ≡ 0. Since by assumption T ij;i = 0

and since Gij
;i = 0 for any metric tensor as a consequence of the Bianchi

identities, it follows that

0 = H ij
;i = H ij

,i + ΓiikH
kj + ΓjikH

ik. (6.10)

In particular, setting j = 0,

0 = H i0
;i = H i0

,i + ΓiikH
k0 + Γ0

ikH
ik. (6.11)

By hypothesis, H i0 = 0 when i 6= 0. In addition, the connection coefficients
Γ0
ik are zero unless i or k equal 0 or 1. Therefore, (6.11) reduces to the linear

ODE
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0 = H00
,0 +

(
Γii0 + Γ0

00

)
H00, (6.12)

at each fixed r. By hypothesis, H00 is initially zero, and since we assume
that H00 is a smooth solution of (6.12), it follows that H00 must continue to
be zero for all t > 0.

Next, assume only that A,B ∈ C0,1 and T ∈ L∞ so that (2.26), (2.27)
hold strongly, (that is, in a pointwise a.e. sense), but that DivT = 0 is
only known to hold weakly. In this case, the argument above has a problem
because when g ∈ C0,1, the Einstein tensor G, viewed as a second order
operator on the metric componentsA andB, can only be defined weakly when
A and B are only Lipschitz continuous. It follows that the Bianchi identities,
and hence the identityDivG = 0, (which involves first order derivatives of the
components of the curvature tensor), need no longer be valid even in a weak
sense. Indeed, G can have delta function sources at an interface at which the
metric is only Lipschitz continuous, c.f. [29]. However, the above argument
only involves the 0’th component of DivG = 0, and the 0’th component of
DivG = 0 involves only derivatives of the components Gi0, and as observed
in (2.25), (2.26), these components only involve first derivatives of A and B.
Specifically, the weak formulation of G0i

;i = 0 is given by,

0 =
∫ ∞

r0

∫ ∞

0

{
−φiGi0 + φ

(
ΓiikG

k0 + Γ0
ikG

ik
)}
drdt (6.13)

−
∫ ∞

r0
φ(r, 0)G00(r, 0)dr −

∫ ∞

0
φ(r0, t)G

10(r0, t)dt,

and since, by (2.25), (2.26), Gi0 involves only first order derivatives of A
and B, it follows that the integrand in (6.13) is a classical function defined
pointwise a.e. when A,B ∈ C0,1. But (6.13) is identically zero for all smooth
A and B because DivG = 0 is an identity. Thus, when A,B ∈ C0,1, we can
take a sequence of smooth functions Aε, Bε that converge to A and B in the
limit ε→ 0, (c.f. Theorem 16 below), such that the derivatives converge a.e.
to the derivatives of A and B. It follows that we can take the limit ε → 0
(6.13) and conclude that (6.13) continues to hold under this limit. Putting
this together with the fact that DivT = 0 is assumed to hold weakly, we
conclude that
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H0i
;i = (G0i − T 0i) ;i = 0,

in the weak sense, which means that H00 is in L∞ and satisfies the condition

0 =
∫ ∞

r0

∫ ∞

0

{
−φ0H

00 + φ
(
Γii0 + Γ0

00

)
H00

}
drdt (6.14)

−
∫ ∞

r0
φ(r, 0)G00(r, 0)dr −

∫ ∞

r0
φ(r, 0)H00(r0, t)dr.

Therefore, to complete the proof of Theorem 15, we need only show that
if A, B and T solve (2.26), (2.27) classically and DivT = 0 weakly, then
a weak L∞ solution H00, (i.e., that satisfies (6.14)), of (6.12) must be zero
almost everywhere if it is zero initially. Thus it suffices to prove the following
proposition:

Proposition 5 Assume that H, f ∈ L∞loc(R×R). Then every L∞loc weak so-
lution to the initial value problem

Ht + fH = 0
H(x, 0) = H0(x).

(6.15)

with initial data H0 ≡ 0 is unique, and identically equal to zero a.e., for all
t > 0.

Proof: We use the following standard theorem, [6],

Theorem 16 Let U be any open subset of Rn. Then u ∈ W 1,∞
loc (U) if and

only if u is locally Lipschitz continuous in U, in which case the weak derivative
of u agrees with the classical pointwise a.e derivative as a function in L∞loc(U).

