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Abstract

We prove that the Einstein equations for a spherically symmetric spacetime in Standard
Schwarzschild Coordinates (SSC) close to form a system of three ordinary differential equa-
tions for a family of self-similar expansion waves, and the critical (k = 0) Friedmann universe
associated with the pure radiation phase of the Standard Model of Cosmology, is embedded
as a single point in this family. Removing a scaling law and imposing regularity at the center,
we prove that the family reduces to an implicitly defined one parameter family of distinct
spacetimes determined by the value of a new acceleration parameter a, such that a = 1
corresponds to the Standard Model. We prove that all of the self-similar spacetimes in the
family are distinct from the non-critical k 6= 0 Friedmann spacetimes, thereby characterizing
the critical k = 0 Friedmann universe as the unique spacetime lying at the intersection of
these two one-parameter families. We then present a mathematically rigorous analysis of
solutions near the singular point at the center, deriving the expansion of solutions up to
fourth order in the fractional distance to the Hubble Length. Finally, we use these rigorous
estimates to calculate the exact leading order quadratic and cubic corrections to the redshift
vs luminosity relation for an observer at the center. It follows by continuity that corrections
to the redshift vs luminosity relation observed after the radiation phase of the Big Bang can
be accounted for, at the leading order quadratic level, by adjustment of the free parameter
a. The third order correction is then a prediction. Since self-similar expanding waves rep-
resent possible time-asymptotic wave patterns for the conservation laws associated with the
highly nonlinear radiation phase, we propose to further investigate the possibility that these
corrections to the Standard Model might be the source of the anomalous acceleration of the
galaxies, an explanation wholly within Einstein’s equations with classical sources, and not
requiring Dark Energy or the cosmological constant.4

4This paper fills in the proofs and extends the results quoted in the authors’ PNAS article [18].
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1 Introduction

The Einstein equations that describe the expansion of the Universe during the radiation
phase of the expansion form a highly nonlinear system of coupled wave equations in the
form of conservation laws, [10]. Such wave equations support the propagation of waves, and
self-similar expansion waves are important because even when dissipative terms are neglected
in conservation laws, the nonlinearities alone provide a mechanism whereby non-interacting
self-similar wave patterns can emerge from general interactive solutions, via the process of
wave interaction and shock wave dissipation, [13, 8, 9]. In this paper, which elaborates and
extends the results announced in [18], we construct a continuous one parameter family of
self-similar expanding wave solutions of the Einstein equations and prove that the Standard
Model of Cosmology, during the pure radiation epoch, is embedded as a single point in the
family. Moreover, we show that the singularity in the equations at the center of the spacetime
can be transformed into a rest point of an autonomous system of ODE’s, and consequently
all solutions in the family come in tangent to the same (strongest) eigensolution. It follows
that near the center, the expanding waves in the family look just like the critical Friedmann-
Robertson-Walker spacetime with pure radiation sources (FRW)5, and the leading order
corrections to FRW are quadratic in the fractional distance to the Hubble length. Our
intention, then, is to explore the possibility that these corrections to FRW, far out from the
center, could account for the anomalous acceleration of the galaxies without Dark Energy or
the cosmological constant. We end the paper with a derivation of the quadratic and cubic
corrections to the redshift vs luminosity relations that would distinguish the expanding wave
spacetimes in the family from FRW at the end of the radiation phase of the Standard Model.
This extends the quadratic correction recorded in [18]. We emphasize that these corrections
to redshift vs luminosity are not accounted for by an additional source term in the equations
like the cosmological constant, but rather are due only to the displacement of the energy
density by the wave.

Our initial insight was the discovery of a new set of coordinates in which FRW, (unbarred
coordinates), goes over to a standard Schwarzchild metric form, (barred coordinates), in such
a way that the metric components depend only on the single self-similar variable r̄/t̄. From
this we set out to find the general equations for such self-similar solutions. In this paper
we prove that the PDE’s for a spherically symmetric spacetime in Standard Schwarzchild
coordinates (SSC) reduce, under the assumption p = 1

3
ρc2, to a system of three ordinary

differential equations6 in the same self-similar variable r̄/t̄. After removing one scaling pa-
rameter and imposing regularity at the center, we prove that there exists implicitly within
the three parameter family (of initial conditions), a continuous one parameter family of self-
similar solutions of the Einstein equations that extends the FRW metric. This part, then,
expands on and fills in the proofs of the results recorded in [18].

5In this paper we let FRW refer to the critical (k = 0) Friedmann-Robertson-Walker metric with equation
of state p = 1

3
ρc2, [16].

6As far as we are aware the only other nontrivial way the PDE’s for metrics in Standard Schwarzschild
Coordinates with perfect fluid sources reduce to ODE’s, is the time independent case when they reduce to
the Oppenheimer-Volkoff equations, [21]

4



Because different solutions in the family expand at different rates, our expanding wave equa-
tions introduce an acceleration parameter a, (normalized so a = 1 is FRW), and adjustment
of this parameter speeds up or slows down the expansion rate during the radiation phase,
and thereby alters the redshift vs luminosity distance relation relative to the FRW Stan-
dard Model. Of course the specific redshift vs luminosity distance relations calculated here,
while correct for a radiation dominated universe, will not be the precise relations valid for
an observer in the later universe after it has cooled to a point where non-relativistic matter
dominates its energy density. But continuity of the subsequent evolution with respect to
parameters implies that the leading order correction associated with an arbitrary (small)
anomalous acceleration observed after the radiation phase of Standard Model, could be ac-
counted for by adjustment of the parameter a, c.f. [18]. Indeed, because the equation of
state p = c2

3
ρ is the equation of state for both pure radiation and matter in the extreme

relativistic limit, the displacement of the co-moving frames from the Standard Model in an
expanding wave during the radiation phase, would induce a corresponding displacement in
the co-moving frames of the matter field at the end of the radiation epoch, and this displace-
ment would evolve in time as the pressure drops. Thus, to conclude that (sufficiently small)
leading order corrections to redshift vs luminosity could be accounted for after the radiation
phase by adjustment of the parameter a, all that is required is that the quadratic correction
to the evolving redshift vs luminosity relation have a continuous and monotonic dependence
on a near a = 1 . Making this precise is the topic of the authors current research.

The next step in our program will be to obtain the quadratic and cubic corrections to
redshift vs luminosity induced by the expanding waves at present time, by evolving forward,
up through the p = 0 stage of the Standard Model, the corrections we derived here for
the expanding wave perturbations at the end of the radiation phase. Matching the leading
order correction to the data will fix the choice of acceleration parameter, and the third order
correction, at that choice of acceleration parameter, is then a verifiable prediction of the
theory. This is a topic of the authors’ current research.

We first set out to look for expanding wave solutions of the Einstein equations assuming
pure radiation sources p = 1

3
ρc2, because our starting idea was that decay to self-similar

expansion waves would most likely have occurred back when the universe was filled with
radiation, [20]. The idea is that the sound speed and modulus of genuine nonlinearity (GN)
are maximal during the radiation phase, and by standard theory of hyperbolic conservation
laws, the modulus of GN governs the rate of decay by shock wave dissipation, even when
dissipative terms are neglected in the equations, (c.f. [13, 8, 9]). This makes the existence of
a family of such self-similar solutions, given by exact expressions, all the more interesting.
In contrast, we are not so interested in self-similar waves during the matter dominated phase
p ≈ 0, after the uncoupling of matter and radiation, because when the pressure is zero,
the resulting equations (for dust) have a zero modulus of GN, and one should not expect
significant decay.7

7Note that although a self-similar expanding wave created when p = 1

3
ρc2 should evolve into a non-

interacting expansion wave during the p ≈ 0 phase, there is no reason to believe that the solution would
remain self-similar after the radiation phase.
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Thus the expanding waves we found here introduce an apparent anomalous acceleration into
the Standard Model without recourse to a cosmological constant, and we propose to further
investigate the possibility that the observed anomalous acceleration of the galaxies might
be due to the fact that we are looking outward into an expansion wave of some extent.
This would provide an explanation for the anomalous acceleration within classical general
relativity without recourse to the ad hoc assumption of an unobserved Dark Energy, with
its unphysical anti-gravitational properties. Because the expanding waves have a center
of expansion when a 6= 1, this would violate the so-called Copernican Principle, at least
on the scale of the expanding wave.8 But most importantly, we emphasize our anomalous
acceleration parameter is not put in ad hoc, but rather is derived from first principles starting
from a theory of non-interacting, self-similar expansion waves, waves that we have to believe
are propagating in solutions during the radiation phase of the Big Bang.9

In this paper we give detailed proofs of the claims made in our PNAS article [18], and
improve the redshift vs luminosity relation stated there to third order in redshift factor z.
This is a significant extension, requiring in particular the development of refined estimates
near the center (Theorem 10, Section 5), and the resolution of what we term the mirror
problem (Section 9). In Section 2 we introduce the coordinate transformation from co-
moving coordinates to SSC that puts FRW into self-similar form. In Section 3 we derive the
expanding wave equations, and prove that FRW solves the equations. In Section 4 we derive
exact canonical co-moving coordinates for the spacetimes in the family, and use them to prove
that solutions of the expanding wave equations are distinct from the k 6= 0 FRW spacetimes.
In Section 5 we introduce a transformation of the independent variable that regularizes the
apparent singularity at r̄ = 0 in the expanding wave equations, transforming the singularity
into a rest point of an autonomous system of ODE’s. Using this we prove the existence of
a one parameter family of solutions that come into the center along the same eigenvector
as the pure FRW spacetime. Using this we give a mathematically rigorous analysis of the
asymptotics of solutions in the family near the center, culminating in Theorem 10, which
provides an expansion of the spacetime metrics up to fourth order, and the velocity up to
fifth order, in the fractional distance to the Hubble Length. In Section 6 we show that (to
leading orders) every spacetime in the family foliates into flat spacelike hypersurfaces which
expand at a rate given by the modified scale factor R(t) = ta.

Interestingly, all of the spacetimes in the family have a cusp type singularity in the velocity
at r = 0 in SSC coordinates10, but like FRW, the inverse of the coordinate mapping that
originally took FRW from co-moving to SSC coordinates also regularizes the cusp singularity

8The Copernican Principle, the principle that we should not lie in a special place in the universe, has
been taken as a starting assumption in cosmology since Howard Robertson and Geoffrey Walker proved, in
the early 1930’s, that the Friedmann-Robertson-Walker spacetimes are characterized by the assumption that
they be spatially homogeneous and isotropic about every point, [21]. Of course, the galaxies and clusters of
galaxies are evidence of violations of the principle on smaller scales, and so on length scales larger than the
extent of the expanding waves, we may not have a violation of the Copernican Principle, c.f. our discussion
in the Conclusion, and footnote [24].

9See [6] for a study of self-similar spacetimes in general relativity.
10Similar cusp type singularities were encountered in [3, 4].
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at the center when a 6= 1. In these coordinates, which are only approximately co-moving
when a 6= 1, the spacetimes in the family can be compared with FRW, and are amenable to
a calculation of redshift vs luminosity. In Sections 7 and 8 we use these coordinates together
with the estimates in Section 5 to derive the correction to redshift vs luminosity induced
by the expanding waves for an observer positioned at the center of the expanding wave
spacetimes when a 6= 1. Our starting point in Section 8 is the argument for deriving redshift
vs luminosity in the case of the FRW Standard Model as outlined in [11], Section 11.8.
Calculating the third order correction term requires solving the mirror problem, the problem
of accounting for a dimming of light from distant sources due solely to the curvature of the
spacetime in the expanding waves when a 6= 1, an effect not present in the Standard Model,
and too weak to influence the second order correction we quoted in [18]. The solution of the
mirror problem is an application of Etherington’s Theorem, also known as the Reciprocity
Theorem, [7, 14]. The result is that luminosity distance as a function of redshift factor
z introduces quadratic and cubic corrections from FRW when a 6= 1, but the luminosity
distance as a function of ζ agrees with the FRW relation dℓ = ctζ up to fourth order in ζ
when a 6= 1, (c.f. Theorem 1, equation(8.6), and the comment after the proof of Theorem
13). Concluding remarks are made in Section 10.

Our final result is summarized in the following theorem, valid for our one parameter family
of self-similar expansion waves assuming pure radiation sources, p = 1

3
ρc2, c.f. , Theorem 13

below. This extends the quadratic correction to redshift vs luminosity recorded in [18], to
third order in redshift factor z.11

Theorem 1 The redshift vs luminosity relation, as measured by an observer positioned at
the center of the expanding wave spacetimes (described by metric (5.164) below), is given up
to third order in redshift factor z by

dℓ = 2ct

{

z +
a2 − 1

2
z2 +

(a2 − 1)(a2 + 2)

2
z3 +O(1)|a− 1|z4

}

, (1.1)

where dℓ is luminosity distance, (c.f. (8.4) below), ct is invariant time since the Big Bang,
and a is the acceleration parameter which distinguishes the expanding waves in the family.

When a = 1, (1.1) reduces to the correct linear relation for the radiation phase of the
Standard Model, [11]. The second and third terms in the bracket in (1.1) thus give the
leading order quadratic and cubic corrections to the redshift vs luminosity relation when
a 6= 1, thereby improving the quadratic estimate (6.5) of [18]. Since the adjustable parame-
ter (a2−1) appears in front of the leading order correction in (1.1), it follows, (by continuous
dependence of solutions on parameters), that a quadratic correction to the redshift vs lumi-
nosity observed at a time after the radiation phase of the Standard Model, can be accounted
for by suitable adjustment of the parameter a. The third order correction is then a prediction

11Note that
√
t0 → ct0 corrects relation (6.5) of [18] for t0 6= 1, i.e. giving dℓ the correct dimension of

length.
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of the theory. In particular, note that when a > 1, the leading order corrections in (1.1)
imply less red-shifting of radiation than predicted by the Standard Model, as observed by
astronomers in the supernova data, [4, 1]. Noting the positive sign of the coefficient of the
third order term, we observe that the third order term further increases the effect of the
quadratic term in displacing the redshift vs luminosity relation from the linear relation of
the Standard Model.

2 Self-Similar Coordinates for the k = 0 FRW Space-

time

We consider the Standard Model of Cosmology during the pure radiation phase, after in-
flation, modeled by a critical Friedman-Robertson-Walker metric with equation of state
p = 1

3
ρc2. In this paper we refer to this metric as FRW. In co-moving12 coordinates the

gravitational metric tensor g takes the critical (k = 0) FRW form, [21],

ds2 = −dt2 +R(t)2dr2 + r̄2dΩ2, (2.1)

where r̄ = Rr measures arclength distance at fixed time t and R ≡ R(t) is the cosmological
scale factor. The Einstein equations

G = κT, (2.2)

for metrics of form (2.1) reduce to the system of ODE’s

H =
κ

3
ρ, (2.3)

ρ̇ = −3(ρ+ p)H, (2.4)

where G is the Einstein curvature tensor, T is the stress tensor for a perfect fluid,

T = (ρ+ p)u⊗ u+ pg, (2.5)

H is the Hubble constant

H =
Ṙ

R
,

ρ is the energy density of radiation and p is the radiation pressure. During the pure radiation
epoch the Stefan-Boltzmann radiation law implies the equation of state

p =
1

3
ρc2. (2.6)

Exact expressions for the solution are given in the following theorem, which is a corollary of
Theorem 2, [18]:

12Since we work with spherically symmetric spacetimes, we say the coordinate system is co-moving if the
radial coordinate is constant along particle paths.
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Theorem 2 Let (2.1) solve (2.2) with equation of state (2.6). Then, (assuming an expand-
ing universe Ṙ > 0), the solution of system (2.3), (2.4) satisfying R = 0 at t = 0 and R = 1
at t = 1 is given by,

κρ = 3
4

1
t2
, (2.7)

R(t) =
√
t. (2.8)

In particular, the Hubble constant satisfies13

H(t) =
Ṙ

R
=

1

2t
. (2.9)

Our starting point is the following theorem which gives a coordinate transformation that
takes (2.1) to the SSC form,

ds2 = −B(t̄, r̄)dt̄2 +
1

A(t̄, r̄)
dr̄2 + r̄2dΩ2, (2.10)

such that A and B depend only on r̄/t̄. For this define the self-similarity variables

ξ =
r̄

t̄
(2.11)

and

ζ =
r̄

t
. (2.12)

Theorem 3 Assume p = 1
3
ρc2, k = 0 and R(t) =

√
t. Then the FRW metric

ds2 = −dt2 +R(t)2dr2 + r̄2dΩ2,

under the change of coordinates

t̄ = ψ0

{

1 +

[

R(t)r

2t

]2
}

t, (2.13)

r̄ = R(t)r, (2.14)

transforms to the SSC-metric

ds2 = − dt̄2

ψ2
0 (1 − v2(ξ))

+
dr̄2

1 − v2(ξ)
+ r̄2dΩ2, (2.15)

13Note that H and r̄ are scale independent relative to the scaling law r → αr, R → 1

αR of the FRW metric
(2.1), c.f. [16].
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where

v =
1√
AB

ū1

ū0
(2.16)

is the SSC velocity, which also satisfies

v =
ζ

2
, (2.17)

ψ0ξ =
2v

1 + v2
. (2.18)

In particular, the Jacobian and inverse Jacobians corresponding to the mapping (2.13), (2.14)
are given by

J ≡ ∂x̄

∂x
=

(

ψ0 ψ0

√
t ζ
2

ζ
2

√
t

)

, (2.19)

J−1 ≡ ∂x

∂x̄
=

1

|J |

( √
t −ψ0

√
t ζ
2

− ζ
2

ψ0

)

, (2.20)

with

|J | = ψ0

√
t

(

1 − ζ2

4

)

. (2.21)

Here ū = (ū0, ū1) denote the (t̄, r̄) components of the (unit) 4-velocity of the sources in SSC
coordinates, and we include the constant ψ0 to later account for the time re-scaling freedom
in (2.10), c.f. (2.18), page 85 of [16].

