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Abstract. Regularity singularities are points in spacetime where the
gravitational metric tensor of General Relativity fails to be at least two
levels more regular than its curvature tensor. Whether regularity singu-
larities exist for shock wave solutions constructed by the Glimm scheme
in GR is an open problem. In this paper we pose the problem at the
general level of connections Γ ∈ Wm,p satisfying dΓ ∈ Wm,p as well,
and ask the question as to whether there always exists a coordinate
transformation with Jacobian J ∈ Wm+1,p which smooths the connec-
tion by one order. Introducing a new approach to this problem, we
derive a system of nonlinear elliptic Poisson equations, which we call
the Regularity Transformation equations (RT-equations), with matrix-
valued differential forms as unknowns, and prove that the existence of
solutions to these equations is equivalent to the Riemann-flat condition,
which was shown by the authors to be equivalent to the existence of a
coordinate transformation which smooths the connection by one order
[22]. Different from earlier approaches to optimal metric regularity, our
method does not employ any apriori coordinate ansatz. In a companion
paper authors establish an existence theory for the RT-equations at the
level of smoothness m ≥ 1. In the final section of this paper we propose
a mathematical framework for extending the existence theory to the L∞

case of shock waves.

1. Introduction

Although the Einstein equations of General Relativity (GR) are covariant,
solutions are constructed in coordinate systems in which the PDE’s take on
a solvable form. A very first question in GR is then, which properties of
the spacetime represent the true geometry, and which are merely anomalies
of the coordinate system? In particular, does a solution of the Einstein
equations exhibit its optimal regularity in the coordinate system in which
it was constructed? The most regular coordinate systems define the local
properties of spacetime, and these determine the degree to which the physics
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in curved spacetime corresponds locally to the physics of Special Relativity,
(Einstein’s Correspondence Principle).1

A particularly intriguing case is GR shock waves [25, 15, 20, 28, 2]. In
[13], shock wave solutions of the Einstein equations generated by the Glimm
scheme could only be constructed in coordinate systems in which the metric
is only Lipschitz continuous (C0,1) at shocks, even though both the con-
nection and curvature tensor of such solutions stay bounded in L∞. The
question as to whether a C0,1 metric can always be smoothed one order to
C1,1 by coordinate transformation is intimately related to the existence of
locally inertial coordinate systems, and to the local correspondence of GR
with the physics of Special Relativity. In [20, 21] the authors conjectured
that if such coordinate systems do not always exist, then shock wave in-
teractions create a new kind of mild singularity which the authors termed
Regularity Singularities. It remains an open problem whether regularity sin-
gularities exist at shock waves, or not. This question is central to numerical
analysis in GR, as knowing whether a numerical singularity is geometric,
or a coordinate anomaly, is essential to understanding the validity of the
numerics.

The question as to the existence of such smoothing transformations is
surprisingly subtle. Although the construction of locally inertial coordinate
systems by the Riemann normal construction is straightforward at a fixed
level of smoothness, this simple process is not sufficient to smooth a connec-
tion. At smooth, non-interacting shock surfaces, coordinate transformation
to Gaussian normal coordinates at the surface, suffices to smooth an L∞

gravitational connection by one order to C0,1 at shocks, by a now classical
result of Israel in 1966 [15]. But for more general shock wave interactions,
the only result we have is due to Reintjes [19], who proved that the gravita-
tional metric can always be smoothed one order to C1,1 in a neighborhood
of the interaction of two shock waves from different characteristic families,
in spherically symmetric spacetimes. Reintjes’ procedure for finding the lo-
cal coordinate systems of optimal smoothness is orders of magnitude more
complicated than the Riemann normal, or Gaussian normal construction
process. The coordinate systems of optimal C1,1 regularity are constructed
in [19] by solving a complicated non-local PDE highly tuned to the structure
of the interaction. Trying to guess the coordinate system of optimal smooth-
ness apriori, for example harmonic, wave, or Gaussian normal coordinates