Corollary 7 Let u and f be real valued functions, u, f : R → R, such that
u, f ∈ L∞[0, T ], and u is a weak solution of the initial value problem
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ut + fu = 0,
u(0) = 0,

(6.16)

on the interval [0, T ]. Then u(t) = 0 for all t ∈ [0, T ].

Proof of Corollary: Statement (6.16) says that the distributional deriva-
tive ut agrees with the L∞ function fu on the interval [0, T ], and thus we
know that u ∈ W 1,∞

loc (0, t). Therefore, by Theorem 16, u is locally Lipschitz
continuous on (0, T ), and the weak derivative ut agrees with the pointwise a.e.
derivative of u on (0, T ). Thus it follows from (6.16) that on any sub-interval
[a, b] of [0, T ] on which u 6= 0, we must have

d

dt
[lnu] =

ut
u

= −f, a.e. (6.17)

Moreover, since u is Lipschitz continuous, both u and ln(u) are absolutely
continuous on [a, b], so we can integrate (6.17) to see that

u(t) = u(a)e−
∫ t

0
f(ξ)dξ, (6.18)

for all t ∈ [a, b]. But u is continuous, so (6.18) applies in the limit that a
decreases to the first value of t = t0 at which u(t0) = 0. Thus (6.18) implies
that u(t) = 0 throughout [a, b], and hence we must have u(t) = 0 for all
t ∈ [0, T ], and the corollary is proved.

The proof of Proposition 5 now follows because it is easy to show that if
H is an L∞ weak solution of (6.15), then H(x, ·) is a weak solution of the
scalar ODE Ht + fH = 0 for almost every x. (Just factor the test functions
into products of the form φ1(t)φ2(x).)
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Using Proposition 5, we see that if equation (2.25) holds on the initial
data for a solution of (2.26), (2.27), and DivT = 0, then equation (2.25) will
hold for all t. By a similar argument, it follows that if (2.26) holds for the
boundary data of a solution to (2.25), (2.27), and DivT = 0, then (2.26) will
hold for all r and t. We record this in the following theorem:

Theorem 17 Assume that A,B ∈ C0,1 and T ∈ L∞ solve (2.25), (2.27)
strongly, and solve DivT = 0 weakly, in r ≥ r0, t ≥ 0. Then if A,B, and T
satisfy (2.26) at r = r0, then A, B, and T also solve (2.25) for all r > r0.

6.3 The Spherically Symmetric Einstein Equations For-
mulated as a System of Hyperbolic Conservation
Laws with Sources

Conservation of energy and momentum is expressed by the equations

0 = (DivT )j = T ij;i

= T ij,i + ΓiikT
kj + ΓjikT

ik,

which, in the case of spherical symmetry, can be written as the system of
two equations:

0 = T 00
,0 + T 01

,1 + ΓiikT
k0 + Γ0

ikT
ik (6.19)

0 = T 01
,0 + T 11

,1 + ΓiikT
k1 + Γ1

ikT
ik. (6.20)

Substituting the expressions (6.7) for the connection coefficients (2.10) into
(6.19) and (6.20), gives the equivalent system
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0 = T 00
,0 + T 01

,1 +
1

2

(
2At
A

+
Bt

B

)
T 00 +

1

2

(
3A′

A
+
B′

B
+

4

r

)
T 01 (6.21)

+
Bt

2A
T 11

0 = T 01
,0 + T 11

,1 +
1

2

(
At
A

+
3Bt

B

)
T 01 +

1

2

(
A′

A
+

2B′

B
+

4

r

)
T 11 (6.22)

+
A′

2B
T 00 − 2

r

B
T 22.