Proof: Letting x ≡ (x0, x1) ≡ (t, r) denote FRW coordinates and x̄ = (x̄0, x̄1) ≡ (t̄, r̄)
denote the transformed coordinates, use (2.13) and (2.14) to obtain

∂t̄

∂t
= ψ0,

∂t̄

∂r
=
ψ0r

2
(2.22)

∂r̄

∂t
=

r

2
√
t
,

∂r̄

∂r
=

√
t

which gives (2.19)-(2.21) upon using

ζ =
r̄

t
=

r√
t
, (2.23)

c.f. (2.14). From (2.20) we obtain the metric components ḡαβ in (t̄, r̄) coordinates:

ḡαβ == J−tgJ−1 =





− 1

ψ2

0

“

1− ζ2

4

” 0

0 1

1− ζ2

4



 , (2.24)
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which verifies (2.15) assuming (2.17). It remains then to verify (2.16) and (2.18). For (2.18),
use the equations (2.7), (2.8) to get

ψ0ξ =
r̄

t̄
=

ζ
(

1 + ζ2

4

) ,

and since by (2.24),
1√
AB

= ψ0,

we have

v =
1√
AB

ū1

ū0
=
ζ

2
,

which gives (2.18). To verify (2.16), note that the fluid is co-moving with respect to the
FRW (t, r)-coordinates, which means that the 4-velocity is given by u = (1, 0). Thus

(

ū0

ū1

)

=
∂x̄α

∂xi

(

1
0

)

=

(

ψ0 ψ0

√
t ζ
2

ζ
2

√
t

)(

1
0

)

=

(

ψ0
ζ
2
,

)

and thus v = ζ
ψ02

, as claimed in (2.16). �

We now assume p = 1
3
ρc2 and that solutions depend only on ξ. In the next section we show

how the Einstein equations for metrics taking the SSC form (2.10) reduce to a system of
three ODE’s. A subsequent lengthy calculation then shows that FRW is a special solution
of these equations.

3 The Expanding Wave Equations

Putting the SSC metric ansatz (2.10) into MAPLE, (suppressing the bars), the Einstein
equations G = κT reduce to the four partial differential equations14

{

−rAr
A

+
1 −A

A

}

=
κB

A
r2T 00 (3.1)

At
A

=
κB

A
rT 01 (3.2)

{

r
Br

B
− 1 −A

A

}

=
κ

A2
r2T 11 (3.3)

−
{(

1

A

)

tt

− Brr + Φ

}

= 2
κB

A
r2T 22, (3.4)

14Beware that in [10], A is used for the dt2 coefficient and B for the dr2 coefficient of the metric.
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where

Φ =
BtAt
2A2B

− 1

2A

(

At
A

)2

− Br

r
− BAr

rA

+
B

2

(

Br

B

)2

− B

2

Br

B

Ar
A
.

Here we assume the stress tensor for a perfect fluid,

T ij = (ρc2 + p)uiuj + pgij, (3.5)

where, as usual, ρ denotes the energy density, p the pressure, v the fluid velocity defined in
terms of the fluid 4-velocity by (2.16), and we use the standard summation convention and
indices are raised and lowered with the metric, c.f. [10]. The main purpose of this section is
to prove the following two theorems. (We return to the notation of using (t̄, r̄)-coordinates
to distinguish SSC coordinates from co-moving coordinates (t, r)):

Theorem 4 Let ξ denote the self-similarity variable

ξ =
r̄

t̄
, (3.6)

and let

G =
ξ√
AB

. (3.7)

Assume that A(ξ), G(ξ) and v(ξ) solve the ODE’s

ξAξ = −
[

4(1 − A)v

(3 + v2)G− 4v

]

(3.8)

ξGξ = −G
{(

1 −A

A

)

2(1 + v2)G− 4v

(3 + v2)G− 4v
− 1

}

(3.9)

ξvξ = −
(

1 − v2

2 {·}D

)

{

(3 + v2)G− 4v +
4
(

1−A
A

)

{·}N
(3 + v2)G− 4v

}

, (3.10)

where

{·}N =
{

−2v2 + 2(3 − v2)vG− (3 − v4)G2
}

(3.11)

{·}D =
{

(3v2 − 1) − 4vG+ (3 − v2)G2
}

, (3.12)

and define the density by

κρ =
3(1 − v2)(1 − A)G

(3 + v2)G− 4v

1

r̄2
. (3.13)

Then the metric

ds2 = −B(ξ)dt̄2 +
1

A(ξ)
dr̄2 + r̄2dΩ2 (3.14)

solves the Einstein equations (3.1)-(3.4) with velocity v = v(ξ) and equation of state p = 1
3
ρc2.
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The next theorem confirms the consistency of equations (3.8)-(3.10).

Theorem 5 The Standard Schwarzchild coordinate form (2.15) of the Standard Model of
Cosmology during the radiation phase (FRW) is a particular solution of equations (3.8)-
(3.13).

Proof of Theorem 4: In [10] it was shown that on smooth solutions, (3.1)-(3.4) are
equivalent to (3.1)-(3.3) together with DivjT

j1 = 0, where DivjT
j1 = 0 can be written in

the locally inertial form,

{T 01
M },t̄ +

{√
ABT 11

M

}

,r̄
= −1

2

√
AB

{

4
r̄
T 11
M + (1−A)

Ar̄
(T 00

M − T 11
M ) (3.15)

+2κr̄
A

(T 00
M T

11
M − (T 01

M )2) − 4r̄T 22
M

}

,

(c.f. equation (4.8) of [10]). Here the Minkowski stresses T ijM are defined in terms of the
stress tensor (3.5) and the metric components A and B through the identities

T 00
M = BT 00 =

{

(p+ ρc2)
c2

c2 − v2
− p

}

T 10
M =

√

B

A
T 01 =

{

(p+ ρc2)
cv

c2 − v2

}

(3.16)

T 11
M =

1

A
T 11 =

{

(p+ ρc2)
v2

c2 − v2
+ p

}

,

and

T 22
M = T 22 =

ρr̄2

3
, (3.17)

c.f. equation (4.6) of [10].

The first observation to make is that when p = σρ, σ = const, the stresses T ij as well as
the Minkowski stresses T ijM are all linear in ρ. To prove the theorem we must show that
system (3.1)-(3.3) and (3.15) closes, and reduces to the system of three ODE’s (3.8)-(3.10)
with constraint (3.13), under the assumption that A, G, v and r̄2ρ are functions of the self-
similarity variable ξ. Our strategy is to show that when A(ξ), G(ξ) and v(ξ) are substituted
into equations (3.1)-(3.3) and (3.15), all terms not depending on ξ can be written in the
form r̄2T ijM , which we show are all of the form r̄2ρ times functions of the velocity, thereby
also becoming functions of ξ under the additional assumption that r̄2ρ be a function of ξ.

To carry this out, begin by substituting A(ξ), G(ξ) and v(ξ) into the first three Einstein
equations (3.1)-(3.3) and define

Sij = κr̄2T ijM , (3.18)
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to obtain

ξAξ = (1 −A) − S00, (3.19)

ξAξ = − 1

G
S01, (3.20)

ξ
Bξ

B
=

1

A

{

(1 − A) + S11
}

, (3.21)

where

S00 = κr̄2ρ
c4 + σ2v2

c2 − v2
= κ

{

r̄2ρ

3(1 − v2)

}

(3 + v2) (3.22)

S01 = κr̄2ρ
c2 + σ2

c2 − v2
cv = κ

{

r̄2ρ

3(1 − v2)

}

4v (3.23)

S11 = κr̄2ρ
σ2 + v2

c2 − v2
= κ

{

r̄2ρ

3(1 − v2)

}

(1 + 3v2), (3.24)

and we take p = σρ with σ = c2

3
and c = 1. Based on this define

Sij = κwV ij , i, j = 0, 1 (3.25)

and

S22 =
1

r̄2
κwV 22, (3.26)

(c.f. (2.6) of [10]), where

w =
ρr̄2

3(1 − v2)
, (3.27)

so that V ij are functions of v given by

V 00 = 3 + v2 (3.28)

V 01 = 4v (3.29)

V 11 = 1 + 3v2, (3.30)

V 22 = 1 − v2, (3.31)

c.f. (3.22)-(3.24) and (3.17).

Solving (3.19) and (3.20) for ξAξ and equating gives the following consistency condition

G(1 −A) −GS00 = −S01. (3.32)

Using (3.27) and (3.7), we record the constraint (3.32) as

κw =
(1 − A)G

(3 + v2)G− 4v
. (3.33)
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Substituting (3.27) into (3.33) readily confirms that (3.33) is equivalent to the constraint
(3.13).

Using the constraint (3.33) we can eliminate κw from (3.25), and hence from equations
(3.19)-(3.21). That is, substituting (3.33) into (3.25) gives

Sij =
(1 − A)G

(3 + v2)G− 4v
V ij, (3.34)

so that (3.22)-(3.24) take the w and r̄2ρ independent form

S00 =
(1 − A)G

(3 + v2)G− 4v
(3 + v2) (3.35)

S01 =
(1 − A)G

(3 + v2)G− 4v
4v (3.36)

S11 =
(1 − A)G

(3 + v2)G− 4v
(1 + 3v2). (3.37)

Substituting (3.35) into equation (3.19) directly gives equation (3.8). Finally for equation
(3.9), write

ξGξ = G

{

1 − 1

2

(

ξAξ
A

+
ξBξ

B

)}

,

which in light of (3.19) and (3.21) is equivalent to

ξGξ = G

{

1 −
(

1 − A

A
+ κ

S11 − S00

2A

)}

. (3.38)

Substituting Sij = κwV ij with the expressions for w and V ij in (3.33) and (3.28)-(3.30),
respectively, into (3.38), leads directly to (3.9).

Thus we have proven that if A, G and v are functions of ξ, then the first three Einstein
equations are equivalent to (3.8) and (3.9) together with the constraint (3.13). It remains
only to prove that when A(ξ), G(ξ) and v(ξ) are substituted into equation (3.15), the relations
(3.35)-(3.37) will again eliminate all terms not depending on ξ in such a way that the resulting
equation reduces to (3.10).

To start, move everything to the right hand side of (3.15) and multiply through by r̄3 and
use (3.18) to obtain

0 = r̄
{

S01
}

,t̄
+ r̄

{√
ABS11

}

,r̄
− 2

√
ABS11

−1

2

√
AB

{

4S11 +
(1 − A)

A
(S00 − S11)

+
2κ

A
(S00S11 − (S01)2) − 4r̄2S22

}

.
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Now assume that A, G, v and r̄2ρ (and hence Sij) are all functions of ξ = r̄/t̄, and then use
(3.19) and (3.21) to eliminate S01 and S11 in the two terms quadratic in Sij in the last line
to get

0 = −ξ2S01
ξ + ξ

{√
ABS11

}

ξ
− 2

√
ABS11

−1

2

√
AB

{

2ξ2 1√
AB

Aξ
A
S01 +

(

−ξAξ
A

+ 4

)

S11

+ξ
Bξ

B
S00 − 4r̄2S22

}

.

Expanding the derivative in the second term, collecting like terms, canceling the ±ξ2E
2

Aξ

A
S11

terms that arise, and multiplying through by ξ−1 then leads to the expression

0 =
{

−ξS01
ξ

}

I
+
{

ξES11
ξ

}

II
+

{

ξAξ
A
S01

}

III

(3.39)

+

{

1

2
E
ξBξ

B

(

S00 + S11
)

}

IV

−
{

2Er̄2S22
}

V
,

where for convenience we define

E =
1

G
=

√
AB

ξ
, (3.40)

and we include the labeled brackets for future reference. Using Sij = κwV ij we can write
the derivatives of S01

ξ and S11
ξ in terms of vξ and wξ, which leads directly to the following

equation equivalent to (3.39).

0 =
{

−V 01 + EV 11
}

ξ
wξ
w

+ {−4 + 6Ev} ξvξ + ξ
Aξ
A
V 01 (3.41)

+
1

2
Eξ

Bξ

B

(

V 00 + V 11
)

− 2EV 22.

The following lemma gives
wξ

w
in terms of vξ, A, G and v, and it remains then to show that

substitution of this expression for
wξ

w
into (3.41) then leads to the equation (3.10) for vξ.

Lemma 1 It follows from (3.13) together with (3.8) that

κw =
1 − A

V 00 −EV 01
, (3.42)

wξ
w

=

{ −2v + 4E

V 00 −EV 01

}

vξ +

{

2v(AB)ξ
Eξ2(V 00 −EV 01)

}

. (3.43)

16



Proof: Equation (3.42) follows direclty from (3.13) and (3.28)-(3.30), and can be written as

κw =
(1 − A)

D
, (3.44)

where we let

D = V 00 − EV 01. (3.45)

Using this we can write

wξ
w

=
Dwξ
1 − A

= − Aξ
1 −A

− Dξ

D
. (3.46)

But by (3.20) and (3.44),

− Aξ
1 − A

=
4vE

ξD
, (3.47)

and by (3.44) and (3.40)

Dξ

D
=

2v − 4E

D
vξ +

4vE

ξD
− 2v(AB)ξ

ξ2ED
. (3.48)

Using (3.47) and (3.48) in (3.46) gives (3.43). �

Putting (3.43) into (3.41) and replacing Sij by their values in (3.22)-(3.24), we can solve the
resulting equation for vξ to obtain

{·}∗D 8ξvξ = ξ
Aξ

A
{(EV 11 − V 01)EV 01 + 2DV 01}A

+Eξ
Bξ

B
{(EV 11 − V 01)V 01 +D (V 00 + V 11)}B − 4EDV 22,

(3.49)

2 {·}∗D = {(EV 11 − V 00)(2E − V ) + (2 − 3Ev)D} .

Using (3.19)-(3.21) to replace Aξ and Bξ by expressions involving the unknowns A,E, v we
get

2 {·}∗D
(

4AD
(1−A)E

)

ξvξ = − (V 01)
2 {(EV 11 − V 01)E + 2D}A (3.50)

+ (D + V 11) {(EV 11 − V 01)V 01 +D (V 00 + V 11)}B − 4 A
1−AD

2V 22.

Now since the V ij ’s depend only on the variable v, it follows that the brackets {·}A, {·}B
and {·}∗D in (3.50) are all quadratic polynomials in E with polynomials in v as coefficients.
We now find these coefficients. For {·}∗D start with (3.49) and obtain

2 {·}∗D = (−vV 01 + 2V 00) + (vV 11 − 3V 00)E + (3vV 01 − 2V 11)E2,

which upon using (3.28)-(3.30) gives

{·}∗D = (2(3 − v2)) − 8vE + 2(−1 + 3v2)E2 = E2 {·}D , (3.51)
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c.f. (3.12).

For {·}A use (3.45) to write

−
(

V 01
)2 {·}A = −

(

V 01
)2 {

(EV 11 − V 01)E + 2V 00 − 2EV 01
}

A
,

and using (3.28)-(3.30) gives

−
(

V 01
)2 {·}A = −

(

4v2
)2 {

2(3 + v2) − 12vE + (1 + 3v2)E2
}

A
. (3.52)

Finally

(D + V 11) {·}B = (D + V 11) {(EV 11 − V 01)V 01 +D(V 00 + V 11)}
= (V 00 + V 11 − EV 01) {V 00(V 00 + V 11) − (V 01)2 − V 00V 01E}B ,

which upon using (3.28)-(3.30) leads to
(

D + V 11
)

{·}B = 16(1 + v2)(3 + v4) (3.53)

−32v(3 + 2v2 + v4)E + 16v2(3 + v2)E2.

Adding (3.52) and (3.53), and simplifying gives

−
(

V 01
)2 {·}A +

(

D + V 11
)

{·}B = {·}0 + {·}1E + {·}2E
2, (3.54)

where

{·}0 = 16(1 − v2)(3 − v4) (3.55)

{·}1 = −32v(1 − v2)(3 − v2) (3.56)

{·}2 = 32v2(1 − v2). (3.57)

Comparing (3.54) with (3.11) thus gives

−
(

V 01
)2 {·}A +

(

D + V 11
)

{·}B = −16(1 − v2)E2 {}N . (3.58)

Putting (3.58) into (3.50) and using (3.51) and (3.31) yields the following equation equivalent
to (3.15):

2

(

{·}D
A

(1 − A)
DE

)

ξvξ = 4(1 − v2)E2 {·}N − A

1 −A
D2(1 − v2). (3.59)

Multiplying (3.59) through by the factor
(

{·}D A
(1−A)

DE
)−1

and using ,

D = E
[

(3 + v2)G− 4v
]

,

(c.f. (3.45), (3.28) and (3.29)), now readily verifies that (3.59), and hence (3.15), is equivalent
to (3.10), as claimed. Thus the proof of Theorem 4 is complete. �

Proof of Theorem 5: We begin by recording the following lemma which gives the relevant
quantities associated with SSC coordinate representation of the FRW metric in terms of the
single variable v.
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Lemma 2 Consider the FRW spacetime as represented in SSC coordinates in Theorem 3.
Then

A = 1 − v2, (3.60)

E =
1

ψ0ξ
=

1 + v2

2v
, (3.61)

D = 1 − v2, (3.62)

ξ =
2v

ψ0(1 + v2)
(3.63)

κw =
v2

1 − v2
(3.64)

vξ =
(1 + v2)2ψ0

2(1 − v2)
(3.65)

κwξ =
2v

(1 − v2)2
vξ (3.66)

Proof: This is a straightforward consequence of (3.19)-(3.21) and (2.15)-(2.18) of Theorem
3. �

To prove Theorem 5, we verify the Standard Model on equation (3.39), which we have shown
is equivalent to (3.10). (We omit the straightforward proof that FRW satisfies (3.8) and (3.9)
in SSC.) We now use (3.60)-(3.66) to convert each of the five terms labeled by brackets in
(3.39) into expressions involving v and ξvξ alone.

