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1 Introduction

A first approximation of the sun assumes a sphere with mass density dependent

on radius. The exact general relativistic solution is the Schwarzschild metric.

Orbits of the Schwarzschild solution are found by extremizing path length of

the Schwarzschild metric. A system of four second order differential equations

results. Exploiting the Symmetry of the system through Killing vectors sim-

plifies the system. Afterwards substituting coordinates in eventually results in

an asymptotically solvable differential equation. Many of these steps are quite

complicated, but can be verified with Lagrange Multipliers.

2 An idea From Classical Mechanics

Assume a free classical particle given by the Lagrangian.

m

2
∗ ((dx/dt)2 + (dy/dt)2) (1)

Extremizing this Lagrangian unsurprisingly results in.

d2x

dt2
= 0

d2y

dt2
= 0 (2)

Now lets add in a constraint equation to keep our particle in a circle. Using

a circle of radius R and a Lagrange Multiplier λ we now have the Lagrangian.

m

2
∗ ((dx/dt)2 + (dy/dt)2) + λ ∗ (x2

+ y2 −R2
) (3)

The first term of the Lagrangian is still the equation of a free particle, the

second term requires the particle to travel in a circle. Taking λ to be a variable,

standard calculus of variations leads to.

m
d2x

dt2
= 2λx (4)
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m
d2y

dt2
= 2λy (5)

x2
+ y2 = R2

(6)

Taking two total time derivatives of the equation of the circle and substitut-

ing into the first two equations solves for the Lagrange Multiplier.

λ = −m

2

(dx/dt)2 + (dy/dt)2

x2 + y2
(7)

The new Lagrangian takes the form.

m

2
∗ [(dx/dt)2 + (dy/dt)2] ∗ R2

x2 + y2
(8)

Now lets do an identical calculation for a straight line rather than a circle.

Our Lagrangian is now.

m

2
∗ ((dx/dt)2 + (dy/dt)2) + λ ∗ (x− by) (9)

The equations of motion become

m
d2x

dt2
= λ (10)

m
d2y

dt2
= −bλ (11)

x = by (12)

Solving for the Lagrange multiplier reveals.

λ = 0 (13)

When we add the requirement for our particle to travel along a line the La-

grangian is unchanged. Solving the equation of motion for a free particle results

in straight lines, implying forcing a free particle to travel in a straight line is

redundant. Suppose instead of requiring the particle to travel in a straight line

we required constant velocity. Is a constant velocity requirement redundant, or

change the form of our Lagrangian. A generalization is called for.

3 Generalizing our Result

Suppose a Lagrangian L describes the motion of a particle. Now suppose a

constraint is added to the Lagrangian using a Lagrange Multiplier. To allow

the constraint the initial conditions may have fewer degrees of freedom. If

the Lagrange multiplier evaluates to zero, then along paths consistent with the

reduced initial conditions we are extremizing the original Lagrangian. Along

these paths the constraint equation and the Euler-Lagrange equations are both

satisfied. An example will clarify this result.
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4 Schwarzschild at θ =
π
2

The Schwarzschild solution orbit is found by extremizing.

ds2 = (1− 2GM

r
)(
dt

dτ
)
2 − 1

(1− 2GM
r )

(
dr

dτ
)
2 − r2(

dθ

dτ
)
2 − r2sin2

(θ)(
dφ

dτ
)
2

(14)

Now add in a Lagrange multiplier to restrict θ =
π
2 . Physically this cor-

responds to requiring our motion to take place in a plane. We now have the

Lagrangian.

L = (1− 2GM

r
)(
dt

dτ
)
2− 1

(1− 2GM
r )

(
dr

dτ
)
2−r2(

dθ

dτ
)
2−r2sin2

(θ)(
dφ

dτ
)
2−λ(θ =

π

2
)

(15)

Solving the Euler-Lagrange equation for theta in addition to the constraint

gives.

−2r2
d2θ

dτ2
− 4r

dr

dtau

dθ

dτ
= −2r2 sin θ cos θ

d2φ

dτ2
− λ (16)

θ =
π

2
(17)

We can differentiate the constraint to get.

dθ

dτ
= 0 (18)

d2θ

dτ2
= 0 (19)

Now the Euler-Lagrange equation for theta shows λ = 0. Note this calculation

doesn’t work if θ is not
π
2 . With much less Machinery than the Killing Vector

approach we have proven motion in the Shwarzschild metric takes place in a

plane. In any hypothetical orbit we can adjust our coordinates to make our

object in a plane. Once in this plane the object will never leave the plane and

is subject to the same Lagrangian a free particle would experience.

5 Energy and Angular Momentum

Usually the conserved quantities associated with Schwarzschild orbits are found

using Killing vectors. Lagrange multipliers only allows one to check a conserved

quantity. To that end we now show Energy and Angular Momentum are con-

served.

L = (1−2GM

r
)(
dt

dτ
)
2− 1

(1− 2GM
r )

(
dr

dτ
)
2−r2(

dθ

dτ
)
2−r2sin2

(θ)(
dφ

dτ
)
2−λ((1−2GM

r
)
dt

dτ
−E)

(20)
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Varying with respect to time and our Lagrange multiplier yields

d

dτ
(2(1− 2GM

r
)
dt

dτ
− λ(1− 2GM

r
)) (21)

(1− 2GM

r
)
dt

dτ
= E (22)

Substituting the constraint equation into the variational equation and taking

the derivative with respect to proper time yields.

λ
2GM

r2
dr

dτ
= 0 (23)

Which is satisfied in General by λ = 0.

Similarly with Angular momentum

L = (1−2GM

r
)(
dt

dτ
)
2− 1

(1− 2GM
r )

(
dr

dτ
)
2−r2(

dθ

dτ
)
2−r2sin2

(θ)(
dφ

dτ
)
2−λ(r2

dφ

dτ
−A)

(24)

Varying with respect to φ and our Lagrange multiplier yields

d

dτ
[−2r2sin2

(θ)(
dφ

dτ
)− λr2] = 0 (25)

r2
dφ

dτ
= A (26)

Substituting the constraint equation into the variational equation and taking

the derivative with respect to proper time yields.

λ2r
dr

dτ
= 0 (27)

Again in General λ is zero.

Using the method of applying constraint equations We see that energy,

(1 − 2GM
r )

dt
dτ and Angular momentum r2 dr

dτ are both conserved along orbits

of the Schwarzschild metric. A Philosophical point is the slight difference be-

tween conservation laws derived from killing vectors and those derived above.

If we derive the conserved quantities from the Schwarzschild solution we end

are first solving for orbits, and then finding conserved quantities based on those

orbits. Lagrange multipliers instead assume a specific conserved quantity then

demonstrate the conservation law has no effect on the solution of the orbit.

6 Conclusion

If two Lagrangians yield the same equation a mathematician can use either

equation. Adding in a constraint equation using Lagrange multipliers restricts

the possible solutions, if we haven’t actually changed the Lagrangian, the con-

straint was already satisfied. In this way we check and verify the solutions to the

Schwarzschild metric can indeed be regarded as taking place in a plane and with

fixed energy and angular momentum. These results are derived more directly

than the traditional method.
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