Now if one could use equations to eliminate the derivative terms At, A
′, Bt

and B′ in (6.21) and (6.22) in favor of of expressions involving the undiffer-
entiated unknowns A, B and T , then system (6.21), (6.22) would take the
form of a system of conservation laws with source terms. Indeed, T 00 and T 01

serve as the conserved quantities, T 10 and T 11 are the fluxes, and what is left,
written as a function of the undifferentiated variables (A,B, T 00, T 01), would
play the role of a source term. (For example, in a fractional step scheme
designed to simulate the initial value problem, the variables A and B could
be “updated” to time tj+∆t by the supplemental equations (2.25) and (2.27)
or (2.26) and (2.27) after the conservation law step is implemented using the
known values of A and B at time tj. The authors will carry this out in detail
in a subsequent paper.) The system then closes once one writes T 11 as a
function of (A,B, T 00, T 01). There is a problem here, however. Equations
(2.25)-(2.27) can be used to eliminate the terms Ar, Bt and Br, but (6.21)
and (6.22) also contain terms involving At, a quantity that is not given in the
initial data and is not directly evolved by equations (2.25)-(2.27). The way
to resolve this is to incorporate the At term into the conserved quantities.
For general equations involving At, this is not possible. A natural change of
T variables that eliminates the At terms from (6.21), (6.22), is to write the
equations in terms of the values that T takes in flat Minkowski space. That
is, define TM in terms of T, by
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T 00 =
1

A
T 00
M ,

T 01 =
1√
AB

T 01
M , (6.23)

T 11 =
1

B
T 11
M ,

where the subscript denotes Minkowski, c.f. (2.32)-(2.34). It then follows
that TM is given by

T 00
M =

{
(p+ ρc2)

c2

c2 − v2
− p

}
,

T 01
M = (p+ ρc2)

cv

c2 − v2
, (6.24)

T 11
M =

{
(p+ ρc2)

v2

c2 − v2
+ p

}
,

where v denotes the fluid speed as measured by an inertial observer fixed
with respect to the radial coordinate r, c.f. (2.35)-(2.37). (We discuss (6.24)
in more detail in the last section.) Substituting (6.23) into (6.21), (6.22), the
At terms cancel out, and we obtain the system

0 =
{
T 00
M

}
,0

+


√
A

B
T 01
M


,1

+
1

2

Bt

B

(
T 00
M + T 11

M

)

+
1

2

√
A

B

(
A′

A
+
B′

B
+

4

r

)
T 01
M (6.25)

0 =
{
T 01
M

}
,0

+


√
A

B
T 11
M


,1

+
1

2

√
A

B

{
2
Bt√
AB

T 01
M +

(
B′

B
+

4

r

)
T 11
M

+
A′

A
T 00
M − 4rT 22

}
. (6.26)

The following proposition states that system (6.25), (6.26) is equivalent, (in
the weak sense), to the original system DivT = 0.
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Proposition 6 If A and B are given Lipschitz continuous functions defined
on the domain r ≥ r0, t ≥ 0, then TM is a weak solution of (6.25) and (6.26)
if and only if T is a weak solution of DivT = 0 in this domain.

Proof: For simplicity, and without loss of generality, take the weak formu-
lation with test functions compactly supported in r > r0, t > 0, so that the
boundary integrals do not appear in the weak formulations. (Managing the
boundary integrals is straightforward.) The variables T ijM solve (6.25) weakly
if

0 =
∫ ∞

r0

∫ ∞

0

−T 00ϕt −
√
A

B
T 01ϕr

+

1

2

Bt

B

(
T 00 + T 11

)
+

1

2

√
A

B

(
A′

A
+
B′

B
+

4

r

)
T 01

ϕ
 dr dt

=
∫ ∞

r0

∫ ∞

0

{
−T 00

MAϕt − T 01
MAϕr (6.27)

+

[
1

2

Bt

B

(
AT 00

M +BT 11
M

)
+

1

2
A

(
A′

A
+
B′

B
+

4

r

)
T 01
M

]
ϕ

}
dr dt.

Set ψ = Aϕ, whereby Aϕt = ψt − At

A
ψ. Using this change of test function,

(6.27) becomes
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0 =
∫ ∞

r0

∫ ∞

0

{
−T 00ψt + T 00At

A
ψ − T 01ψ′ + T 01A

′

A
ψ

+

[
1

2

Bt

B

(
T 00 +

B

A
T 11

)
+

1

2

(
A′

A
+
B′

B
+

4

r

)
T 01

]
ψ

}
dr dt.