{·}I = −4v2(3 − v2)

(1 − v2)2
ξvξ (3.67)

{·}II =
1 + v2

(1 − v2)2
(1 + 6v2 − 3v4)ξvξ (3.68)

{·}III = −8v5(1 + v2)

(1 − v2)3
(3.69)

{·}IV = 2
(1 + v2)3

1 − v2)3
v3 (3.70)

{·}V = −v(1 + v2) (3.71)

Thus we need only verify

{·}I + · · ·+ {·}V = 0. (3.72)

Adding (3.67)-(3.71) we obtain

{·}I + · · ·+ {·}V =
{

−4v2(3−v2)
(1−v2)2

+ (1+v2)(1+6v2−3v4)
(1−v2)2

}

ξvξ (3.73)

+
{

−8v5(1+v2)
(1−v2)3

+ 2(1+v2)3v3

(1−v2)3
− v(1 + v2)

}

.
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But from (3.63) and (3.65)

ξvξ =
v(1 + v2)

1 − v2
,

and substituting this into (3.73) and multiplying through by (1−v2)3

(1+v2)v
gives

{·}I + · · · + {·}V = {−4v2(3 − v2) + (1 + v2)(1 + 6v2 − 3v4)}a
+ {−8v4 + 2(1 + v2)2v2 − 1}b .

Expanding {·}a and {·}b gives the final result

−{·}a = 3v6 − 7v4 + 5v2 − 1 = {·}b ,

thereby verifying (3.72). This completes the proof of Theorem 5. �

We conclude that the Standard Model of Cosmology during the radiation phase corresponds
to a solution of the expanding wave equations (3.1)-(3.3) and (3.13) with parameter ψ0

accounting for the time-scaling freedom of the SSC metric (2.10). More generally, it is
not difficult to see that the time-scaling t̄ → ψ0t̄ preserves solutions of (3.1)-(3.3) and the
constraint (3.15)). The next theorem states that modulo this scaling, distinct solutions of
(3.1)-(3.3), (3.15) describe distinct spacetimes. Thus the three equations (3.1)-(3.3) with
the one scaling law describe a two parameter family of distinct spacetimes, one of which is
FRW.

Theorem 6 The replacement t̄ → ψ0t̄ takes A(ξ), G(ξ) and v(ξ) to A(ξ/ψ0), G(ξ/ψ0) and
v(ξ/ψ0), and this scaling preserves solutions of (3.1)-(3.3), (3.15). Moreover, this is the
only scaling law in the sense that any two solutions of (3.1)-(3.3), (3.15) not related by the
scaling t̄→ ψ0t̄ describe distinct spacetimes.

Proof: To prove the theorem it suffices to show that the only coordinate transformation that
takes solutions of form (3.14) to solutions of form (3.14) are the time-scaling transformations
t → αt. Now solutions of form (3.14) are diagonal metrics in which the radial coordinate is
taken to be r̄ determined by the areas of the spheres of symmetry, so the problem is to show
that the only coordinate transformation of the form (t̄, r̄) → (t̂, r̄) taking a metric

ds2 = −B(ξ)dt̄2 +
1

A(ξ)
dr̄2 + r̄2dΩ2,

to a metric

ds2 = −B̂(ξ̂)dt̂2 +
1

Â(ξ̂)
dr̄2 + r̄2dΩ2,

ξ̂ =
r̄

t̂
,
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are the time-scalings t̂ = αt̄. That is, since both metrics are diagonal with no cross terms we
must have

t̂ = φ(t̄),

for some function φ. Moreover, since both metrics use the same radial coordinate r̄, the
transformation must meet the condition

Â

(

r̄

φ(t̄)

)

= A
( r̄

t̄

)

.

Differentiating this latter condition with respect to r̄ gives

φ(t̄)

t̄
=
Â′

A′ .

Since the left hand side is independent of r̄ and the right hand side is not, it must be that
both sides are constant, implying that

φ(t̄) = αt̄

for some (positive) constant, as claimed. �

In summary, equations (3.1)-(3.3) and (3.15) admit three (initial value) parameters and one
scaling law that describe a two parameter family of distinct spacetimes, one of which is
FRW. In Section 5 we show that by imposing regularity at the center there results a further
reduction to a continuous one parameter family of expanding wave solutions, such that one
value of the parameter corresponds to FRW, the Standard Model of Cosmology with pure
radiation sources.

4 Canonical Co-moving Coordinates and Comparison

with the k 6= 0 FRW Spacetimes

As a consequence of Theorem 4, we know that solutions of equations (3.8)-(3.10) correspond
to self-similar spacetimes that solve the Einstein equations with p = c2

3
ρ. The following

general theorem gives a canonical form for such spacetime metrics in co-moving coordinates.
We use this to prove that none of the spacetime metrics that solve (3.8)-(3.10) agree with
an FRW metric for any curvature parameter k 6= 0.

Theorem 7 Consider a general self-similar spacetime metric of the form,

ds2 = −B(ξ)dt̄2 +
1

A(ξ)
dr̄2 + r̄2dΩ2, (4.1)
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and let v̄ = v̄(ξ) be an arbitrary smooth velocity field, c.f. (3.14). That is, assume all
functions depend only on the self-similarity variable ξ = r̄

t̄
, and assume

v̄(ξ) =
ū1

ū0

1√
AB

, (4.2)

where

u ≡ ū0 ∂

∂t̄
+ ū1 ∂

∂r̄

is a timelike vector field that has unit length as measured by (4.1). Let φ(ξ) and ψ(ξ),
respectively, be solutions of the ODE’s

dφ

dξ
=

φ

ξ −
√
ABv̄

, (4.3)

dψ

dξ
=
ψ −

√
B(1 − v2)

ξ −
√
ABv̄

. (4.4)

Then under the coordinate mapping defined by

r̂ = φ(ξ)t̄, (4.5)

t̂ = ψ(ξ)t̄, (4.6)

the metric (4.1) transforms to the metric

ds2 = −dt̂2 +R(ζ)2dr̂2 + 2Q(ζ)dt̂dr̂ + r̄2dΩ2, (4.7)

where

ζ =
r̂

t̂
, (4.8)

and the velocity transforms to

v̂ = 0. (4.9)

Since v̂ = 0 and R(ζ) and Q(ζ) depend only on the self-similarity variable ζ = r̂
t̂
, (t̂, r̂) are co-

moving coordinates in which the metric defined by (4.1) remains self-similar. The coordinates
are canonical in the sense that the coefficient of −dt̂2 is unity in (t̂, r̂) coordinates.

Proof: Solving (4.2) for ū1 gives

ū1 = (
√
AB v̄)ū0, (4.10)

and using this in the condition that ū is a timelike unit vector gives

ū0 =
1

√

B(−1 + v̄2)
,
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so

u =

(

1√
B

1√
1 − v̄2

,

√
A v̄√

1 − v̄2

)

. (4.11)

Now since u is assumed to be a unit vector, the condition that (t̂, r̂) be co-moving is equivalent
to

û1 = 0, (4.12)

and the condition that the coefficient of −dt̂2 is unity is equivalent to

û0 = 1, (4.13)

where

u ≡ û0 ∂

∂t̂
+ û1 ∂

∂r̂
,

is the (t̂, r̂) representation of vector u. Now by (4.5),

∂t̂

∂t̄
= ψ,

∂t̂

∂r̄
= −ξψ′ + ψ (4.14)

∂r̂

∂t̄
= φ′ ∂r̂

∂r̄
= −ξφ′ + φ, (4.15)

where “prime” denotes d
dξ
. Using this, the co-moving condition (4.12) is

0 = û1 =
∂r̂

∂t̄
ū0 +

∂r̂

∂r̄
ū0 = (−ξφ′ + φ) ū0 + φū0, (4.16)

which by (4.11) is equivalent to (4.3). Similarly, the unity condition (4.13) becomes

1 = û0 =
∂t̂

∂t̄
ū0 +

∂t̂

∂r̄
ū0 = (−ξψ′ + ψ) ū0 + φū0, (4.17)

which by (4.11) is equivalent to (4.4). Since the Jacobian derivatives (4.14), (4.15) are all
functions of ζ, it follows that the (t̂, r̂) coordinate representation of metric (4.1) must be of
the form (4.7). �

The next theorem states that our self-similar solutions are distinct from the k 6= 0 FRW
spacetimes.

Theorem 8 Spacetime metrics defined by solutions of equations (3.8)-(3.10) are distinct
from the k 6= 0 Friedmann-Robertson-Walker spacetimes.
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Proof: The k 6= 0 FRW spacetimes in co-moving coordinates are given by

ds2 = −dt2 +
R(t)2

1 − kr2
dr2 +R(t)2r2dΩ2, (4.18)

[21]. Since by Theorem 7 we know each spacetime metric defined by a solution of equations
(3.8)-(3.10) can be mapped to a co-moving coordinate system (t̂, r̂) in which the metric takes
the form (4.7), in order to prove the theorem it suffices to prove that there is no coordinate
mapping that takes (4.18) to a metric of form (4.7) such that it preserves the co-moving
condition. So assume such a mapping (t̂, r̂) → (t, r) does exist. Now co-moving means fluid
trajectories move along r = const, so we must have

r = g(r̂), (4.19)

for some function g(r̂). Since both (4.18) and (4.7) are normalized so the coefficient of −dt2
is unity, it also follows that

t = t̂+ h(r̂), (4.20)

for some function h(r̂). Thus,

dr2 = g′(r̂)2dr̂2,

dt2 = dt̂2 + 2h′(r̂)dt̂dr̂ + h′(r̂)2dr̂2,

implying that (4.18) transforms to the metric

ds2 = −dt̂2 +

{

R2g′

1 − kr2
+ (h′)2

}

dr̂2 + 2h′ dt̂dr̂ + r̄2dΩ2, (4.21)

and our assumption is that we must have
{

R2g′

1 − kr2
+ (h′)2

}

= R̂(ζ)2, (4.22)

and

2h′(r̂) = Q̂(ζ)2, (4.23)

for some functions R̂(ζ) and Q̂(ζ), functions only of ζ = r̂
t̂
. Condition (4.23) immediately

implies
h′(r̂) = α = const.,

so (4.20) implies

t = t̂+ αr̂, (4.24)

for some constant α. Now denote the left hand side of (4.22) by f, and set S(t) ≡ R(t)2.
Then for a contradiction it suffices to show that the left hand side of (4.22) cannot be a
function of ζ when k 6= 0. But f is a function of ζ if and only if

ft̂
fr̂

= −ζ,
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so assuming it can we get

ft̂ =
(1 − kg(r̂)2)S ′g′

(1 − kg2)2
,

fr̂ =
(1 − kg(r̂)2)S ′g′

(1 − kg2)2
,

and we must have

−ζ =
ft̂
fr̂

=
(1 − kg2)S ′g′

(1 − kg2)[αS ′g′ + Sg′′] + 2kSg(g′)2
,

which after separating leads to

− 2kgg′

1 − kg2
− g′′

g′
=

(

α +
1

ζ

)

S ′

S
. (4.25)

The left hand side of (4.25) is a function of r̂ alone, so differentiating with respect to t̂ and

noting S′

S
= 2 Ṙ

R
= 2H , (H = H(t) the Hubble constant), we must have

0 = H +
(

αr̂ + t̂
)

H ′,

or upon using αr̂ + t̂ = t,
H ′

H
= −1

t
,

implying

H(t) =
C0

t
, (4.26)

for some constant C0. Now (4.18) must satisfy the FRW-equations

H2 =
κ

3
ρ− k, (4.27)

and

ρ̇ = −3(ρ+ p)H = −4ρH. (4.28)

Equations (4.26) and (4.27) imply

ρ =
3

κ

(

C2
0

t2
+ k

)

, (4.29)

and (4.26) together with (4.27) imply

ρ = C1t
−4C0 , (4.30)

for some constants C0 and C1. But (4.29) and (4.30) are inconsistent unless k = 0, (the case
in which ρ(t) is inverse square.) It follows, then, that f on the left hand side of (4.22) cannot
be written as a function of ζ when k 6= 0, and so there is no mapping of k 6= 0 FRW to
co-moving form (4.7), and the theorem is proved. �

As a corollary of the proof we have:
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Corollary 1 In the case of the k = 0 FRW metric (4.18), the mappings (4.19), (4.20) can
be taken as

r = ln(r̂),

t = t̂+ αr̂, (4.31)

for any constant α, and the co-moving form (4.21) of FRW in self-similarity variable ζ is

ds2 = −dt̂2 +
1

ζ
dr̂2 + α dt̂ dr̂ + r̄2dΩ2. (4.32)

5 Leading Order Corrections to the Standard Model

Induced by the Expanding Waves

We extend and make rigorous the asymptotic estimates in [18]. To clarify the issues, note
first that system (3.8)-(3.10) takes the form

ξ





A(ξ)
G(ξ)
v(ξ)





ξ

= F





A(ξ)
G(ξ)
v(ξ)



 , (5.1)

where ξ ≥ 0, and whose solutions we are concerned with in a neighborhood of ξ = 0. Thus
consider a general n× n system of ODE’s of the form

ξVξ = F (V ). (5.2)

Define the change of independent variable

ξ = es,

and observe that (5.7) goes over to the autonomous system of ODE’s

Us ≡
dU

ds
= F (U), (5.3)

where

U(s) = V (es), (5.4)

and note that for V0 ∈ Rn, lims→−∞U(s) = V0 iff limξ→0 V (ξ) = V0, in which case F (V0) = 0.
Then we have the following elementary lemma:

Lemma 3 Consider a general n×n system of form (5.2) in which F is a smooth function of
V ∈ Rn, and assume that V (ξ) is a smooth solution of (5.2) in ξ > 0 satisfying V (ξ) → V0

as ξ → 0, for some V0 ∈ Rn. Then F (V0) = 0.
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Proof: If ξ → 0, then s→ −∞, so if F (V0) 6= 0, then the flow of the autonomous ODE (5.3)
takes small neighborhoods of V0 to neighborhoods disjoint from V0, contradicting V (ξ) → V0.
�

Now assume V (ξ) → V0 ∈ Rn as ξ → 0, so that by the lemma F (V0) = 0. Expanding F (V )
in Taylor series about V0 gives

F (V ) = dF (V0)(V − V0) +O(1)|V − V0|2, (5.5)

so near V0, V (ξ) satisfies

ξ(V (ξ) − V0)
′ = dF (V0)(V (ξ) − V0), (5.6)

to leading order in |V − V0|. Setting W ≡ W (ξ) = V (ξ)− V0 in (5.6) gives the leading order
system

ξWξ = AW, (5.7)

where A is a constant n × n matrix with real entries. We restrict to the case that A has n
real and distinct eigenvalues. Then let B denote the n × n matrix that diagonalizes A, so
that

B−1AB = diag {λ1, ..., λn} ,

where

λ1 < λ2 < · · · < λn,

are the eigenvalues of A. Setting Z = B−1W ∈ Rn then reduces (5.7) to the diagonal system,

ξZ ′(ξ) = B−1ABW, (5.8)

which has the eigensolutions

Zi(ξ) = ξλiRi, (5.9)

where (λi,Ri) are the eigenpairs of A. From this we see that the only solutions V (ξ) of (5.2)
satisfying V (ξ) → V0 as ξ → 0 correspond to the solutions Z(ξ) that lie in the span of the
eigensolutions Zi(ξ) corresponding to λi > 0.

Note in particular that the solution V (ξ) will only have the smoothness at ξ = 0 allowed
by the powers of the eigenvalues in (5.9). However, in the special case when the positive
eigenvalues λi are all positive integers, (the case we find below), the span of the corresponding
linearized solutions (5.9) will all be infinitely differentiable at ξ = 0. One can show that
solutions of the nonlinear equations can be obtained by expanding solutions in powers of ξλi,
so in the case of positive integer eigenvalues below, arbitrary smoothness can be assumed at
ξ = 0, (c.f. Lemma 12 below).
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So assume from here on that we have a solution V (ξ) of a nonlinear system (5.2) such that
V (ξ) → V0 ∈ Rn as ξ → 0, so that F (V0) = 0, and A = dF (V0) has n real and distinct
eigenvalues. From (5.3), (5.4) note that for V0 ∈ Rn, lims→−∞ U(s) = V0 iff limξ→0 V (ξ) = V0,
in which case F (V0) = 0. Then the solutions U(s) of (5.3) corresponding to the positive
eigensolutions (5.9) of the linearized system (5.8) are just solutions in the unstable manifold
of the linearization of (5.3) at V0, namely,

{

U(s) = V0 +
∑

i

αie
λisRi : αi ∈ R

}

, (5.10)

where the sum on i is over all non-negative eigenvalues λi of dF (V0). We thus have the
following theorem:

Theorem 9 The solutions V (ξ) satisfying (5.7) together with the condition V (ξ) → V0 ∈ Rn

as ξ → 0 are exactly the solutions U(s) = V (es) of (5.3) in the unstable manifold of the
hyperbolic rest point V0, F (V0) = 0.