1For example, assume one were to construct a solution to the Einstein equationsG = κT

in a given coordinate system x in which the equations produce a unique solution within a
given smoothness class, say metric g ∈ Wm+2,p, connection Γ ∈ Wm+1,p, and Riem(Γ) ∈
Wm,p. Then application of a transformation x → y with Jacobian J ∈ Wm+1,p will in
general lower the regularity of the metric and its connection Γ by one order, but preserve
Riem(Γ) ∈ Wm,p, because it is a tensor. Thus, if that existence theory were posed in
y-coordinates, it would produce the unique transformed solution g ∈ Wm+1,p, Γ ∈ Wm,p,
and Riem(Γ) ∈ Wm,p. In the latter case, we would not know that our unique solution was
one order below optimal smoothness without knowing about the existence of the inverse
transformation y → x.
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[3], is not successful. In Reintjes’ construction, several apparent miracles
happen in which the Rankine-Hugoniot jump conditions come in to make
seemingly over-determined equations consistent, but, the principle behind
what PDE’s must be solved to smooth the metric in general, or when this
is possible, appears entirely mysterious.

In this paper we introduce a new approach to optimal metric regularity
which is different from earlier approaches in that it does not employ any apri-
ori coordinate ansatz.2 Rather than imposing an apriori coordinate ansatz,
(like harmonic coordinates), and trying to establish regularity of solutions
of the Einstein equations in those coordinates, the approach here begins
with the belief that the coordinates of optimal regularity are too difficult to
guess apriori, and one has to find and solve equations for the coordinates
themselves. We address the problem at the general level of connections
Γ ∈ Wm,p, under the assumption that dΓ ∈ Wm,p, so the curvature tensor
Riem(Γ) ∈ Wm,p as well, (i.e., component functions are in Wm,p in some
given coordinate system x)3, and ask the question as to whether there al-
ways exists a coordinate transformation x→ y with Jacobian J ∈ Wm+1,p,
such that in y-coordinates, the connection is one degree smoother, i.e., in
Wm+1,p.

Treating the unknowns as matrix valued differential forms, we derive a
system of nonlinear elliptic Poisson equations which we call the Regularity
Transformation equations (RT-equations), and prove that the existence of
solutions to these equations is equivalent to the Riemann-flat condition,
which was shown in [22] to be equivalent to the existence of such a coordinate
transformation smoothing the connection. The Riemann-flat condition is
the condition that there should exist a tensor Γ̃, one order smoother than
the connection Γ, such that Riem(Γ − Γ̃) = 0. The Riemann-flat condition

gives an equation for dΓ̃ which can be augmented to a first order system of
Cauchy-Riemann equations by addition of an equation for δΓ̃ with arbitrary
right hand side. This system can then be converted into a second order
semi-linear Poisson equation for Γ̃ by use of the identity dδ + δd = ∆, but
this couples the right hand side of the equation to the Jacobian J of the
unknown coordinate transformation which smooths the connection. Thus
to close the equations, it is necessary to couple the Poisson equation in the
unknown Γ̃, to an equation in J . Employing the identity J−1dJ = Γ − Γ̃

2The problem of optimal regularity for Riemannian metrics with curvature tensors of
low regularity was addressed in [8]. For Lorentzian metrics, this problem was addressed
in [1] for GR vacuum spacetimes, and for non-vacuum spacetimes subject to additional
assumptions. In the case of GR vacuum solutions results were improved in [4, 17]. These
papers do not address GR shock waves, the case when the matter sources are non-zero
and the Riemann curvature is in L∞ [15, 25, 20]. Different from these approaches, we do
not assume any apriori coordinate ansatz.

3Here dΓ denotes the exterior derivative of Γ viewed as a matrix valued 1-form. By
Gaffney’s inequality, our assumption Γ, dΓ ∈ Wm,p implies all of the loss of derivative in
Γ occurs in δΓ, c.f. (2.32) below.
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which comes from the Riemann-flat condition, together with the identity
dδ + δd = ∆, we derive a semi-linear elliptic Poisson equation for J which
closes the system in (Γ̃, J). The RT-equations are then obtained by using

the freedom in δΓ̃ to impose the integrability of the Jacobian by coupling
the equations in (Γ̃, J) to an additional Cauchy-Riemann equation in the

auxiliary variable A = JδΓ̃. The resulting system of equations in (Γ̃, J,A)
is elliptic, each equation being of Poisson, or Cauchy-Riemann type. By
a fortuitous identity, we show that all bad terms involving δΓ can be re-
expressed in terms of dΓ, leading to a gain of one derivative on the right hand
side. By this, the RT-equations are formally correct at the levels of regularity
sufficient to smooth the original connection by one order, consistent with
known results on harmonic smoothing by the Poisson equation in Lp-spaces,
[6, 10, 12]. This is established in a rigorous existence theory for the RT-
equations in authors’ companion paper [23].