=
∫ ∞

r0

∫ ∞

0

{
−T 00ψt − T 01ψ′ +

[
1

2

(
2At
A

+
Bt

B

)
T 00

+
1

2

(
3A′

A
+
B′

B
+

4

r

)
T 01 +

Bt

2A
T 11

]
ψ

}
dr dt, (6.28)

which is the weak formulation of (6.21). We deduce that TM solves (6.25) for
every Lipschitz continuous test function ϕ if and only if T solves (6.28), (the
weak form of T 0i

;i = 0), for all Lipschitz continuous test functions ψ. That
weak solutions of (6.26) are weak solutions of T 1i

;i = 0 follows by a similar
argument. 2

It is now possible to use equations (2.25)-(2.27) as identities to substitute
for derivatives of metric components A and B, thereby eliminating the cor-
responding derivatives of A and B from the source terms of equations (6.25),
(6.26). Doing this, we obtain the system of equations (2.46), (2.47), which
was our goal. However, depending on the choice of equation to drop, either
(2.25) or (2.26), it is not clear that if we use the dropped equation to substi-
tute for derivatives in (6.25), (6.26), that the resulting system of equations
will imply that DivT = 0 continues to hold, the assumption we based the
substitution on in the first place. The following theorem states that (2.46),
(2.47) is equivalent to DivT = 0 in the weak sense:
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Theorem 18 Assume that A,B are Lipschitz continuous functions, and that
T ∈ L∞, on the domain r ≥ r0, t ≥ 0. Assume also that (2.25) holds at t = 0,
and that (2.26) holds at r = r0. Then A,B, T are weak solutions of (2.25),
(2.26), (2.27) and DivT = 0 if and only if A,B, TM are weak solutions of
either system (2.25), (2.27), (2.46), (2.47), or system (2.26), (2.27), (2.46),
(2.47).

Proof: Without loss of generality, we consider the case when we drop equa-
tion (2.26), and use (2.25), (2.27) and DivT = 0 to evolve the metric, and
we ask whether we can take the modified system (2.46) and (2.47) in place
of DivT = 0. In this case, we must justify the use of (2.26) in eliminating
the Bt terms in going from DivT = 0 to system (2.46) and (2.47). That is, it
remains only to show that equations (2.25) and (2.27) together with system
(2.46) and (2.47) imply that (2.26) holds, assuming (2.26) holds at r = r0.
(If so, then by substitution, it then follows that DivT = 0 also holds.)
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Note that we can almost reconstruct (6.21), the first component ofDivT =
0, by reverse substituting (2.25), (2.27) into (2.46). To see this, first note
that we can add (2.25) and (2.27) to obtain

A′

A
+
B′

B
− rBκ(T 00

M + T 11
M ) = 0. (6.29)

Equation (6.29) is an identity that we may add to (2.46) to obtain

0 =
{
T 00
M

}
,0

+


√
A

B
T 01
M


,1

− 1

2
r
√
ABκ

(
T 00
M + T 11

M

)
T 01
M

+
1

2

√
A

B

(
A′

A
+
B′

B
+

4

r

)
T 01
M . (6.30)

Adding and subtracting
1

2

Bt

B

(
T 00
M + T 11

M

)
(6.31)

to the RHS of (6.30) and using

H01 = −Bt

rB
−
√
ABκT 01

M , (6.32)

(c.f. (2.26) and (6.9)), we have

0 =
{
T 00
M

}
,0

+


√
A

B
T 01
M


,1

+
1

2

√
A

B

(
A′

A
+
B′

B
+

4

r

)
T 01
M

+
1

2

Bt

B

(
T 00
M + T 11

M

)
+

1

2
r
(
T 00
M + T 11

M

)
H01. (6.33)

Note that all but the last term on the RHS of (6.33) is equal to the first
component of DivT, and so

T 0i
;i = −1

2
r
(
T 00
M + T 11

M

)
H01.

Therefore, if A, B, and TM are solutions to (2.25), (2.27), (6.33), and (6.22),
it follows that
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H i0
;i = Gi0

;i − κT i0;i

= κ
rB2T 11

2
H01, (6.34)

because Gi0
;i = 0 is an identity. But H00 ≡ 0 holds because we assume (2.25),

and hence (6.34) implies that

H01
,1 + fH01 = 0,

where f ≡ Γii1 + 2Γ1
01− κ rB

2T 11

2
∈ L∞. Since we assume that H01 = 0 on the

boundary r = r0, it follows from Corollary 7 that H01 ≡ 0. 2

It remains to identify conditions under which T 11
M is a function of (T 00

M , T
01
M )

assuming that T has the form of a stress tensor for a perfect fluid, (6.24). A
calculation shows that, in this case, the following simplifications occur:

T 00
M − T 11

M = ρc2 − p, (6.35)

T 00
M T

11
M − (T 01

M )2 = pρc2. (6.36)

Using (6.35) and (6.36) we see that only the first terms on the RHS of (2.46),
(2.47) depend on v, and the only term that is not linear in ρ and p is the
third term on the RHS of (2.47). We state and prove the following theorem:

Theorem 19 Assume that 0 < p < ρc2, 0 < dp
dρ
< c2. Then T 11

M is a function

of T 00
M and T 01

M so long as (ρ, v) lie in the domain D = {(ρ, v) : 0 < ρ, |v| < c}.

Proof: We may write (6.35) and (6.36) in the form

T 00
M − T 11

M = f1(ρ), (6.37)

T 00
M T

11
M − (T 01

M )2 = f2(ρ). (6.38)

Since df1
dρ

= c2− p′ ≥ c2−σ2 > 0, it follows that the function f1 is one-to-one

with respect to ρ. Also, df2
dρ

= p′ρc2 + pc2 ≥ pc2 > 0, so the function f2 is also

one-to-one in ρ. Consequently, the function h = f2 · f−1
1 is one-to-one, and

thus
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T 00
M T

11
M − (T 01

M )2 = h(T 00
M − T 11

M ). (6.39)

Now introduce the linear and invertible change of variables
x = T 00

M − T 11
M , y = T 01

M , z = T 11
M , whereby (6.39) becomes

(x+ z)z − y2 = h(x). (6.40)

Equation (6.40) is quadratic in z, and so we may solve it directly, obtaining

z =
−x±

√
x2 + 4(y2 + h(x))

2
. (6.41)

From (6.41), we conclude that for any (x, y), there are two values of z, though
only one of these will correspond to values of ρ and v in the domain D. That
is, since

x = T 00
M − T 11

M = ρc2 − p > 0, (6.42)

and z = T 11
M > 0, it follows that there is at most one solution of (6.41) in the

domain D, namely

z =
−x+

√
x2 + 4(y2 + h(x))

2
. (6.43)

We conclude that if (ρ, v) lies in the domain D, then for each value of T 00
M

and T 01
M , there exists precisely one value of T 11

M . 2

A calculation shows that in the case p = σ2ρ, σ = constant, the formula
for T 11

M in terms of (T 00
M , T

01
M ) is given by

T 11
M =

1 + 2K∗

2K∗

{
T 00
M −

√
(T 00

M )
2 − 4K∗

(1 + 2K∗)2

(
K∗(T 00

M )2 + (T 01
M )

2
)}

(6.44)

where
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K∗ =
σ2c2

(c2 − σ2)2
. (6.45)

6.4 Summary of the Weak Formulations

Our results concerning the weak formulation of the Einstein equations (2.25)-
(2.28) assuming spherical symmetry given in Theorem 18 can be summarized
as follows. Assume that A,B are Lipschitz continuous functions, and that
T ∈ L∞, on the domain r ≥ r0, t ≥ 0. Then (2.25)-(2.28) are equivalent to
two different systems which take the form of a system of conservation laws
with source terms. In the first case, we have shown that weak solutions of the
system (2.25), (2.27) together with equations (6.25), (6.26) (for DivT = 0),
will solve (2.25)-(2.28) weakly, so long as (2.26) holds at r = r0. This reduces
the Einstein equations with spherical symmetry to a system of equations of
the general form

ut + f(u,A,B)x = ḡ(u,A,B,A′, Bt, B
′, x), (6.46)

Ax = h0(u,A,B, x), (6.47)

Bx = h1(u,A,B, x), (6.48)

where u = (T 00
M , T

01
M ) agree with the conserved quantities that appear in the

conservation law divTM = 0 in flat Minkowski space. (Here “prime” denotes
∂
∂x

since we are using x in place of r.) It is then valid to use equations (2.25)-
(2.27) to eliminate all derivatives of A and B from the RHS of system (6.46),
by which we obtain the system (2.25), (2.27), (2.46), (2.47), a system that
closes to make a nonlinear system of conservation laws with source terms,
taking the general form

ut + f(u,A,B)x = g(u,A,B, x),

Ax = h0(u,A,B, x), (6.49)