Consider now (3.8)-(3.10), a system of form (5.7). We know by Theorem 3 that the Standard
Model satisfies (3.8)-(3.10) with,

A = 1 − v2, G = ψ0ξ, ξ =
2v

ψ0(1 + v2)
, (5.11)

where ψ0 is the constant that corresponds to a change of time-scale, c.f. Lemma 3. Solving
the last equation for v, (assuming the case v → 0+ as ξ → 0+), and from here on letting
the subscript “1” refer to the Standard Model, gives

v1(ξ) ≡
1 −

√

1 − ψ2
0ξ

2

ψ0ξ
. (5.12)

Thus (5.11) and (5.12) define the functions A1(ξ), G1(ξ), v1(ξ) of the Standard Model, and
so as ξ → 0 in the Standard Model we have





A1(ξ)
G1(ξ)
v1(ξ)



 ≡





1 − v1(ξ)
2

ψ0ξ
v1(ξ)



→





1
0
0



 . (5.13)

We thus look for all solutions (A(ξ), G(ξ), v(ξ)) of (3.8)-(3.10) that tend to the rest point
(1, 0, 0) as ξ → 0, and these correspond to all solutions U(s) = V (es) in the unstable
manifold of rest point (1, 0, 0) of (5.3). But note that (3.8)-(3.10) are undetermined at
(A,G, v) = (1, 0, 0) without knowing the limit of the ratio G/v in the limit ξ → 0.

To remedy this, define the variable

H = G/v, (5.14)
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and consider (3.8)-(3.10) in the nonsingular variables (v, A,H), (re-ordered so as to diago-
nalize the linearized operator at V0, c.f. (5.34) below.) Thus without confusion, from here
on let V refer to the 3-vector

V ≡





v
A
H



 , (5.15)

so that we recover G from the identity

G = Hv.

Again let ξ = es and U(s) = V (es) so that ξVξ = U(s). Then equation (3.10), in terms of
variables V ≡ (v, A,H), becomes

vs ≡ ξvξ = −
(

1 − v2

2 {·}D

)

{

[

(3 + v2)H − 4
]

v +
4
(

1−A
A

)

{·}∗N v
(3 + v2)H − 4

}

,

(5.16)

where

{·}N ≡ {·}∗N v2, (5.17)

{·}∗N =
{

−2v2 + 2(3 − v2)H − (3 − v4)H2
}

, (5.18)

{·}D =
{

(3v2 − 1) − 4Hv2 + (3 − v2)H2v2
}

; (5.19)

Equation (3.8) in terms of variables V ≡ (v, A,H) goes over to

As ≡ ξAξ = −
[

4(1 − A)

(3 + v2)H − 4

]

; (5.20)

and equation (3.9) goes over to

Hs ≡ ξHξ =
Gs

v
− G

v2
vs, (5.21)

where

Gs

v
= −H

{(

1 − A

A

)

2(1 + v2)H − 4

(3 + v2)H − 4
− 1

}

, (5.22)

and

G

v2
vs = −H

(

1 − v2

2 {·}D

)

{

(3 + v2)H − 4 +
4
(

1−A
A

)

{·}∗N v
(3 + v2)H − 4

}

. (5.23)
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The constraint (3.32) then becomes

κw =
(1 − A)H

[(3 + v2)H − 4] v
. (5.24)

To summarize, system (5.16)-(5.23) shall be denoted

Us ≡ ξVξ = ξ





v′(ξ)
A′(ξ)
H ′(ξ)



 = F (U), (5.25)

where the change of variables

ξ = es, U(s) = V (es), (5.26)

transforms ξ d
dξ

= d
ds

, so that in terms of U(s), (5.25) is an autonomous system of three

ODE’s equivalent to (5.16), ((5.20) and (5.21), namely

Us = F (U). (5.27)

We now have that as ξ → 0 or s→ −∞, the solution

V1(ξ) = (v1(ξ), A1(ξ), H1(ξ)), (5.28)

corresponding to the Standard Model, has the regular limit, (c.f. (5.9), (5.13)),

U1(s) = V1(ξ) ≡





v1(ξ)
A1(ξ)
H1(ξ)



 =





v1(ξ)
1 − v1(ξ)

2

2
1+v1(ξ)2



→





0
1
2



 ≡ V0. (5.29)

We now linearize (5.27) about the nonsingular rest point V0 = (0, 1, 2).

For this, write (5.27) as





v
A
H





s

= F (U) ≡





f(U)
g(U)
h(U)



 , (5.30)

where f, g, h are defined by the RHS of system (5.16), (5.20) and (5.21), respectively. Then
we obtain directly from the second equation (5.20) that

dg(V0) ≡
(

∂g

∂v
,
∂g

∂A
,
∂g

∂H

)

V0

= (0, 2, 0). (5.31)

Neglecting terms second order in v and terms that vanish at (0, 1, 2) on the RHS of the first
equation (5.16) gives

df(V0) = −d
{

H

(

1

2(−1)

)

(3Hv − 4v)

}

= (1, 0, 0); (5.32)
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and similarly from the third equation (5.21) we obtain

dh(V0) = −d
{([(

1 −A

A

)

2H − 4

3H − 4
− 1

]

−
[

1

2(−1)
(3H − 4)

])}

V0

=

(

0,−H(−A)

A2

(

2H − 4

3H − 4

)

,− d

dH

(

H

{

−1 +
1

2
(3H − 4)

}))

V0

= (0, 0,− (−1 + 3H − 2))V0

= (0, 0,−3). (5.33)

Putting (5.31)-(5.33) together yields the diagonal matrix

dF (V0) =





df(V0)
dg(V0)
dh(V0)



 =





1 0 0
0 2 0
0 0 −3



 , (5.34)

implying that V0 is a hyperbolic rest point of system (5.27) with positive eigenvalues λ1 =
1, λ2 = 2 and negative eigenvalue λ3 = −3.

We conclude that solutions U(s) = V0 +W (s) of the linearized equations

Ws = dF (V0) ·W, (5.35)

at the rest point V0 of system (5.25), such that U(s) tends to V0 as ξ → 0, s → −∞, are
precisely solutions in the 2-dimensional unstable manifold M0 of V0

M0 =





0
1
2



 + Span











1
0
0



 es,





0
1
0



 e2s







, (5.36)

so that

U(s) =





αes

1 + βe2s

2



 , (5.37)

and

V (ξ) =





αξ
1 + βξ2

2



 . (5.38)

It thus follows from the Stable Manifold Theorem and the Hartman-Grobman Theorem for
hyperbolic rest points, [5, 12], that solutions U(s) of the nonlinear system (5.27) that tend
to the rest point V0 as s → −∞ (like the Standard Model), must be precisely the solutions
that lie in the 2-dimensional unstable manifold M of rest point V0 for the nonlinear system
(5.27), where M is tangent to M0 at V0, and such that, in a neighborhood of V0, nonlinear
solutions in M are in 1 − 1 correspondence with the linear solutions (5.36) in M0, [12]. In
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particular, it follows from (5.29) that the Standard Model V1(ξ) = U1(s) is the particular
solution in M that corresponds to

α =
ψ0

2
, β = −ψ

2
0

4
.

Thus in general we define the two constants ψ0 and a2 for the linearized solutions as

α =
ψ0

2
, β = −a

2ψ2
0

4
,

so that the general solution of the linearized equations (3.8)-(3.10) at rest point V0 is given
by

v(ξ) =
ψ0

2
ξ

A(ξ) = 1 − a2ψ2
0ξ

2

4
(5.39)

H(ξ) = 2. (5.40)

The condition ψ0 > 0 guarantees an expanding solution (v > 0) near ξ = 0, and the condition
and a2 > 0 guarantees a spacetime “outside the black hole” in the sense that 0 < A < 1,
near ξ = 0. In this paper we are interested in the case ψ0 > 0, a2 > 0 but when referring to
a general solution in M0 we formally allow ψ0, a

2 to be constants in R.15

We now derive refined estimates for solutions V (ξ) of the fully nonlinear system (5.25) that
lie in the invariant manifold M. These estimates give the order at which a general solution
V (ξ) in M diverges from the Standard Model V1(ξ) near the rest point V0. For this, define M∗

to be the subset of M consisting of all orbits except the unique orbit manifold corresponding
to the (weaker) eigenvalue λ = 2. Thus the Standard Model lies in M∗ because α 6= 0, and
all orbits in M∗ enter the rest point tangent to the standard model as s→ −∞.

The main purpose of this section is to prove the following theorem:

Theorem 10 Let V (ξ) = (v(ξ), A(ξ), H(ξ)) be any solution of system (5.25) that lies in
M∗, so that limξ→0 V (ξ) = V0 = (0, 1, 2), and let V1(ξ) = (v1(ξ), A1(ξ), G1(ξ)), with H1(ξ) ≡
G(ξ)v(ξ) be the solution for the Standard Model given in (5.13), (c.f. (5.11), (5.12), (5.28)).
Then there exist real constants ψ0, a

2 such that the following estimates hold:

v(ξ) = v1(ξ) +
(1 − a2)

8
ψ3

0ξ
3 +O(1)|a− 1|ξ5, (5.41)

A(ξ) = 1 − a2v2
1(ξ) +

3a2(1 − a2)

16
ψ4

0ξ
4 +O(1)|a− 1||ξ6, (5.42)

H(ξ) = H1(ξ) −
1 − a2

2
ψ2

0ξ
2 +O(1)|a− 1|ξ4 (5.43)

=
ψ0ξ

v(ξ)
+O(1)|a− 1||ξ4, (5.44)

15It is interesting that equations (3.8)-(3.10) admit black hole-type solutions A < 0 in a neighborhood of
ξ = 0.
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and

G(ξ) = ψ0ξ +
a(1 − a2)

32
ψ5

0ξ
5 +O(1)|a− 1||ξ7, (5.45)

A(ξ)B(ξ)ψ2
0 = 1 − a(1 − a)

16
ψ4

0ξ
4 +O(1)|a− 1||ξ6, (5.46)

where all of the right hand sides are functions of ψ0ξ, and for convenience we let O(1)16

incorporate the constant ψ0 in the error terms that vanish on the Standard Model a = 1.
Moreover, for each choice of ψ0 > 0, a2 > 0, there exists a solution

V (ξ) ≡ (Va(ψ0ξ),Aa(ψ0ξ),Ha(ψ0ξ)), (5.47)

in M∗ such that (5.41)-(5.46) hold, and this corresponds to the two parameter family of
exact solutions of the Einstein equations

ds2 = −ψ−2
0 Ba(ψ0ξ)dt̄

2 +
1

Aa(ψ0ξ)
dr̄2 + r̄2dΩ2, (5.48)

where
ψ−2

0 Ba(ψ0ξ) ≡ B(ξ),

and B(ξ) is defined in (5.46), so that Aa(·) and Ba(·) are independent of ψ0.

As a first comment, note that (5.46) implies that

√
AB ≡

√

A(ξ)B(ξ) =
1

ψ0

{

1 − a(1 − a)

32
ψ4

0ξ
4

}

+O(1)|a− 1|ξ6. (5.49)

Now
√
AB is the factor that converts velocity v measured relative to the speed of light,

0 ≤ v < 1, over to coordinate velocity ū1/ū0, where ū0 and ū1 are the time and radial
components of the 4-velocity of a particle moving at speed v in SSC coordinates, respectively.
That is,

dr̄

dt̄
=
ū1

ū0
=

√
AB v.

Thus (5.49) tells us that near the center ξ = 0, it could be difficult to measure the small
dilation of time between the a 6= 1 spacetimes and the Standard Model.

Note also that (5.41), (5.43) imply

G ≡ G(ξ) = ψ0ξ +O(1)|a− 1|ξ5

and

AB =
1

ψ2
0

+O(1)|a− 1|ξ4,

16In this paper O(1) denotes a function bounded as ξ → 0, and in the next section we will, without loss
of generality, set ψ0 = 1.
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but they are not sufficient to determine the fourth and fifth order terms given in (5.45) and
(5.46), respectively. For example, (5.41) and (5.43) with G ≡ Hv give

G ≡ Hv = H1v1

(

1 − 1 − a2

2H1
ψ2

0ξ
2 +O(1)|a− 1|ξ4

)

×
(

1 +
1 − a2

8v1

ψ3
0ξ

3 +O(1)|a− 1|ξ4

)

= G1

(

1 + O(1)|a− 1|ξ4
)

, (5.50)

where we used H1 ≡ H1(ξ) = 2 +O(1)ξ2 and v1 ≡ v1(ξ) = ψξ
2

+O(1)ξ3 to see the canceling
of the second order terms in the parentheses. But (5.50) does not give the precise form of
the fifth order terms in (5.45). Note also that (5.46) implies the useful relation

B =
1

ψ2
0A

{

1 − a(1 − a)

16
ψ4

0ξ
4

}

+O(1)|a− 1|ξ6. (5.51)

In a different direction, note that (5.41) together with

v1(ξ) =
ψ0ξ

2
(1 + v2

1) =
1

2
ψ0ξ +

1

8
ψ3

0ξ
3 +O(1)ξ5, (5.52)

(c.f. (5.11)), gives the first two non-trivial terms in (5.41), (5.42) as

v(ξ) = v1(ξ) +
(1 − a2)

8
ψ3

0ξ
3 +O(1)ξ5, (5.53)

A(ξ) = 1 − a2v2
1(ξ) +

3a2(1 − a2)

16
ψ4

0ξ
4 +O(1)|ξ6. (5.54)

(5.55)

(Note at this stage the error term does not include factor |a − 1|.) Also using G1 = ψ0ξ
together with (5.52) gives

H1(ξ) ≡
G1

v1
= 2 − 1

2
ψ2

0ξ
2 +O(1)ξ4, (5.56)

and using this together with (5.45) in (5.43) gives

H(ξ) = 2 − (2 − a2)

2
ψ2

0ξ
2 +O(1)ξ4, (5.57)

but the O(1)’s in (5.53)-(5.57) do not vanish when a = 1.

Note finally that re-scaling ψ0 corresponds to re-scaling time in the nonlinear system (3.8)-
(3.10), and this corresponds to translation in the parameter s in (5.27), an invariance of
solutions of autonomous ODE’s. Changes in the parameter a, however, correspond to real
changes in the underlying spacetime.

To complete the picture, the following corollary of Theorem 10 gives asymptotic formulas
for the density, c.f. (3.13):
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Corollary 2 When a = 1, the density ρ ≡ ρ1 of the Standard Model is given exactly by

κρ1 =
φ1(ξ)

r̄2
, (5.58)

φ1(ξ) =
3

2
(1 − v2

1)v
2
1, (5.59)

where v1 ≡ v1(ξ) is the Standard Model velocity, c.f. (5.11). When a 6= 1, the density
satisfies the asymptotic expression

κρ =
φ(ξ)

r̄2
, (5.60)

φ(ξ) = φ1(ξ) −
3

2
(1 − a2)v2

1(ξ) +
3

2
(4a2 − 1)(1 − a2)v4

1(ξ) +O(1)|a− 1|ξ6.

(5.61)

Proof: For (5.59), note that from (3.13)

φ1(ξ) =
3(1 + v2

1)(1 − A1)H1

2H1 + (1 + v2
1)H1 − 4

=
3

2
(1 + v2

1)(1 −A1),

where we use the Standard Model identity

(1 + v2
1)H1 − 4 = 0.

To derive (5.61), start from (3.13) to get

φ(ξ) =
3(1 + v2)(1 −A)

2
(

1 + (1+v2)H−4
2H

) , (5.62)

write

3
2(1 + v2)(1 −A) = φ1(ξ) + 3

2

{

−(1 + v2
1)(A−A1) + (v2 − v2

1)(1 −A)
}

,

(5.63)

and use (5.43) to estimate

(1 + v2)H − 4

2H
= −1 − a2

2
v2
1 +O(1)|a− 1|ξ4. (5.64)

Putting (5.63) and (5.64) into (5.62) and using (5.61) and

(v2 − v2
1)(1 −A) = O(1)|a− 1|ξ6
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yields

φ(ξ) =
{

φ1(ξ) − 3
2
(1 + v2

1)(A− A1)
}

(

1 + 1−a2
2
v2
1

)

+O(1)|a− 1|ξ6

= φ1(ξ) − 3
2
(1 + v2

1)(A−A1) + φ1(ξ)
1−a2

2
v2
1 (5.65)

−3
2
(1 + v2

1)(A− A1)
(1−a2)

2
v2
1 +O(1)|a− 1|ξ6,

where by (5.42) the three terms in (5.65) can be estimated by

−(1 + v2
1)(A−A1) = A− A1 + v2

1(A−A1)

= (a2 − 1)v2
1 + 3a2(1 − a2)v4

1 + (a2 − 1)v4
1 +O(1)|a− 1|ξ6

= −(1 − a2)v2
1 + (1 − a2)(3a2 − 1)v4

1 +O(1)|a− 1|ξ6,

φ1(ξ)
1−a2

2
v2
1 = 3

4
(1 − a2)v4

1 +O(1)|a− 1|ξ6,

−3
2
(1 + v2

1)(A− A1)
(1−a2)

2
v2
1 = −3

4
(1 − a2)2v4

1 +O(1)|a− 1|ξ6.

Substituting these into (5.65) and collecting powers of v1 yeilds (5.61). �

Our strategy in the proof of Theorem 10 is to first prove the theorem in the simpler case
when we assume the O(1)|a − 1| terms in (5.41)-(5.46) are only O(1) as ξ → 0. This is
simpler because we do not need to assume continuity or smoothness of the function O(1) as
ξ → 0. This is the setting for Lemmas 4-11 below. In the final lemma, Lemma 12 below, we
will argue for the smoothness of these O(1) terms in the limit ξ → 0, sufficient to bootstrap
from O(1) to O(1)|a− 1|.