The RT-equations involve matrix valued differential forms, and to derive
them we develop a Euclidian Cartan algebra associated with the Riemann-
flat condition. The derivation relies on special operations on matrix valued
differential forms meaningful when the dimension of the matrices equals the
dimension of the space, and these have no classical scalar analogue (c.f. [6]).
This framework appears to be forced on us to close the equations, by bridg-
ing matrix and vector valued differential forms through special operations.
Remarkable to us is that the RT-equations reduce the question of regularity
singularities in Lorentzian spacetimes, to an existence problem for a system
of elliptic Poisson equations. So the metric signature is of no relevance to
the question of regularity singularities.

The problem of solving the RT-equations at the threshold low regularity of
L∞ connections, the setting of GR shock waves, is problematic, due mainly
to the existence of Calderón-Zygmund singularities4 in solutions with L∞

source terms on the right hand side of the Poisson equation [16]. The space
C0,α is a fractional level of smoothness above L∞, and the space Wm,p

naturally embeds in C0,α form ≥ 1, p > n, by Sobolev embedding [10]. Thus
we begin the study of the RT -equations here by addressing what we term the
smooth case, the case when Γ ∈ Wm,p, m ≥ 1, under the assumption that
p > n so that Sobolev embedding implies Hölder continuity, [10]. In this
paper we establish the equivalence of the RT -equations with the Riemann-
flat condition in the smooth case, and in [23] we prove existence in the
smooth case by reducing the existence theory to known results on elliptic
regularity for the Poisson equation. In Section 4, we propose a framework

4By Calderón-Zygmund singularities we mean counterexamples demonstrating that
solutions of the linear Poisson equation are not always in C1,1 when the sources are in
L∞, (i.e., solutions do not always gain two derivatives above the sources, [16, 10]). Thus,
by ellipticity of the RT-equations, the problem of regularity singularities at shock waves in
GR is intimately connected to the existence of classical Calderón-Zygmund singularities
for the Poisson equation.
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for extending the existence theory to the lower regularity Γ, Riem(Γ) ∈ L∞,
the setting of GR shock waves. This is the topic of authors’ current research.

The main result of this paper is the following theorem which establishes
the equivalence of the Riemann flat condition with the solvability of an
explicit semi-linear elliptic system of Poisson equations, stated in the smooth
case Γ, dΓ ∈Wm,p, and hence Riem(Γ) ∈Wm,p, for m ≥ 1, p > n, by which
we mean the component functions of Γ and dΓ are inWm,p in some given, but
otherwise arbitrary, coordinate system x. For the theorem, Γ ≡ Γµ

νkdx
k is

viewed as a matrix valued 1-form. The unknowns in the equations are Γ̃, J,A
also viewed as matrix valued differential forms as follows: J ≡ J

µ
ν is the

Jacobian of the sought after coordinate transformation which smooths the
connection, viewed as a matrix-valued 0-form; Γ̃ ≡ Γ̃µ

νkdx
k is the unknown

tensor one order smoother than Γ such that Riem(Γ − Γ̃) = 0, viewed
as a matrix-valued 1-form; and A ≡ A

µ
ν is an auxiliary matrix valued 0-

form introduced to impose Curl(J) = 0, the integrability condition for the
Jacobian.

Theorem 1.1. Assume Γ is defined in a fixed coordinate system x on Ω,
for Ω ⊂ R

n open and with smooth boundary. Assume that Γ ∈Wm,p(Ω) and
dΓ ∈Wm,p(Ω) for m ≥ 1, p > n. Then the following equivalence holds:

If there exists a coordinate transformation x 7→ y with Jacobian J = ∂y
∂x

∈

Wm+1,p(Ω) such that the components of Γ in y-coordinates are inWm+1,p(Ω),

then there exists Γ̃ ∈Wm+1,p(Ω) and A ∈Wm,p(Ω) such that (J, Γ̃, A) solve
the elliptic system

∆Γ̃ = δd
(

Γ− J−1dJ
)

+ d(J−1A), (1.1)

∆J = δ(J ·Γ) − 〈dJ ; Γ̃〉 −A, (1.2)

d ~A =
−→
div

(

dJ ∧ Γ
)

+
−→
div

(

J dΓ
)

− d
(

−−−−→
〈dJ ; Γ̃〉

)

, (1.3)

δ ~A = v, (1.4)

with boundary data

Curl(J) ≡ ∂jJ
µ
i − ∂iJ

µ
j = 0 on ∂Ω, (1.5)

where v ∈Wm−1,p(Ω) is a vector valued 0-form free to be chosen.