Bx = h1(u,A,B, x),

which reproduces (2.48),(2.49) of Section 1. Weak solutions of (6.49) will
satisfy (2.26) so long as (2.26) is satisfied on the boundary r = r0.
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In the second case, we have shown that weak solutions of the system
(2.26), (2.27) together with equations (6.25), (6.26) (for DivT = 0), will
solve (2.25)-(2.28) weakly, so long as (2.25) holds at t = 0. This reduces
the Einstein equations with spherical symmetry to an alternative system of
equations of the general form

ut + f(u,A,B)x = ḡ(u,A,B,A′, Bt, B
′, x), (6.50)

Ax = h0(u,A,B, x), (6.51)

Bt = h1
∗(u,A,B, x). (6.52)

It is then valid to use equations (2.25)-(2.27) to eliminate all derivatives of
A and B from the RHS of system (6.50), by which we obtain the system
(2.26), (2.27), (2.46), (2.47), a system that closes to make a nonlinear system
of conservation laws with source terms, taking the general form

ut + f(u,A,B)x = g(u,A,B, x), (6.53)

Ax = h0(u,A,B, x), (6.54)

Bt = h1
∗(u,A,B, x). (6.55)

Weak solutions of (6.53) will satisfy (2.25) so long as (2.25) is satisfied at
t = 0.

6.5 Wave Speeds

In this section we conclude by calculating the wave speeds associated with
system (2.46)-(2.47).

The easiest way to calculate the wave speeds for the fluid is from the
Rankine-Hugoniot jump conditions in the limit as the shock strength tends to
zero. To start, note that the components of the 4-velocity w for a spherically
symmetric fluid (2.18) are w0 = dt

ds
, w1 = dr

ds
, w2 = w3 = 0. Since −1 =

g(w,w), the components w0 and w1 are not independent, and in particular,
−1 = −(w0)2A + (w1)2B. We define fluid speed v as the speed measured
by an observer fixed in (t, r) coordinates. That is, the speed is the change
in distance per change in time as measured in an orthonormal frame with
timelike vector parallel to ∂t and spacelike vector parallel to ∂r. It follows
that the speed is given by v = x/a, where
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w = a
∂t√
−g00

+ x
∂r√
g11

. (6.56)

Taking the inner product of w with ∂t and then with ∂r, we find that a =
w0√−g00 and x = w1√g11, and hence

v =
w1

w0

√
B

A
, (6.57)

whereby,

(w0)2 =
1

A(c2 − v2)
. (6.58)

Using (6.57) and (6.58) in (2.18), it follows that the components of the energy-
momentum tensor take the following simplified form, which is valid globally
in the (t, r) coordinate system:

T 00 =
1

A

{
(p+ ρc2)

c2

c2 − v2
− p

}

T 01 =
1√
AB

(p+ ρc2)
cv

c2 − v2

T 11 =
1

B

{
(p+ ρc2)

v2

c2 − v2
+ p

}
.

Note that these components are equal to the components of the stress tensor
in flat Minkowski space, times factors involving A and B that account for
the fact that the spacetime is not flat. Using (2.32)-(2.34) we can write the
Rankine-Hugoniot jump conditions in the form

s[T 00
M ] =

√
A

B
[T 01
M ], (6.59)

s[T 01
M ] =

√
A

B
[T 11
M ]. (6.60)

From (6.59)-(6.60), we deduce that wave speeds for the system (2.46)-(2.47)

are
√
A/B times the wave speeds in the Minkowski metric case, and this holds

globally throughout the (t, r) coordinate system. (See [28].) Eliminating s
from (6.59) and (6.60), yields
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[T 01
M ]2 = [T 00

M ][T 11
M ]. (6.61)

Now take the left fluid state on a shock curve to be (ρL, vL), and the right fluid
state to be (ρ, v). For a spherically symmetric perfect fluid, (6.61) defines
the right velocity v as a function of the right density ρ. Then to obtain the
fluid wave speeds, just substitute this function into (6.59), solve for s, and
take the limit as ρ→ ρL. Following this procedure, (6.61) simplifies to

(v − vL)2

(c2 − v2)(c2 − v2
L)

=
[p][ρ]