To start, recall that the invariant manifold M for the nonlinear system (5.25) is tangent
to the invariant manifold M0 of the linearized system (5.35), at the rest point V0, so we
can conclude that M is normal to the vector (0, 0, 1) in (v, A,H) space at V0, c.f. (5.36).
Moreover, since solutions in M are associated with eigenvalues λ = 1, 2, it follows that
except for the unique orbit associated with the unstable manifold for eigenvalue λ = 2,
(orbit tangent to (0, 1, 0) at V0), all solutions in M come into the rest point V0, in backward
time, tangent to the linearized solutions of the strongest eigenvalue, (smallest in backward
time), λ = 1. Thus M∗ is the set of solution trajectories of Us = F (U) that come into
V0 tangent to (1, 0, 0). Our starting point in the proof of Theorem 10 is thus the following
corollary of the Invariant Manifold Theorem:

Lemma 4 Let V (ξ) = (v(ξ), A(ξ), H(ξ)) denote any solution of (5.25) in M∗, so that
limξ→0 V (ξ) = V0. Then V (ξ) is a smooth function away from ξ = 0, and

H(ξ) = 2 +O(1)ξ2, (5.66)

and there exists ψ0 6= 0 such that
∥

∥

∥

∥

∥

∥

V (ξ) −









0
1
2



 +
ψ0ξ

2





1
0
0









∥

∥

∥

∥

∥

∥

= w(ξ)ξ, (5.67)
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where O(1) denotes a function smooth for ξ > 0 and bounded as ξ → 0, and w(ξ) satisfies

limξ→0w(ξ) = 0. (5.68)

Note that the Standard Model (5.29) satisfies (5.66), (5.67) with the much stronger estimate
w(ξ) = O(1)ξ2.

We now prove a number of lemmas that improve on Lemma 4. The main technical result
we use is the following:

Lemma 5 Let u(ξ) be a solution of the scalar ODE

ξuξ = f(u, ξ), (5.69)

such that u(ξ) is smooth for ξ > 0, and bounded as ξ → 0. Then:

(a) If f is a smooth function such that f(u, 0) has a finite number of non-degenerate rest
points, then u(ξ) must tend to a rest point of f(u, 0). That is, there exists a finite u0 ∈ R
such that f(u0, 0) = 0, and limξ→0 u(ξ) = u0.

(b) If equation (5.69) is of the form

ξu′(ξ) = αu(ξ)(1 + g(ξ)ξn), (5.70)

where n > 0, α > 0, and g is a function continuous for ξ > 0 and bounded in the limit
ξ → 0, then

u(ξ) = u0ξ
α(1 +O(1)ξn) (5.71)

as ξ → 0, and the sign {u(ξ)} is constant.

(c) If equation (5.69) is of the form

ξu′(ξ) = −αu(ξ) + β + g(ξ)ξn, (5.72)

where n > 0, α > 0, β is real, and g is a function continuous for ξ > 0 and bounded in the
limit ξ → 0, then

u(ξ) =
β

α
+O(1)ξn (5.73)

as ξ → 0.
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Proof of (a): Note first that (a) holds with f(u, ξ) replaced by f(u, 0) in (5.69), because
the substitution ξ = es would transform the problem into

d

ds
u = f(u, 0),

a standard scalar ODE for which it is well known that solutions tend to ∞ or to rest points
as s → −∞, ξ → 0. Since f(u, ξ) is continuous in ξ, it follows that for ǫ sufficiently
small, the function f(u, ǫ) has a finite number of non-degenerate rest points that are small
perturbations of the rest points of f(u, 0). From this it follows that solutions of

d

ds
u = f(u, ξ),

must tend to ∞ or a rest point in the limit s→ −∞, ξ → 0 as well.

Proof of (b): Since u(ξ) is smooth away from ξ = 0, and bounded as ξ → 0, it follows by
(a) that u(ξ) must tend to a rest point of the right hand side of (5.70) as ξ → 0, so

lim
ξ→0

u(ξ) = 0. (5.74)

Define y(ξ) for ξ > 0 by

u(ξ) = y(ξ)ξα, (5.75)

so that (5.74) becomes

ξu′(ξ) ≡ ξy′(ξ)ξα + αy(ξ)ξα = αy(ξ)ξα(1 +O(1)ξn), (5.76)

which reduces to

y′

y
= O(1)ξn−1. (5.77)

Integratinging (5.77) from ξ to ξ̄, 0 < ξ < ξ̄, gives

y(ξ) = y(ξ̄) eO(1)(ξ̄n−ξn), (5.78)

from which we conclude that y(ξ) → y0 ≡ u0 is bounded and finite as ξ → 0. Thus taking
ξ → 0 in (5.78) and replacing ξ̄ by ξ gives

y(ξ) = u0 e
O(1)ξn

= u0 (1 +O(1)ξn) . (5.79)

Putting (5.79) into (5.75) gives (5.73) as claimed. From (5.78), the sign of y(ξ) is either
everywhere non-zero or identically zero, and so sign {u(ξ)} is constant.

Proof of (c): Since u(ξ) is smooth away from ξ = 0, and bounded as ξ → 0, it follows again
by (a) that u(ξ) must tend to a rest point of the right hand side of (5.73) as ξ → 0, so that

lim
ξ→0

u(ξ) =
β

α
≡ u0. (5.80)
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Using (5.80) in (5.73) then gives

ξ(u− u0)ξ = −α(u− u0) +O(1)ξn. (5.81)

But the only way (5.81) can be satisfied by a function u(ξ) smooth for ξ > 0, and bounded
as ξ → 0, is if

w(ξ) = w0 +O(1)ξn. (5.82)

To see this, define y(ξ) for ξ > 0 by

u− u0 = y(ξ)ξ−α, (5.83)

so that (5.82) becomes

ξ(u− u0)ξ ≡ ξy′(ξ)ξ−α − αy(ξ)ξ−α = −αy(ξ)ξ−α +O(1)ξn (5.84)

which reduces to

y′(ξ) = O(1)ξn+α−1. (5.85)

Integrating (5.85) from 0 to ξ then gives

y(ξ) = y(0) +O(1)ξn+α,

which in (5.83) gives

u(ξ) = u0 + y(0)ξ−α +O(1)ξn. (5.86)

Since u is bounded as ξ → 0, it follows that y(0) = 0 in (5.86), in which case (5.86) gives
(5.73) . �

Now define

Aa(ξ) ≡ 1 − a2v1(ξ), (5.87)

so that

Aa(ξ) ≡ 1 − a2ψ2
0ξ

2

4
+O(1)ξ4., (5.88)

and let Va(ξ) denote the approximate solution

Va(ξ) ≡





va(ξ)
Aa(ξ)
Ha(ξ)



 =





v1(ξ)
1 − a2v1(ξ)

2

2
1+v1(ξ)2



 , (5.89)

so that

va(ξ) = v1(ξ) (5.90)

1 −Aa(ξ) = a2 {1 − A1(ξ)} , (5.91)

Ha(ξ) = H1(ξ), (5.92)
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and hence Va(ξ) differs from the exact Standard Model solution V1(ξ) only in theA-component.
Also note that as a function of ξ,

Va(ξ) ≡





0
1
2



+







ψ0

2
ξ

−a2ψ2

0

4
ξ2

−ψ2

0

2
ξ2






+O(1)ξ3, (5.93)

but the O(1) in (5.93) does not vanish when a = 1.

Lemma 6 Let V (ξ) = (v(ξ), A(ξ), H(ξ)) be any solution of (5.25) in M∗. Then there exists
a2 ∈ R such that

A(ξ) = Aa(ξ) +O(1)ξ4. (5.94)

(Again, we allow ψ0 and a2 to denote any real numbers when discussing all solutions in
M, but restrict to positive values when restricting to cosmological models that perturb the
Standard Model near ξ = 0.)

Proof: To verify (5.94), consider equation (3.8):

ξAξ = − (1 − A)v

(3 + v2)Hv − 4v
= − 4(1 − A)

(3 + v2)H − 4
. (5.95)

Now since V (ξ) exactly solves (5.95), substituting (5.66) and (5.67) into (5.95) gives

ξ(1 − A)ξ =
4(1 − A)

2(1 +O(1)ξ2)
= 2(1 −A)(1 +O(1)ξ2), (5.96)

where again O(1) is bounded as ξ → 0. Equation (5.96) is an equation of form (5.71) with
u = 1 −A, α = 2, n = 2,, so part (b) of Lemma 5 implies that

1 −A(ξ) =
a2ψ2

0ξ
2

4
+O(1)ξ4, (5.97)

where for convenience take,

u0 =
a2ψ2

0

4
,

(no sign assumed on a2). Now substituting

v1(ξ)
2 =

ψ2
0

4
ξ2 +O(1)ξ4,

we obtain
A(ξ) = 1 − a2v1(ξ)

2 +O(1)ξ4 = Aa(ξ) +O(1)ξ4,

as claimed in (5.94). �

The next lemma improves (5.67) for the function v(ξ):
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Lemma 7 Let V (ξ) = (v(ξ), A(ξ), H(ξ)) be any solution of (5.25) in M∗ such that (5.94)
of Lemma 6 holds. Then

v(ξ) = v1(ξ) +O(1)ξ3. (5.98)

Note that since v1(ξ) = ψ
2
ξ +O(1)ξ3, it follows from (5.98) that

v(ξ) =
ψ

2
ξ +O(1)ξ3, (5.99)

but in this case O(1) does not vanish when a = 1.

Proof: By Lemma 6 it suffices to prove that there exists a2 ∈ R such that V (ξ) =
(v(ξ), A(ξ), H(ξ)) with A(ξ) = Aa(ξ) + O(1)ξ4, such that (5.98) holds. For this, consider
equation (5.16) in the form

ξvξ = −
(

1 − v2

2 {·}D

)

(

[

(3 + v2)H − 4
]

v +
4
(

1−A
A

)

{·}∗N v
(3 + v2)H − 4

)

,

(5.100)

and observe that (5.67) implies that

v(ξ) = O(1)ξ,

as ξ → 0. Using this together with (5.66) and (5.94), and applying them in (5.17)-(5.19)
gives

H = 2 +O(1)ξ2, (5.101)

1 − A = O(1)ξ2, (5.102)

{·}D = −1 +O(1)v2, (5.103)

{·}∗N = O(1)v2. (5.104)

Using (5.101)-(5.104) in (5.100) gives

ξvξ = −v +O(1)ξ3. (5.105)

To estimate (5.105), define α(ξ) by

vξ = α(ξ)ξ. (5.106)

Putting (5.106) into (5.105) gives

α′(ξ) = O(1)ξ, (5.107)

which integrates to

α(ξ) = α(0) +O(1)ξ2. (5.108)
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Substituting (5.108) into (5.106) and setting α(0) = ψ0

2
gives

v(ξ) =
ψ0

2
ξ +O(1)ξ3,

which, since ψ0

2
ξ = v1(ξ) +O(1)ξ3 as well, gives (5.98) as claimed. �

We now use Lemmas 6 and 7 to improve the estimate (5.66) for H(ξ) :

Lemma 8 Let V (ξ) = (v(ξ), A(ξ), H(ξ)) be any solution of (5.25) in M∗ satisfying (5.94)
of Lemma 6 and (5.98) of Lemma 7. Then

G(ξ) = ψ0ξ +O(1)ξ5, (5.109)

H(ξ) =
ψ0ξ

v(ξ)
+O(1)ξ4, (5.110)

√
AB =

1

ψ0
+O(1)ξ4, (5.111)

where the constants O(1) vanish on the Standard Model a = 1.

Proof: Note first that (5.110) and (5.111) follow from (5.109) via the identities G = Hv
and

√
AB = Gξ, and thus since (5.109) is exact, (G1(ξ) = ψ0ξ), on the Standard Model, it

follows that all constants O(1) in (5.109)-(5.111) are zero when a = 1. .

To verify (5.109), consider equations (3.9) and (5.21) in the form

ξGξ = −G
{(

1 −A

A

)

2(1 + v2)H − 4

(3 + v2)H − 4
− 1

}

. (5.112)

(5.113)

Note now that by (5.98),

v(ξ)2 = v2
1(ξ) +O(1)ξ4, (5.114)

and that on the Standard Model V1(ξ) we have the identity

2(1 + v2
1)H1 − 4 = 0, (5.115)

with

H1 =
2

1 + v2
1

, (5.116)

c.f. (5.11), (5.29). Also, by (5.66) we have

H = H1 +O(1)ξ2, (5.117)
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and by (5.94)

1 − A = O(ξ2). (5.118)

Substituting (5.114)-(5.118) into (5.112) gives

ξGξ = G
{

1 +O(ξ4)
}

. (5.119)

Now putting the definition G ≡ ξ√
AB

into (5.119) gives

(√
AB
)

ξ
= O(1)ξ3, (5.120)

and integrating this from 0 to ξ, (note that
√
AB = ξ

Hv
→ 1

ψ0

as ξ → 0), gives

√
AB =

1

ψ0

{

1 +O(1)ξ4)
}

, (5.121)

which also gives

AB =
1

ψ2
0

{

1 +O(1)ξ4)
}

, (5.122)

and

1√
AB

= ψ0

{

1 +O(1)ξ4)
}

. (5.123)

Now

H =
ξ

v
√
AB

,

so using (5.123) in this gives

H =
ψ0ξ

v

{

1 +O(1)ξ4
}

. (5.124)

Thus since
G = Hv,

and v = ψ0

2
ξ +O(1)ξ3, we conclude from (5.124) that

G(ξ) = ψ0ξ +O(1)ξ5,

as claimed in (5.109). �

We now can give a proof of estimate (5.41), which gives the dependence of v(ξ) at the third
order in ξ, a refinement of (5.99):
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Lemma 9 Let V (ξ) = (v(ξ), A(ξ), H(ξ)) be any solution of (5.25) in M∗. Then there exists
a and ψ0 such that

v(ξ) = v1(ξ) +
1 − a2

8
ψ3

0ξ
3 +O(1)ξ5. (5.125)

Proof: Consider again equation (5.16) in the form

ξvξ = −
(

1 − v2

2 {·}D

)

(

[

(3 + v2)H − 4
]

v +
4
(

1−A
A

)

{·}∗N v
(3 + v2)H − 4

)

.

(5.126)

Since we now have

H = H1 +O(1)ξ4 (5.127)

v = v1 +O(1)ξ3 (5.128)

v2 = v2
1 +O(1)ξ4, (5.129)

(5.130)

we can use these in (5.17)-(5.19) to get

{·}∗N ≡
{

−2 + 2(3 − v2)H − (3 − v4)H2
}

=
{

−2 + 2(3 − v2
1)H1 − (3 − v4

1)H
2
1

}

+O(1)ξ4

= {1}∗N +O(1)ξ4, (5.131)

= −2 +O(1)ξ2, (5.132)

{·}D ≡
{

(3v2 − 1) − 4Hv2 + (3 − v2)H2v2
}

=
{

(3v2
1 − 1) − 4H1v

2
1 + (3 − v2

1H
2
1v

2
1

}

+O(1)ξ4

= {1}D +O(1)ξ4, (5.133)

= −1 +O(1)ξ2, (5.134)

where

{1}∗N ≡ {1}∗N (ξ)

{1}D ≡ {1}D (ξ)

denote {·}∗N , {·}D with (v1(ξ), H1(ξ)) substituted for (v,H), respectively. Since v is O(1)ξ,
estimates (5.127), (5.129), (5.131) and (5.133) imply that we can replace H by H1, v by v1,
{·}∗N by {1}∗N and {·}D by {1}D in (5.126) and incur an error no greater than O(1)ξ5. That
is,

ξvξ = −
(

1 − v2
1

2 {1}D

)

[

(3 + v2
1)H1 − 4

]

v (5.135)

+

(

1 − v2
1

2 {1}D

)

4
(

1−A
A

)

{1}∗N v1

(3 + v2
1)H1 − 4

+O(1)ξ5.
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Note that the first two terms on the RHS of (5.135) are just f(v1, A1, H1) with v in place of
v1 in the last place of the first term, and A in place of A1 in the second term. Substituting

v = v1 + (v − v1),

and
1 −A

A
=

1 −A1

A1

+

[

1 − A

A
− 1 −A1

A1

]

=
1 −A1

A1

+

[

A1 − A

A1A

]

,

into (5.135), gives

ξvξ = f(v1, A1, H1) −
{

1 − v2
1

2 {1}D
[

(3 + v2
1)H1 − 4

]

}

(v − v1)

−
{(

1 − v2
1

2 {1}D

)

4 {1}∗N v1

(3 + v2
1)H1 − 4

}[

A1 −A

A1A

]

(5.136)

+O(1)ξ5,

Now by (5.94),
1 −A = a2(1 − A1) +O(1)ξ4,

so
A− A1 =

(

1 − a2(1 − A1)A1

)

+ O(1)ξ4,

and thus

A1 −A

A1A
=

(1 − a2)(1 − A1)

[1 − a2(1 −A1)]A1
+O(1)ξ4

=
(1 − a2)(1 − A1)

(1 − a2v2
1)(1 − v2

1)
+O(1)ξ4

= (1 − a2)v2
1 +O(1)ξ4. (5.137)

Using this in (5.136) gives

ξvξ = f(v1, A1, H1) −
{

1 − v2
1

2 {1}D
[

(3 + v2
1)H1 − 4

]

}

I

(v − v1)

−(1 − a2)

{(

1 − v2
1

2 {1}D

)

4 {1}∗N
(3 + v2

1)H1 − 4

}

II

v3
1 (5.138)

+O(1)ξ5.

and use the notation that

{1}I ≡ {1}I (ξ)

{1}II ≡ {1}II (ξ)

denote the two brackets {·}I and {·}II in (5.138), with the 1s indicating that both are
evaluated on the Standard Model V1 = V1(ξ). Now since v − v1 beside {1}I and v3

1 beside

45



{1}II are both O(1)ξ3, it follows that the v2
1 terms in {1}I and {1}II , being O(1)ξ2, can be set

equal to zero incurring an error no greater than O(1)ξ5. For the same reason, H1 = 2+O(1)ξ2

can be replaced by 2 in (5.138) to error O(1)ξ5. The result then is that

{1}I =
1

{1}D
+O(1)ξ2 = −1 +O(1)ξ2

{1}II =
{1}∗N
{1}D

+O(1)ξ2 = 2 +O(1)ξ2,

where we have used (5.132) and (5.134). Putting these in (5.138) gives

ξvξ = f(v1, A1, H1) + (v − v1) − 2(1 − a2)v3
1 +O(1)ξ5. (5.139)

To solve (5.139) for v − v1, set

v(ξ) = v1(ξ) + w(ξ)ξ3. (5.140)

Substituting (5.140) into (5.136), and using that v1 satisfies

ξ(v1)ξ = f(v1, A1, H1),

gives

w′(ξ)ξ4 + 3w(ξ)ξ3 = w(ξ)ξ3 + 2(a2 − 1)v3
1 +O(1)ξ5,

which reduces to, (using v3
1/ξ

3 = ψ3
0/8 +O(1)ξ2),

ξw′(ξ) = −2w(ξ) +
a2 − 1

4
+O(1)ξ2. (5.141)

Equation (5.141) is an equation of form (5.73) with u = w, n = 2, α = 2, and β = a2−1
4

, so
Part (c) of Lemma 5 implies

w(ξ) =
a2 − 1

8
+O(1)ξ2. (5.142)

Putting (5.82) together with (5.141) and (5.80) gives

v(ξ) = v1(ξ) +
a2 − 1

8
ξ3 +O(1)ξ5,

as claimed. �

With the third order dependence of v established in Lemma 9, we can now establish the
dependence of A and H up to sixth and fourth order in ξ, as claimed in (5.42) and (5.43),
respectively:
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Lemma 10 Let V (ξ) = (v(ξ), A(ξ), H(ξ)) be any solution of (5.25) in M∗. Then there exists
a and ψ0 such that

A(ξ) = Aa(ξ) +
3a2(1 − a2)

16
ψ4ξ4 +O(1)ξ6, (5.143)

H(ξ) = H1(ξ) −
1 − a2

2
ψ2ξ2 +O(1)ξ4, (5.144)

where O(1) vanishes when a = 1, c.f. (5.42), (5.43) and (5.87).