Conversely, if there exists J ∈ Wm+1,p(Ω) invertible, Γ̃ ∈ Wm+1,p(Ω) and
A ∈ Wm,p(Ω) which solve (1.1) - (1.5) in Ω, then for each p ∈ Ω, there
exists a neighborhood Ω′ ⊂ Ω of p such that J is the Jacobian of a coordinate
transformation x 7→ y on Ω′, and the components of Γ in y-coordinates are
in Wm+1,p(Ω′).

We call system (1.1)-(1.4) the Regularity Transformation equations, or

RT-equations. Here ~A is the vector valued 1-form defined by ~A = A
µ
i dx

i, so

d ~A ≡ Curl(A). The operations ~·,
−→
div and 〈· ·〉, introduced in Sections 2.1

below, are special operations on matrix valued differential forms meaningful
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when the dimension of the matrices equals the dimension of the physical
space. New features arise in the auxiliary Euclidean Cartan algebra essen-
tially because we view J both as a matrix valued zero form and a vector
valued 1-form at different stages of the argument.

The free vector valued 0-from v has been introduced in (1.4) so that

(1.3), (1.4) takes the Cauchy-Riemann form d ~A = f , δ ~A = g. Such systems
require the consistency conditions df = 0, δg = 0, (c.f. Section 3.1 below).
Condition df = 0 is met in (1.3) because the derivation shows the right hand
side is exact, (equation (1.3) is obtained by setting d of the right hand side
of (1.2) equal to zero), and δg = 0 in (1.4) because δv = 0 is an identity for
vector valued 0-forms v.

The second derivative term d(J−1dJ) appearing on the right hand side
of (1.1) has the same regularity as the first order term dJ by the important
identity d(J−1dJ) = (J−1dJ) ∧ (J−1dJ) established in Lemma 3.3 below.
Surprisingly, terms involving δΓ which initially appear to be one order of
smoothness too low on the right hand side of (1.3) for the solution A to
be of the sought after regularity, can be re-expressed in terms of dΓ via

identities involving the operation
−→
div in (1.3). Thus, all such terms are one

order smoother than they initially appear to be, because dΓ, (having the
same regularity as Riem(Γ)), is assumed to be one order smoother than δΓ.
This extra derivative “miracle”, necessary for the consistency of (1.1) - (1.4),
appears to be analogous to the “miraculous” cancellation of terms by the
Rankine-Hugoniot jump conditions in [19].

As a final comment, Theorem 1.1 states that there always exists a mod-
ification Γ̃′ of Γ̃ such that Γ̃′, not Γ̃, solves the Riemann-flat condition.
The need for a modification is an interesting subtly. Namely, the sec-
ond order system (1.1) is derived from the first order Cauchy-Riemann

system dΓ̃ = d
(

Γ − J−1dJ
)

, δΓ̃ = J−1A by application of the identity
∆ = dδ + δd, the first order system coming directly from the Riemann-flat
condition Riem(Γ − Γ̃) = 0. But the advantage of the second order sys-
tem over the first order system is that it allows us to impose more general
boundary data, in particular, the simple boundary data (1.5), instead of
the non-linear data (3.6) required for the standard equivalence between so-
lutions of Cauchy-Riemann and Poisson type equations, c.f. Section 3.1.
The resulting freedom to solve (1.1) with arbitrary boundary conditions is
a propitious feature of the RT-equations.

In Section 1.1 we review the problem of regularity singularities arising
from GR shock wave theory. In Section 2 we introduce the auxiliary Eu-
clidean Cartan algebra of matrix-valued k-forms, express the Riemann-flat

condition within this framework, and define the operations
−→
div and 〈· ; ·〉,

(c.f. (1.3) and (1.2), respectively). In Section 3 we clarify the connection
between the first order Cauchy-Riemann equations and the Poisson equation
in the setting of matrix valued differential forms, derive the RT-equations
(1.1)-(1.4) together with an alternative formulation (in Section 3.4), and
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prove our main result, Theorem 1.1. In Section 4, we outline a program for
extending the existence theory to the L∞ case of shock waves.