(p+ ρc2)(pL + ρLc2)
. (6.62)

Note that equation (6.62) can be written as a quadratic in v, and hence there
are two solutions. The ‘+’solutions will yield the 2-shocks, and the ‘-’ the
1-shocks. Dividing both sides of (6.62) by (ρ− ρL)2 and taking the limit as
ρ→ ρL, we see that

dp

dρ
=

(p+ c2ρ)2

(c2 − v2)2

(
dv

dρ

)2

. (6.63)

Solving (6.60) for s we obtain,

s =

√
A

B

[
(p+ ρc2) v2

c2−v2 + p
]

[
(p+ ρc2) cv

c2−v2
] , (6.64)

and taking the limit as ρ→ ρL, we obtain

λ± =

√
A

B

[
(p′ + c2) v2

c2−v2 + (p+ ρc2)2vv′(c2−v2)+2v3v′

(c2−v2)2
+ p′

]
[
(p′ + c2) cv

c2−v2 + (p+ ρc2) cv
′(c2−v2)+2cv2v′

(c2−v2)2

] ,

=

√
A

B

[
(p′ + c2) v2

c2−v2 + (p+ ρc2) 2c2vv′

(c2−v2)2
+ p′

]
[
(p′ + c2) cv

c2−v2 + (p+ ρc2) cv
′(c2+v2)

(c2−v2)2

] .

(Here the plus/minus on RHS is determined by the two possible signs of
v′ = dv/dρ as allowed by (6.63).) After substituting for dv/dρ using (6.63),
and simplifying, we obtain
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λ± =

√
A

B

[
(p′ + c2) v2

c2−v2 ±
2c2v

√
p′

(c2−v2)
+ p′

]
[
(p′ + c2) cv

c2−v2 ±
c(c2+v2)

√
p′

(c2−v2)

] ,

=

√
A

B

[
(p′ + c2)v2 ± 2c2v

√
p′ + p′(c2 − v2)

]
[
(p′ + c2)cv ± c(c2 + v2)

√
p′
] ,

= c

√
A

B

[
v2 ± 2v

√
p′ + p′

]
[
vp′ ± (c2 + v2)

√
p′ + c2v

] ,
= c

√
A

B

[
v ±

√
p′
]2[

v ±
√
p′
] [
c2 ± v

√
p′
] .

This gives,

Proposition 7 The wave speeds of the general relativistic Euler equations
(6.49) are

λ± = c

√
A

B

√
p′ ± v

v
√
p′ ± c2

. (6.65)

The following proposition demonstrates that the system (2.46)-(2.47) is strictly
hyperbolic whenever the particles are moving at less than the speed of light:

Proposition 8 Assume that
|v| < c,

so that the particle trajectory has a timelike tangent vector. Then wave speeds
for the general relativistic Euler equations (2.46)-(2.47) satisfy λ− < λ+.

Proof: To determine where the wave speeds are equal, set λ− equal to λ+

and solve for v to obtain v2 = c2. Next, substitute v = 0 into λ− and λ+ to
verify that λ− < λ+ when v2 < c2A/B. Proposition 8 follows directly. 2
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As a final comment, we note that Proposition 8 is true because it is true in
a locally inertial coordinate system centered at any point P in spacetime.
Indeed, in such a coordinate system, the connection coefficients vanish at P,
and the metric components match those of the Minkowski metric to first order
in a neighborhood of P. As a result, the general relativistic Euler equations
reduce to the classical relativistic Euler equations at P. Since it is known in
Special Relativity that the Euler equations are strictly hyperbolic for timelike
particles, [28], it follows that the same must be true in General Relativity.
Other pointwise properties, such as genuine nonlinearity and the Lax entropy
inequalities, [27, 15], can be verified for the spherically symmetric general
relativistic equations in a similar manner.
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Because A and B enter as undifferentiated source terms, it follows from
(2.46)-(2.47) that for spherically symmetric flow, the only wave speeds in the
problem will be the characteristic speeds for the fluid. Loosely speaking, the
gravitational field is “dragged along” passively by the fluid when spherical
symmetry is imposed. From this we conclude that there is no lightlike prop-
agation, (that is, no gravity waves), in spherical symmetry, even when there
is matter present. For the empty space equations, this is the conclusion of
Birkoff’s theorem, [42].)
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