Proof: We first establish (5.144). For this, start with (5.110) and use (5.125) together with
H = 2 +O(1)ξ2 to estimate:

H(ξ) =
ψ0ξ

v
+O(1)ξ4 =

ψ0ξ

v1

(

1 + 1−a2
8v1

ψ3
0ξ

3 +O(1)ξ4
) +O(1)ξ4

=
ψ0ξ

v1

(

1 − 1 − a2

8v1

ψ3
0ξ

3 +O(1)ξ4

)

+O(1)ξ4

= H1

(

1 − 1 − a2

8
(

ψ0ξ
2

+O(1)ξ3
)ψ3

0ξ
3 +O(1)ξ4

)

+O(1)ξ4

= H1 −
1 − a2

2
ψ2

0ξ
2 +O(1)ξ4,

as claimed.

To establish (5.42), assume A(ξ) is a solution (5.20) written in the alternative form

ξ(1 − A)ξ =
4(1 − A)

(3 + v2)H − 4
(5.145)

satisfying (5.94), and define the function Ā(ξ) by

A(ξ) = Aa(ξ) + Āψ4
0ξ

4. (5.146)

Then using (5.43) together with the v2 = v2
1 + O(1)ξ4, 1 − A =

a2ψ2

0
ξ2

4
+ O(ξ4), and H1 =

2 +O(ξ2), gives

ξ(1 −A)ξ =
4(1 −A)

[(3 + v2
1)H1 − 4] (1 − 3

4
(1 − a2)ψ2

0ξ
2 +O(ξ3))

=
4(1 − A)

[(3 + v2
1)H1 − 4]

(1 +
3

4
(1 − a2)ψ2

0ξ
2 +O(ξ3))

=
4(1 − A)

(3 + v2
1)H1 − 4

+
3a2(1 − a2)

8
ψ4

0ξ
4 +O(ξ6)

=
4(1 −Aa)

(3 + v2
1)H1 − 4

− 2Āψ4
0ξ

4 +
3a2(1 − a2)

8
ψ4

0ξ
4 +O(ξ6)

(5.147)
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Putting (5.146) into (5.147) and using

ξ(1 −Aa)ξ =
4(1 − Aa)

(3 + v2
1)H1 − 4

gives

−ξĀξξ4 + 4Āξ4 = −2Āψ4
0ξ

4 +
3a2(1 − a2)

8
ψ4

0ξ
4 +O(ξ6), (5.148)

which simplifies to

ξĀξ = −2Ā +
3a2(1 − a2)

8
+O(ξ2). (5.149)

Equation (5.149) is an equation of form (5.73) with u = Ā, n = 2, α = 2, and β = 3a2(1−a2)
8

,
so Part (c) of Lemma 5 implies

Ā =
3a2(1 − a2)

16
+O(ξ2). (5.150)

Putting (5.150) together with (5.146) gives

A = Aa +
3a2(1 − a2)

16
ψ4

0ξ
4 +O(ξ6),

as claimed. �

We now get the dependence of G,
√
AB at orders six and five in ξ, ξ6, as claimed respectively

in (5.45), (5.46), these being the first orders at which G and AB diverge from the Standard
Model.

Lemma 11 Let V (ξ) = (v(ξ), A(ξ), H(ξ)) be any solution of (5.25) in M∗. Then there
exists a and ψ0 such that

G(ξ) = ψ0ξ +
a(1 − a2)

32
ψ5

0ξ
5 +O(1)ξ7, (5.151)

AB =
1

ψ2
0

{

1 − a(1 − a)

16
ψ4

0ξ
4

}

+O(1)ξ6, (5.152)

where the constants O(1) vanish on the Standard Model a = 1.

Again note that all constants O(1) in (5.151) and (5.111) are zero on the Standard Model
a = 1. .

Proof: To verify (5.151), use

v = v1 +
1 − a2

8
ψ3

0ξ
3 +O(1)ξ5 = v1

(

1 +
1 − a2

4
ψ2

0ξ
3 +O(1)ξ4

)
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in

H =
ψ0

v
+O(1)ξ4,

to obtain

H =
ψ0ξ

v1

(

1 − 1 − a2

4
ψ2

0ξ
2 +O(1)ξ4

)

,

c.f. (5.125), (5.110). Using this together with

v2 = v2
1 +O(1)ξ4

and
(1 + v2

1)ψ0ξ

v2
= 2

in (5.112) gives, (c.f. (5.11)),

ξGξ = −G
{(

1 − A

A

)

(1 + v2
1)ψ0ξ

v1

1 − a2

4
ψ2

0ξ
2 +O(1)ξ4 + 1

}

Now using v1 = ψ0ξ
2

+O(1)ξ2, v2
1 = O(1)ξ2 and 1 − A = a2ξ2

4
+O(ξ4) in this we obtain

ξGξ = G

{

a2(1 − a2)

8
ψ4

0ξ
4 + 1 +O(1)ξ6

}

. (5.153)

To integrate (5.153) make the change of variables

G =
ξ

W
, (5.154)

so that W ≡
√
AB. Using this in (5.153) gives

ξGξ = ξ

(

ξ

W

)

ξ

=
ξ

W
− ξ2

W 2
Wξ

=
ξ

W

{

a2(1 − a2)

8
ψ4

0ξ
4 + 1 +O(1)ξ6

}

,

which simplifies to

Wξ

W
= −

{

a2(1 − a2)

8
ψ4

0ξ
3 +O(1)ξ5

}

. (5.155)

Integrating (5.155) from 0 to ξ then produces the formula

W (ξ) = W (0)

(

1 − a2(1 − a2)

32
ψ4

0ξ
4 +O(1)ξ6

)

. (5.156)

Squaring (5.156) then gives (5.152) in light of the fact that W =
√
AB, so W (0) = 1

ψ0
.

Equation (5.151) then follows from the identity G = ξ√
AB
. �
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Lemma 12 All of the constants O(1) in (5.41)-(5.46) can be taken to be O(1)|a− 1|.

Proof: Since all of the equations (5.41)-(5.46) are exact when a = 1 with O(1) ≡ 0, to verify
the O(1) is really O(1)|a− 1|, it suffices to prove that each error O(1) represents a smooth
function of a and ξ all the way into ξ = 0. This follows so long as we can show that any
solution V (ξ) = (v(ξ), A(ξ), H(ξ)) of system (5.25) can be expanded uniquely in powers of ξ,
with coefficients smooth functions of a, in a neighborhood of ξ = 0. This is true essentially
because when F is smooth, H is a smooth function of v and A in M, and solutions v(ξ)
and A(ξ) in M can be expanded in powers of ξλ1 and ξλ2 where λ1 = 1 and λ2 = 2 are
the eigenvalues of dF (V0), c.f. (5.35). Since this is tedious to carry out in full detail, we
demonstrate with the scalar example

ξuξ = f(u). (5.157)

Let λ = f ′(u0) where u0 is a rest point, f(u0) = 0. Then write

u =

∞
∑

n=0

bnξ
nλ, (5.158)

and assume f has the Taylor expansion

f(u) = f(u0) +
∞
∑

n=0

fn(u0)

n!
(u− u0)

n . (5.159)

Putting (5.158) and (5.159) into (5.157) gives

λ

∞
∑

n=1

nbnξ
nλ = f(u0) +

∞
∑

n=0

fn(u0)

n!

( ∞
∑

k=0

bnξ
nλ

)n

. (5.160)

Now since the Taylor series for f converges, it follows that you can solve uniquely for cn such
that

∞
∑

n=0

fn(u0)

n!

( ∞
∑

k=0

bnξ
nλ

)n

=

∞
∑

n=0

cnξ
nλ,

where

cn = cn(b0, ..., bn−1),

so that using f(u0) = 0, (5.160) then becomes

λ

∞
∑

n=1

nbnξ
nλ =

∞
∑

n=0

cnξ
nλ.

Equating powers of ξλ we can solve inductively for the coefficients bn depending on the initial
condition b0 :

bn =
cn(b0, ..., bn−1)

nλ
. (5.161)
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It follows by standard theorems that if λ > 0, (5.161) converges for each b0. The point now
is that the solution will be continuous at ξ = 0 only for positive λ, and will have all classical
derivatives if λ is a positive integer; and if f depends on a parameter a, it is clear that each
bn will be a smooth function of a as well.

From this is is not so difficult to see that since eigenvalues for solutions in M are both
positive integers λ1 = 1 and λ2 = 2, the larger eigenvalue being an integral multiple of the
smaller one, the solution can similarly be expanded in powers of ξλ1 = ξ in a neighborhood
of ξ = 0, with convergence by analogous arguments. It follows then that all coefficients in
the expansion are continuous functions of ξ and a, up to ξ = 0, from which it follows that
each O(1) is really O(1)|a− 1| given that O(1) vanishes on the Standard Model a = 1. �

Proof of Theorem 10: Lemmas 9 through 12 together with (5.110) establish that every
solution of (3.8)-(3.10) in M∗ enters the rest point V0 according to the estimates (5.41)-
(5.44). Conversely, the estimates (5.41)-(5.46) are strong enough to conclude that V (ξ)
comes into V0, to leading order in ξ, like solutions of the linearized equations. Since, by the
Hartman-Grobman Theorem, [12], solutions of the nonlinear equations in M∗ are in 1 − 1
correspondence with solutions of the linearized system (5.35) in M0, it follows that for every
choice of ψ0 and a2 there exists a solution of (3.8)-(3.10) that comes into rest point V0 like
(5.41)-(5.46) in M∗. This completes the proof of Theorem 10.

Consider now the leading order corrections to the FRW metric implied by the two parameter
family of solutions (5.47) of equations (3.1)-(3.3), (3.15). Expanding solutions in ξ about
ξ = 0, we have shown that, modulo the scaling law, one eigen-solution tends to infinity
as ξ → 0, and the other two satisfy A(ξ) → 1, B(ξ) → 1, as ξ → 0, for each value of
the parameters ψ0 and a. Removing the singular solution, (corresponding to the eigenvalue
λ = 3 > 0 that blows up as s → −∞, ξ → 0), (5.42) and (5.46) imply that what remains is
a two parameter family of SSC spacetimes satisfying

A(ξ) =

(

1 − a2v2
1(ξ)

4

)

+O(1)|a− 1|ξ4, (5.162)

B(ξ) =
1

ψ2
0

(

1 − a2v2
1
(ξ)

4

) +O(1)|a− 1|ξ4, (5.163)

that reduces exactly to the FRW Standard Model when a = 1. The parameter ψ0 corresponds
to the time rescaling symmetry of the SSC equations, and the parameter a is a new parameter
that changes the underlying spacetimes, and which we call the acceleration parameter. We
thus have the following theorem:

Theorem 11 The 2-parameter family of bounded solutions (5.47) of (3.1)-(3.3), (3.15),
that extends FRW of the Standard Model in SSC coordinates to the spacetime metric (5.48),
is given in terms of the two parameters ψ0 and a, up to errors of order ξ4, by

ds2 = − dt̄2

ψ2
0 (1 − a2v2

1(ξ))
+

dr̄2

1 − a2v2
1(ξ)

+ r̄2dΩ2, (5.164)
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where the velocity satisfies

v(ξ) = v1(ξ) +O(1)|a− 1|ξ3. (5.165)

Here ψ0 is the time-scaling parameter, a = 1 corresponds to FRW, v1(ξ) denotes the SSC
velocity of the Standard Model given in (2.15)-(2.18), and a 6= 1 introduces a new acceleration
parameter which gives the leading order perturbation of FRW. In particular (2.16) gives

v1(ξ) =
ψ0ξ

2
+O(1)ξ2,

so (5.165) implies that the velocity v is independent of the parameter a up to second order
in ξ.

In light of (2.15), when a = 1, (5.164) reduces exactly to the FRW metric

A(ξ) =
(

1 − v2
1

)

, (5.166)

B(ξ) =
1

ψ2
0 (1 − v2

1)
. (5.167)

Since the SSC coordinate representation of FRW depends only on H and r̄, both of which
are invariant under the scaling r → αr, R → R/α of the FRW metric (2.1), our SSC
representation of FRW is independent of α, and therefore independent of our choice of scale
for R(t). Thus there is no loss of generality in assuming throughout the exact FRW scaling

R(t) =
√
t, (5.168)

c.f. (2.1) and [16]. We can also remove the time rescaling freedom by setting ψ0 = 1.17 We
conclude that to leading order, the 1-parameter family of expanding wave perturbations of
the FRW metric is given by

ds2 = − dt̄2
(

1 − a2ξ2

4

) +
dr̄2

(

1 − a2ξ2

4

) + r̄2dΩ2,

with fourth order errors in ξ, and the velocity is given to leading order by

v =
ξ

2
, (5.169)

independent of a, up to third order errors in ξ.

17Note the advantage of keeping the time scale parameter ψ0 in the analysis of the equations in order to
cast V0 as a rest point of a system of ODE’s. That is, the time scale invariance of the equations translates
into translation in s invariance in the autonomous system for U(s). Once this is done, we are free to set
ψ0 = 1.
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6 A Foliation of the Expanding Wave Spacetimes into

Flat Spacelike Hypersurfaces with Modified Scale

Factor R(t) = ta.

To get insight into the geometry of the spacetime metric (5.164) when a 6= 1, consider the
extension of the FRW (t, r) coordinate transformation (2.13)-(2.14) to a 6= 1 defined by

t̄ =

{

1 +
a2ζ2

4

}

t, (6.1)

r̄ = ta/2r. (6.2)

A straightforward calculation shows that the metric (5.164) transforms to (t, r)-coordinates
as

ds2 = −dt2 + tadr2 + r̄2dΩ2 + a(1 − a)ζdtdr̄. (6.3)

Metric (6.3) takes the form of a k = 0 Friedmann-Robertson-Walker metric with a small
correction to the scale factor, (Ra(t) = ta/2 instead of R(t) = t1/2), and a corrective mixed
term. In particular, the time slices t = const. in (6.3) are all flat space R3, as in FRW, and
the r̄ = const slices agree with the FRW metric modified by scale factor Ra(t). It follows
that the t = const. surfaces given by (6.1), (6.2), define a foliation of spacetime into flat
three dimensional spacelike slices. Thus when a 6= 1, (6.3) exhibits many of the flat space
properties characteristic of the a = 1 FRW spacetime.

7 Expanding Wave Corrections to the Standard Model

in Approximate Comoving Coordinates

The metric (6.3) is not co-moving with the velocity v of (5.165), even at the leading order,
when a 6= 1. To obtain (an approximate) co-moving frame, note that from (5.169), v is
independent of a up to order ξ3, so it follows that even when a 6= 1, the inverse of the
transformation (2.13), (2.14) gives, to leading order in ξ, a co-moving coordinate system for
(5.164) in which we can compare the Hubble constant and redshift vs luminosity relations
for (5.164) when a 6= 1 to the Hubble constant and redshift vs luminosity relations for a = 1
FRW, as measured by (2.1) and (2.9). Thus from here on, we take (t, r)-coordinates to be
defined by the Standard Model coordinate map to FRW coordinates (2.13), (2.14), which
corresponds to taking a = 1 in (6.1), (6.2). For this map we note that r̄ = R(t)r gives r̄ as
a function of (t, r), and by (2.17), (2.18) it follows that

ζ = ψ0ξ +O(1)ξ3 as ξ → 0. (7.1)
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Theorem 12 The inverse of the coordinate transformation (2.13), (2.14) maps (5.164) over
to (t, r)-coordinates as

ds2 = Fa(ζ)
2
{

−dt2 + tdr2
}

+ tr2dΩ2, (7.2)

where

Fa(ζ)
2 =

1 − ζ2

4

1 − a2ζ2

4

= 1 + (a2 − 1)
ζ2

4
+O(1)|a− 1|ζ4, (7.3)

and the SSC velocity v in (5.41) maps to the (t, r)-velocity

w = −a
2 − 1

8
ζ3 +O(1)|a− 1|ζ4. (7.4)

Note that by (5.41), (7.1)

w = v − v1 +O(1)|a− 1|ζ4. (7.5)

Proof: Using v1 = ζ/2, the Jacobian of the transformation from SSC coordinates (t̄, r̄) to
(t, r) coordinates is given in (2.19), namely,

J ≡ ∂x̄

∂x
=

(

ψ0 ψ0

√
t ζ
2

ζ
2

√
t

)

.

Thus letting ḡ denote the spacetime metric (5.164), in (t, r) coordinates ḡ transforms to
g = J tḡJ where

g =

(

ψ0
ζ
2

ψ0

√
t ζ
2

√
t

)

(

−1
ψ2

0
(1−a2v2

1
(ξ))

0

0 1
1−a2v2

1
(ξ)

)

(

ψ0 ψ0

√
t ζ
2

ζ
2

√
t

)

=
1 − ζ2/4

1 − a2ζ2/4

(

−1 0
0 t

)

, (7.6)

and so neglecting errors of order |a− 1|ζ4, the transformed metric is

ds2 = −
(

1 − a2 ζ
2

4

)

dt2 + t

(

1 − a2 ζ
2

4

)

dr2 + r̄2dΩ2. (7.7)

This confirms (7.2) and (7.3).

To establish (7.4), let ū = (ū0, ū1) be the 4-velocity of the particle in SSC coordinates, and
u = (u0, u1) the 4-velocity in (t, r)-coordinates, so that

v =
1√
AB

dr̄

dt̄
=

1√
AB

ū1

ū0
, (7.8)
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and similarly,

w =
√
t
dr

dt
=

√
t
u1

u0
,

where we used (7.2). Now let v = v1 + ŵ. We show w = ŵ + O(1)|a − 1|ζ4. For this note
that the transformation law for vectors is

(

u0

u1

)

= J−1

(

ū0

ū1

)

. (7.9)

Let

R0 =
√
t

(

1,−ψ0
ζ

2

)

, (7.10)

R1 =

(

−ζ
2
, ψ0

)

, (7.11)

denote the top and bottom rows of J−1 |J |, c.f. (2.20). Then (5.46) implies that in SSC
coordinates, √

AB =
1

ψ0

(

1 +O(1)|a− 1|ξ4
)

,

so since ξ = O(ζ), (7.8) gives

(

ū0

ū1

)

= const.

(

ψ0 + e
v

)

, (7.12)

where

e = O(1)|a− 1|ζ4. (7.13)

Using this in (7.9) we have

w =
√
t
u1

u0
=

√
t

R1

(

ψ0 + e
v

)

R0

(

ψ0 + e
v

) =
√
t

R1

(

ψ0

v1

)

+R1

(

e
ŵ

)

R0

(

ψ0 + e
v

)

=
√
t

R1

(

e
ŵ

)

R0

(

ψ0 + e
v

) =
ŵ

1 − η
2
v

+O(1)|a− 1|ζ4

(7.14)

where we used that

R1 · (ψ0, v1) = 0 (7.15)

55



by (2.17), true because v1 is the SSC velocity of the Standard Model a = 1, and the fluid is
co-moving with respect to the FRW metric (2.1) by Theorem 3. Thus, putting in the errors
from (5.41) of Theorem 10, we have that

w = ŵ +O(1)|a− 1|ζ4 = v − v1 +O(1)|a− 1|ζ4 = −a
2 − 1

8
ζ3 +O(1)|a− 1|ζ4.

This completes the proof of Theorem 12. �

Remark: Theorem 12 implies that, neglecting errors of order O(1)|a − 1|ξ4 in (5.42) and
(5.46), the SSC spacetime ḡ corresponding to parameter values (ψ0, a) takes the (t, r) co-
ordinate form (7.2). It follows, then, that any calculation based on undifferentiated metric
coefficients from the approximate metric (7.2) gives answers correct up to order O(1)|a−1|ξ4

in the original metric (5.48); and any calculation based first derivatives of metric coefficients
(7.2) gives answers correct up to order O(1)|a − 1|ξ3 in the original metric (5.48). Thus,
since geodesics involve first derivatives of the metric, estimates based on geodesics of (7.2)
give answers correct up to order O(1)|a − 1|ξ3 in the original metric (5.48), with one im-
portant exception. Since radial geodesics of (7.4) can be obtained directly from (7.2) by
setting dΩ = 0 and ds = 0 without going to the geodesic equations, it follows that radial
lightlike geodesics of (7.2) agree with radial lightlike geodesics of the original metric (5.48)
up to errors O(1)|a− 1|ζ4.

The variable ζ = r̄/t is a natural dimensionless perturbation parameter that has a physical
interpretation in (t, r)-coordinates because, (assuming c = 1), ζ ranges from 0 to 1 as r̄
ranges from zero to the horizon distance in FRW, (approximately the Hubble distance c/H),
a measure of the furthest one can see from the center at time t units after the Big Bang,
[21]; that is,

ζ ≈ Dist

Hubble Length
. (7.16)

Thus expanding in ζ gives an expansion in the fractional distance to the Hubble length,
c.f. [16]. Note also that when a = 1 we obtain the FRW metric (2.1), where we have used
R(t) =

√
t, c.f. (5.168).

Now for a first comparison of the relative expansion at a 6= 1 to the expansion of FRW,
define the Hubble constant at parameter value a, by

Ha(t, ζ) =
1

Ra

∂

∂t
Ra,

where
Ra(t, ζ) = Fa(ζ)

√
t,

equals the square root of the coefficient of dr2 in (7.2). Then one can easily show

Ha(t, ζ) =
1

2t

{

1 − 3

8
(a2 − 1)ζ2 +O

(

|a2 − 1|ζ4
)

}

.
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We conclude that the fractional change in the Hubble constant due to the perturbation
induced by expanding waves a 6= 1 relative to the FRW of the Standard Model a = 1, is
given by

Ha −H

H
=

3

8
(1 − a2)ζ2 +O

(

|a2 − 1|ζ4
)

.

8 Redshift vs Luminosity Relations and the Anoma-

lous Acceleration

In this section we obtain the a 6= 1 corrections to the redshift vs luminosity relation of
FRW up to order ζ3, as measured by an observer positioned at the center ζ = 0 of the
expanding wave spacetimes described by the metric (5.164) when a 6= 1.18 (Recall that
ζ ≡ r̄/t = r/

√
t measures the fractional distance to the horizon, c.f. (7.16).) The physically

natural coordinate system in which to do the comparison with FRW (a = 1) would be
co-moving with respect to the sources. Thus we restrict to the coordinates (t, r) defined
by (2.13), (2.14), in which our one parameter family of expanding wave spacetimes are
described, to leading order in ζ , by the metric (7.2). In (t, r) coordinates the spacetime is
only co-moving up to order ζ3, so we will need to incorporate the errors (from co-moving)
below to get formulas up to order ζ4. Note that the approximate metric (7.2) as well as the
exact spacetime metrics (5.48) both reduce exactly to the FRW metric when a = 1, c.f. (2.1),
(5.168).

For our derivation of the redshift vs luminosity relation for (7.2) we follow the development
in Gron-Hervik [11], page 289 ff. The redshift vs luminosity relation calculation in [11] in
the case of the Standard Model a = 1 leads to

dℓ = 2t0z. (8.1)

We now generalize the argument so that it applies to the spacetime metrics (7.2) when a 6= 1,
assuming sources moving with arbitrary velocity w. Thus assume radiation of frequency νe
is emitted radially by a source moving at velocity w relative to the co-moving observer at
(te, re), and observed at a later time t = t0 at frequency ν0 at the center r = 0 of the
spacetime metric (7.2). Let ν̄e denote the (intermediate) frequency of the emitted radiation
as measured by a co-moving observer fixed at position r = re at time t = te. In the Standard
Model a = 1 the formula (7.4) for w reduces to w ≡ 0 because in this case the fluid is exactly
co-moving in (t, r)-coordinates, implying that νe = ν̄e when a = 1. But when a 6= 1, (7.4)
implies w 6= 0 and we must account for the case νe 6= ν̄e.

To start, let λe denote the wavelength of the radiation emitted at (te, re) and λ0 the wave-
length received at the center ζ ≡ r̄

t
= 0, (that is, at r̄ = 0 at later time t0). Define

L ≡ Absolute Luminosity =
Energy Emitted by Source

Time
(8.2)

18This is of course a theoretical relation, as the pure radiation FRW spacetime is not transparent.
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ℓ ≡ Apparent Luminosity =
Power Recieved

Area
(8.3)

and let

dℓ ≡ Luminosity Distance =

(

L

4πℓ

)1/2

(8.4)

z ≡ Redshift Factor =
λ0

λe
− 1. (8.5)

Using two serendipitous properties of the metric (7.2), namely, the metric is diagonal in
co-moving coordinates, and there is no a-dependence on the sphere’s of symmetry, it follows
that the arguments in [11], Section 11.8, can be modified to give the following generalization
of Theorem 1, which extends the results of [18].

Theorem 13 The luminosity distance dℓ, as measured by an observer positioned at the
center ζ = 0 of the spacetime described by metric (5.164), with velocity profile (5.165), is
given by the exact formula

dℓ = ct0ζ

√

1 + w

1 − w
, (8.6)

where the (t, r)-velocity w satisfies

w = −a
2 − 1

8
ζ3 +O(1)|a− 1|ζ4, (8.7)

and the self similar variable ζ = r/
√
t satisfies

ζ = 2z + (a2 − 1)z2 + (a2 − 1)(a2 + 2)z3 +O(1)|a− 1|z4. (8.8)

Putting (8.7) and (8.8) into (8.6) gives

dℓ = 2ct0

{

z +
a2 − 1

2
z2 +

(a2 − 1)(a2 + 2)

2
z3 +O(1)|a− 1|z4

}

. (8.9)

Note that when a = 1, (8.9) reduces to (8.1), correct for the radiation phase of the Standard
Model, [11]. Furthermore, note that (8.6) is an exact formula showing that luminosity
distance for a 6= 1, as a function of ζ , agrees with luminosity distance in the standard model,
with a fourth order velocity correction due to the fact that the fluid is not co-moving when
a 6= 1. In particular, this shows that the velocity w does not affect the redshift vs luminosity
relation until the fourth order in ζ , one more order than one might expect.

Thus (8.9) gives the leading order quadratic and cubic corrections to the redshift vs lumi-
nosity relation when a 6= 1, thereby improving the quadratic estimate (6.5) of [18]. Since
(a2 − 1) appears in front of the leading order correction in (8.9), it follows, (by continuous
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dependence of solutions on parameters), that the leading order part of any anomalous cor-
rection to the redshift vs luminosity relation of the Standard Model, observed at a time after
the radiation phase, can be accounted for by suitable adjustment of the parameter a. In
particular, note that when a > 1, the leading order corrections in (8.9) imply a blue-shifting
of radiation relative to the Standard Model, as observed in the supernova data, [4, 1].

To establish (8.9), let P denote the energy per time (power) of radiation received at the
mirror (of a reflecting telescope) of area A, positioned at the coordinate center transverse to
the radial direction, the radiation being emitted at a distant source moving at velocity w at
(te, re), and received at t = t0, r = 0. We start with the following elementary relation, (c.f.
[11] page 289):

P ≡ ∆(energy)

∆τ0
= L · fA · ν0

νe
· ∆τe
∆τ0

. (8.10)

Here

L =
∆(energy)

∆τe

is the absolute luminosity, the energy per time emitted by the source, c.f. (8.3); the ratio of
the frequencies, given by

ν0

νe
= (1 + z)−1,

accounts for losses of energy due to redshifting at the source, (c.f. (8.34) below); the ratio
of proper times satisfies

∆τe
∆τ0

= (1 + z)−1,

corrects proper time change at the receiver to proper time change at the source, (c.f. (8.32)
and (8.34) below); and finally fA is defined to be the fraction of the emitted radiation received
at the mirror A. In the case of the Standard Model a = 1, equation (11.116), page 289 of
[11] gives

fA =
A

4πt0r2
e

. (8.11)

the following proposition, which establishes that when a 6= 1, (8.11) holds subject to the
correction factor Ca given below in (8.13).

Proposition 1 When a 6= 1, the value of fA for the family of spacetime metrics (5.48) is
given by

fA =
A

4πt0r2
e

Ca, (8.12)

where Ca has the exact expression

Ca =
1

F 2
a (ζ)

(1 + w)2

1 − w2
= 1 − a2 − 1

4
ζ2 +O(1)|a− 1|ζ3. (8.13)
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Proposition 1 solves what we call the mirror problem. That is, it gives the ratio Ca of an area
A of light received from a distant source at a mirror positioned at the origin when a 6= 1, to
the corresponding area when a = 1, in the limit A → 0 (the limit expressing that the mirror
is small relative to the distance to the source.) The proof, which relies on Etherington’s
Theorem, (also known as the Reciprocity Theorem, c.f. [14], page 256-259), is postponed
until the Appendix, Section 9.

The proof of Theorem 13 requires the following preliminary lemma:

Lemma 13 Assume that radiation of frequency νe is emitted by a source moving at velocity
w at (te, re), and observed at a later time t = t0 at frequency ν0 at the center r = 0 of the
spacetime metric (7.2). Then re is related to t0 by

re =
ζ

1 + ζ
2

√
t0, (8.14)

where (for this section)

ζ =
re√
te
,

the luminosity distance dℓ is given by

dℓ ≡
(

L

4πℓ

)1/2

=
t0(1 + z)ζ
(

1 + ζ
2

)√
Ca
, (8.15)

and the redshift z observed at the origin is given by

1 + z =

(

1 +
ζ

2

)

1

Fa(ζ)

√

1 + w

1 − w
. (8.16)

Postponing the proof of Lemma 13, we first give the proof of Theorem 13.

Proof of Theorem 13: Substituting (8.13) and (8.16) into (8.15) gives (8.6). The estimate
(8.7) is given in (7.4). To obtain ζ in terms of z, start with (7.3),

1

Fa(ζ)
= 1 − (a2 − 1)

ζ2

8
+O(1)|a− 1|ζ4, (8.17)

and use this and (7.4) in (8.16) to obtain

1 + z =
(

1 + ζ
2

)

(

1 − a2−1
8
ζ2
)(

1 − a2−1
8
ζ3
)

+O(1)|a− 1|ζ4 (8.18)

= 1 + ζ
2
− a2−1

8
ζ2 +

(

−a2−1
16
ζ3 − a2−1

8
ζ3
)

+O(1)|a− 1|ζ4.

Thus

1 + z = 1 +
ζ

2
− a2 − 1

8
ζ2 − 3

16
(a2 − 1)ζ3 +O(1)|a− 1|ζ4. (8.19)
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In particular (8.19) implies ζ = O(z), and using this we can solve (8.19) for ζ as a function
of z as follows. First

z =
ζ

2
+O(1)|a2 − 1|ζ2. (8.20)

Putting this in (8.19) with ζ = O(z) gives

z =
ζ

2
− a2 − 1

2
z2 +O(1)|a− 1|ζ3,

so

ζ = 2z + (a2 − 1)z2 +O(1)|a− 1|ζ3. (8.21)

Using (8.21) in (8.19) gives

z =
ζ

2
− a2 − 1

2
z2 − a2 − 1

2

(

a2 + 2
)

z3 +O(1)|a− 1|z4,

which gives

ζ = 2z + (a2 − 1)z2 + (a2 − 1)
(

a2 + 2
)

z3 +O(1)|a− 1|z4, (8.22)

which is (8.8). �.

Note that the velocity w influences (8.8) at third order in ζ at step (8.18), but does not
effect equation (8.6) until the fourth order. In this sense the metric (7.2) is closer to FRW
than one might expect.

It remains only to give the

Proof of Lemma 13: We first establish equations (8.14)-(8.16). To start, note that the
coordinate t measures proper time at fixed r only when a = 1, so define proper time at fixed
r by

dτ = Fadt, (8.23)

where by (7.3), Fa ≡ Fa(ζ) is given to leading orders by

Fa(ζ) = 1 + (a2 − 1)
ζ2

8
+ |a− 1|O(ζ4). (8.24)

Note that the radial lightlike geodesics for metric (7.2) satisfy

F 2
a (−dt2 + tdr2) = 0,

so the inward radial null geodesics in (t, r)-coordinates are given by

dr

dt
= − 1√

t
, (8.25)
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independent of a. Integration gives

√
te =

√
t0 − re/2,

and solving

ζ =
re√
te

=
re√

t0 − re/2

for re gives

re =

√
t0ζ

1 + ζ/2
, (8.26)

establishing (8.14).

Consider next equation (8.15). This is a direct consequence of Proposition 1 as follows.
Equations (8.10)-(8.11) give

P =
LACa

(1 + z)24πr2
et0
, (8.27)

and using (8.27) and (8.3), the apparent luminosity ℓ is

ℓ ≡ P

A =
LCa

(1 + z)24πr2
et0

. (8.28)

Thus the luminosity distance dℓ satisfies

dℓ ≡
(

L

4πℓ

)1/2

=
(1 + z)re

√
t0√

Ca
=

t0(1 + z)ζ
(

1 + ζ
2

)√
Ca
, (8.29)

where we have used the relation (8.26) between ζ and re. This verifies (8.15).

To establish (8.16), consider a null geodesic

dr

dt
= − 1√

t
,

emitted from (te, re) and received at r = 0 a later time t0. Then integrating gives

re = −
∫ 0

re

dr =

∫ t0

te

dt√
t

(8.30)

Now letting ∆t0 denote the time of one period for radiation measured at a given frequency
at t = t0, r = 0, we have

re =

∫ t0

te

dt√
t

=

∫ t0+∆t0

te+∆te

dt√
t
,
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where ∆te denotes the time of one period as measured by the co-moving observer positioned
at the emitter at time t = te. Thus

∫ t0+∆t0

te+∆te

dt√
t
−
∫ t0

te

dt√
t

= 0,

so
∫ t0+∆t0

t0

dt√
t

=

∫ te+∆te

te

dt√
t
,

and we therefore have

∆te√
te

=
∆t0√
t0
, (8.31)

for sufficiently small ∆t0. Now the frequency ν associated with the period ∆t measured by
a co-moving observer is

ν =
1

∆τ
, (8.32)

where ∆τ is the proper time interval associated with (7.2),

∆τ = Fa∆t.

Thus by (8.31) the ratio of the emitted to received frequency at given a is given by

νe
ν0

=
F0∆t0

Fe∆te
=

√
t0

Fa(ζ)
√
te
,

where we use that F0 ≡ Fa(0) = 1, Fe ≡ Fa(ζe) ≡ Fa(ζ), and from here on in this proof we
let

ζ ≡ ζe =
re√
te
. (8.33)

Now by (8.5),

1 + z =
νe
ν0

=
νe
ν0

νe
νe

=

√
t0

Fa(ζ)
√
te

νe
νe
. (8.34)

Thus by (8.14) we have

1 + z =

√
t0

Fa(ζ)
√
te

νe
νe

=

√
t0ζ

reFa(ζ)

νe
νe
,

which upon using (8.26) gives

1 + z =
1 + ζ/2

Fa(ζ)

νe
νe
. (8.35)

We conclude that equation (8.16) follows directly from (8.35) together with the following
lemma:
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Lemma 14 The following relation holds between the frequency νe emitted by a source moving
at velocity w at (te, re) and the frequency νe as measured in the co-moving frame at (te, re):

νe
νe

=

√

1 + w

1 − w
(8.36)

Proof: Since the frequency defined in (8.32) is defined in terms of the invariant time interval
∆τ , it is defined independent of coordinates fixed with the same observer. Thus to calculate
νe/νe we can assume that νe is the frequency measured in the (local) Minkowski frame fixed
with an observer at r = ra, and ν is the frequency as measured by a second observer at the
same point but moving with velocity w with respect to the first observer. Thus the result
derives from the change of frequency formula for Lorentz transformations in special relativity.
To derive this formula, for this argument supress the angular variables held constant along
radial motion, and let (t̄, x̄) denote the (local) Minkowski frame fixed with a first observer
co-moving with the metric at point P = (te, re), and let (t, x) be the (local) Minkowski
frame fixed with the second observer moving with radial velocity w with respect to the first
observer. Since Minkowski time changes agree with proper time changes we have

ν = 1
∆t

ν = 1
∆t
.

Now let X denote the lightlike vector displacement of one period of the radial lightray at
(te, re). Then by definition

∆t = dt(X),

and

∆t = dt̄(X).

Thus

νe
νe

=
dt̄(X)

dt(X)
=
ᾱ

α
, (8.37)

where α and ᾱ give the unbarred and barred components of X, respectively,

X = α

{

∂

∂t
+

∂

∂x

}

= ᾱ

{

∂

∂t̄
+

∂

∂r̄

}

.

Now the Lorentz transformation that takes barred to unbarred coordinates is
(

t
x

)

=

(

1√
1−w2

w√
1−w2

w√
1−w2

1√
1−w2

)

(

t̄
x̄

)

,

so

α =

(

1√
1 − w2

+
w√

1 − w2

)

ᾱ =

√

1 + w

1 − w
ᾱ, (8.38)

and using this in (8.37) gives (8.36) as claimed, and thus the proof of (8.16), and hence
Lemma 13, is complete. �
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9 Appendix: The Mirror Problem

In this section we give the proof of Proposition 1, Section 8, which gives the ratio Ca of
an area A of light received from a distance source at a mirror (telescope) positioned at the
origin when a 6= 1, to the corresponding area when a = 1, in the limit A → 0, (the limit
expressing that the mirror is small relative to the distance to the source.) To describe the
mirror problem, consider light emitted from a distant source located at (te, re) and received
at a mirror of area A positioned orthogonal to the line of sight at the center r = ζ = 0 of
our spherically symmetric expanding spacetimes (7.2), at a later time t = t0 > te > 0. The
problem is to determine the fraction fA of the area of the 2-sphere emitting radiation at
r = re, t = te that reaches the mirror. In the case of the Standard Model a = 1, the center
of the FRW (t, r)-coordinate system can be translated to any point. Taking the center to be
(te, re), light rays leaving the source at (te, re) will follow radial geodesics dΩ = 0. It follows
that the area of the (unit) 2-sphere emitting radiation at r = re, t = te that reaches the
mirror A when a = 1, is fA = A/4πt0r2

e , (r2
e = t0r

2
e when t0 = 1, c.f. (8.11))19. When a 6= 1,

the 3-spaces at fixed time are not homogeneous and isotropic about every point like the a = 1
FRW, and the geodesics leaving the center of a coordinate system centered at (te, re) will
not follow dΩ = 0 exactly. So there is a correction factor Ca required in the formula (8.11)
for fA when a 6= 1.

The determination of Ca is made simpler by Etherington’s Theorem [7], (also referred to as
the Reciprocity Theory, c.f. [14], pages 256-259), which we state as follows:

Theorem 14 (Etherington, 1933): Assume that light emitted from a galaxy at spacetime
point G is received at spacetime point O with redshift z observed at O. Then

δSO
dΩG

=
δSG
dΩO

(1 + z)2, (9.1)

where δSO is the (infinitessimal) area of a mirror positioned orthogonal to the received light
rays at O, dΩG is the angular area of the bundle of light rays emitted at G that reach the
mirror δSO, and δSG is a reciprocal area, positioned at G orthogonal to the light rays from
G to O, with dΩO the corresponding angular area of backward time light rays emitted at O,
whose backward time trajectories intersect the area δSG.

The theorem applies to any gravitational spacetime metric subject only to the condition that

19To see this, consider a packet of lightlike radial geodesics covering angular area dΩ, emanating from
an FRW coordinate center at r = re, and evolving up to an end at time t = t0. Such curves, being radial
lightlike geodesics (8.25), traverse the curves r̂ = 2

(√
t−√

te
)

, θ = θ0 ∈ dΩ, te ≤ t ≤ t0, where r̂ is radial

distance measured from the new center re, and θ measures angles at center re. Now setting ξ =
√
t− √

t0,
these curves project into the curves at time t ≡ t0 given by r̂ = 2 (ξ), θ = θ0, 0 ≤ ξ ≤ re/2. Since in the
Standard Model, t = t0 is flat Euclidean space, the latter curves, being at fixed time t = t0, are just the
straight lines in R3 emanating from center r̂ = 0, sweeping out the angular region dΩ at r̂ = 0 and the area
A at r̂ = re, r = 0. It thus follows that the area at the end is A = r̄2edΩ, where r̄e = R(t0)re =

√
t0re is

spatial distance at received time t = t0. So the fractional area is fA = dΩ/4π = A/4πt0r2e , as claimed.
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the bundle of light rays received at δSO completely surround O, such that there are rays of
the bundle in every direction from O within δSO, c.f. Figure 16.2, page 256 of [14]. The
result is motivated by the observation that the backward time light rays from O are affected
at the same spacetime points by the same spacetime metric as the forward time light rays
from G, so there must be a relation between the corresponding areas and angles, and that
relation is quantified by (9.1).

To find Ca, let the light ray from G to O be the radial null geodesic taking G = (te, re) to
O = (t0, 0) for the spacetime metric (7.2) depending on parameter a. Then Etherington’s
theorem gives

δSaO
dΩa

G

=
δSaG
dΩa

O

(1 + za)
2, (9.2)

where za is the redshift observed at O, depending on a through the metric (7.2). Now since
Ca is the ratio of an area δSaO of light received at O when a 6= 1, to the corresponding area
δS1

O received at O when a = 1, it follows that

Ca =
δSaO
δS1

O

. (9.3)

Dividing (9.2) at a 6= 1 by (9.2) at a = 1 then gives the formula

Ca =
δSaG
δS1

G

(1 + za)
2

(1 + z1)2
.

Since angles are constant along radial geodesics of (7.2) emanating from the center O, for
every a, in both forward and backward time20, it follows that

δSaG
δS1

G

= 1,

so

Ca =
(1 + za)

2

(1 + z1)2
.

Now by (8.16),

1 + za =

(

1 +
ζ

2

)

1

Fa(ζ)

√

1 + w

1 − w
,

which at a = 1 gives

1 + z1 =

(

1 +
ζ

2

)

.

Thus

Ca =
1

F 2
a (ζ)

(1 + w)2

1 − w2
, (9.4)

as claimed in (8.13). �

20This is not true for radial geodesics emanating from G when a 6= 1. We thank the referee for pointing
out Etherington’s Theorem to us, which greatly simplified our original proof.
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10 Concluding Remarks

We have constructed a one parameter family of general relativistic expansion waves which
at a single parameter value, reduces to what in this paper we call the FRW spacetime, the
Standard Model of Cosmology during the radiation epoch. The discovery of this family is
made possible by a perspicacious coordinate transformation that maps the FRW metric in
standard co-moving coordinates, over to Standard Schwarzschild coordinates (SSC) in such
a way that all quantities depend only on the single self-similar variable ξ = r̄/t̄. Note that
it is not evident from the FRW metric in standard co-moving coordinates that self-similar
variables even exist, and if they do exist, by what ansatz one should extend the metric
in those variables to obtain nearby self-similar solutions that solve the Einstein equations
exactly. The main point is that our coordinate mapping to SSC form, explicitly identifies the
self-similar variables as well as the metric ansatz that together accomplish such an extension
of the metric.

The self-similarity of the FRW metric in SSC suggested the existence of a reduction of the
SSC Einstein equations to a new set of ODE’s in ξ. Deriving this system from first principles
then establishes that the FRW spacetime does indeed extend to a three parameter family of
expanding wave solutions of the Einstein equations. This three parameter family reduces to
an (implicitly defined) one parameter family by removing a scaling invariance and imposing
regularity at the center. The remaining parameter a changes the expansion rate of the
spacetimes in the family, and thus we call it the acceleration parameter. Transforming back
to (approximate) co-moving coordinates, the resulting one parameter family of metrics is
amenable to the calculation of a redshift vs luminosity relation, to third order in the redshift
factor z, leading to the relation (1.1). It follows by continuity that the leading order part of an
anomalous correction to the redshift vs luminosity relation of the Standard Model observed
after the radiation phase, can be accounted for by suitable adjustment of parameter a.

These results suggest an interpretation that we might call a Conservation Law Scenario
of the Big Bang. That is, it is well known that highly interactive oscillatory solutions
of conservation laws decay in time to non-interacting self-similar waves, (shock waves and
expansion waves), by the mechanisms of wave interaction and shock wave dissipation. The
subtle point is that even though dissipation terms are neglected in the formulation of the
equations, there is a canonical dissipation and consequent loss of information due to the
nonlinearities, and this can be modeled by shock wave interactions that drive solutions to
non-interacting wave patterns. (This viewpoint is well expressed in the celebrated works
[13, 8, 9]). Since the one fact most certain about the Standard Model is that our universe
arose from an earlier hot dense epoch in which all sources of energy were in the form of
radiation, and since it is approximately uniform on the largest scale but highly oscillatory on
smaller scales22, one might reasonably conjecture that decay to a non-interacting expanding
wave occurred during the radiation phase of the Standard Model, via the highly nonlinear

22In the Standard Model, the universe is approximated by uniform density on a scale of a billion light years
or so, about a tenth of the radius of the visible universe, [21]. The stars, galaxies and clusters of galaxies
are then evidence of large oscillations on smaller scales.
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evolution driven by the large sound speed, and correspondingly large modulus of Genuine
Nonlinearity23, present when p = ρc2/3, c.f. [15]. Our analysis has shown that FRW is just
one point in a family of non-interacting, self-similar expanding waves, and as a result we
conclude that some further explanation is required as to why, on some length scale, decay
during the radiation phase of the Standard Model would not proceed to a member of the
family satisfying a 6= 1. If decay to a 6= 1 did occur, then the galaxies that formed from
matter at the end of the radiation phase, (some 379, 000 years after the Big Bang), would be
displaced from their anticipated positions in the Standard Model at present time, and this
displacement would lead to a modification of the observed redshift vs luminosity relation. In
short, the displacement of the fluid particles, (i.e., the displacement of the co-moving frames
in the radiation field), by the wave during the radiation epoch leads to a displacement of
the galaxies at a later time. In principle such a mechanism could account for the anomalous
acceleration of the galaxies as observed in the supernova data. Of course, if a 6= 1, then
the spacetime within the expanding wave has a center, and this would violate the so-called
Copernican Principle, a simplifying assumption generally accepted in cosmology, at least on
the scale of the wave (c.f. the discussions in [20] and [2]). Moreover, if our Milky Way galaxy
did not lie within some threshold of the center of expansion, the expanding wave theory would
imply unobserved angular variations in the expansion rate. In fact, all of these observational
issues have already been discussed recently in [3, 2, 4, 1], (and references therein), which
explore the possibility that the anomalous acceleration of the galaxies might be due to a
local void or under-density of galaxies in the vicinity of the Milky Way.24 Our proposal then,
is that the one parameter family of general relativistic self-similar expansion waves derived
here are possible end-states that could result after dissipation by wave interactions during the
radiation phase of the Standard Model is completed, and such waves could thereby account
for the appearance of a local under-density of galaxies at a later time.25

23Again, Genuine Nonlinearity is in the sense of Lax, a measure of the magnitude of nonlinear compression
that drives decay, c.f., [13].

24The size of the center, consistent with the angular dependence that has been observed in the actual
supernova and microwave data, has been estimated to be about 15 megaparsecs, approximately the distance
between clusters of galaxies, roughly 1/200 the distance across the visible universe, c.f. [2, 3, 4, 1].

25The following back of the envelope calculation from [19] provides a ballpark estimate for what we might
expect the extent of the remnants of one of these expanding waves might be today if our thesis is correct
that wave interactions and dissipation by strong nonlinearities during the radiation phase were the primary
mechanisms involved in formation of the wave. For this, note that matter becomes transparent with radiation
at about 300,000 years after the Big Bang, so we might estimate that the wave should have emerged by about
tendrad ≈ 105 years after the Big Bang. At this time, the distance of light-travel since the Big Bang is about
105 lightyears. Since the sound speed c/

√
3 ≈ .58c during the radiation phase is comparable to the speed

of light, we could estimate that dissipation that drives decay to the expanding wave might reasonably be
operating over a scale of 105 lightyears by the end of the radiation phase. Now in the p = 0 expansion that
follows the radiation phase, the scale factor (that gives the expansion rate) evolves like

R(t) = t2/3,

[21], so a distance of 105 lightyears at t = tendrad years will expand to a length L at present time tpresent ≈
1010 years by a factor of

R(tpresent)

R(tendrad)
≈
(

1010
)2/3

(105)
2/3

= 104.7 ≥ 5 × 104.
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In any case, the expanding wave theory is testable. For a first test, we propose next to evolve
the quadratic and cubic corrections to redshift vs luminosity recorded here in relation (1.1),
valid at the end of the radiation phase, up through the p ≈ 0 stage to present time in the
Standard Model, to obtain the present time values of the quadratic and cubic corrections
to redshift vs luminisity implied by the expanding waves, as a function of the acceleration
parameter a. Once accomplished, we can look for a best fit value of a via comparison of the
quadratic correction at present time to the quadratic correction observed in the supernova
data, leaving the third order correction at present time as a prediction of the theory. That
is, in principle, the predicted third order correction term could be used to distinguish the
expanding wave theory from other theories (such as dark energy) by the degree to which they
match an accurate plot of redshift vs luminosity from the supernove data, (a topic of the
authors’ current research). The idea that the anomalous acceleration might be accounted
for by a local under-density in a neighborhood of our galaxy was expounded in the recent
papers [3, 4, 1]. Our results here might then give an accounting for the source of such an
under-density.

In summary, the expanding wave theory could in principle give an explanation for the ob-
served anomalous acceleration of the galaxies within classical general relativity, with classical
sources. In the expanding wave theory, the so-called anomalous acceleration is not an accel-
eration at all, but is a correction to the Standard Model due to the fact that we are looking
outward into an expansion wave. The one parameter family of non-interacting, self-similar,
general relativistic expansion waves derived here, are all possible end-states that could result
by wave interaction and dissipation due to nonlinearities back when the universe was filled
with pure radiation sources. And when a 6= 1 they introduce an anomalous acceleration into
the Standard Model of cosmology. Unlike the theory of Dark Energy, this provides a possible
explanation for the anomalous acceleration of the galaxies that is not ad hoc in the sense
that it is derivable exactly from physical principles and a mathematically rigorous theory
of general relativistic expansion waves. In particular, this explanation does not require the
ad hoc assumption of a universe filled with an as yet unobserved form of energy with anti-
gravitational properties, (the standard physical interpretation of the cosmological constant),
in order to fit the data.

In conclusion, these new general relativistic expanding waves provide a new paradigm to
test against the Standard Model. Even if they do not in the end explain the anomalous
acceleration of the galaxies, one has to believe they are present and propagating on some
scale, and their presence represents an instability in the Standard Model in the sense that
an explanation is required as to why small scale oscillations have to settle down to large
scale a = 1 expansions instead of a 6= 1 expansions, (either locally or globally), during the
radiation phase of the Big Bang.

It follows then that we might expect the scale of the wave at present time to extend over a distance of about

L = 5 × 105 × 104 = 5 × 109 lightyears.

This is a third to a fifth of the distance across the visible universe, and agrees well with the extent of the
under-density void region quoted in the Clifton-Ferriera paper, with room to spare.
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