1.1. Background on GR Shock Waves. Shock waves form in solutions
of the Einstein equations G = κT for a perfect fluid whenever the solution
is sufficiently compressive, [5, 18]. At shock waves the Einstein curvature
tensor G is bounded and discontinuous because the stress energy T for the
matter sources is bounded and discontinuous due to discontinuities in the
fluid density, velocity and pressure at the shocks, [25]. While a general
existence theory for GR shock waves is still not known except in spherical
symmetry [13], a natural setting for GR shock waves would be solutions
assumed to have the curvature, (like the sources T ), bounded in L∞. A
theory of classical solutions of G = κT with curvature in L∞ would then
naturally follow from the assumption that the gravitational metric g is in
C1,1, so derivatives of the metric, and hence the connection Γ, would be
Lipschitz continuous. But this optimal level of smoothness is not known for
shock wave solutions in GR. The only general existence theory for shock
waves in spherical symmetry, based on the Glimm method [13], produces
gravitational metrics which are only Lipschitz continuous at shocks, so Γ
is only known to be in L∞. For GR shock waves at the low regularity
of Lipschitz continuous metric and L∞ connection, the Einstein equations
G = κT still imply that the curvature tensor is in L∞, and hence the
implication would be that second derivatives of the metric contain delta
function sources, (i.e., the metric is only Lipschitz), but these cancel out
in the curvature tensor. By Christoffel’s formula the connection bounds all
first order metric derivatives, thus a most basic question for the subject
of GR shock waves is the question as to whether a weak solution of the
Einstein equations G = κT with its connection Γ ∈ L∞, can be smoothed by
one order to Lipschitz continuous by coordinate transformation, under the
assumption that the Riemann curvature tensor of the connection is bounded
in L∞.

Starting with this open problem, the authors proposed that if shock wave
solutions with Γ ∈ L∞ could not be smoothed to Lipschitz continuous by
coordinate transformation, then such solutions would represent a new kind
of mild singularity for General Relativity, which they named a regularity
singularity. In [21] authors showed that at a regularity singularity, the
spacetime would not be smooth enough to admit locally inertial frames, and
such a singularity would change the character of the Newtonian limit and
the local scattering of gravitational radiation.

The general open problem of regularity singularities then, is, given an
L∞ connection Γ with L∞ curvature tensor, does there exist a C1,1 coordi-
nate transformation which smooths the connection by one order to Lipschitz
continuous? And if not, under what further conditions on Γ does such a co-
ordinate transformation exist? By the transformation laws for a connection,
a coordinate transformation can smooth an L∞ connection by one order only
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if it has discontinuities in second derivatives of the transformation, so C1,1,
the space of functions whose derivatives are Lipschitz, is the function space
in which such coordinate transformation would lie, [25, 20]. This is a natural
question for the Einstein equations because any coordinate transformation
with J ∈ C0,1 automatically transforms a connection of regularity C0,1 into a
connection in Wm,p, (one loss of derivative), while preserving the regularity
of dΓ ∈ L∞, and hence also Riem(Γ) ∈ L∞, because the symmetric second
order derivative term in the transformation law for a connection cancels out
in dΓ. Thus the question of Regularity Singularities is the question as to
whether this operation can always be inverted.

In pursuit of a general theory of metric smoothing at shock waves, in
[22] the authors proved that the problem of metric smoothing for symmetric
Γ ∈ L∞ with dΓ ∈ L∞ is equivalent to the Riemann-flat condition, namely,
that the connection can be smoothed by a C1,1 coordinate transformation in
a neighborhood of a point p if and only if there exists a Lipschitz continuous
symmetric (1, 2)-tensor Γ̃ such that Γ− Γ̃ is Riemann flat in a neighborhood

of p, i.e., Riem(Γ − Γ̃) = 0, (c.f. Theorem 1 of [22]). It is straightforward
to extend the Riemann flat condition to connections which are Hölder con-
tinuous, so by Sobolev embedding, the Riemann flat condition applies to
connections in Wm,p, m ≥ 1, p > n, [10]. This is formulated in Theorem
2.5 below. We refer to Γ ∈ L∞, dΓ ∈ L∞ relevant for GR shock waves as
the L∞ case, and we refer to Γ ∈ Wm,p, dΓ ∈ Wm,p, k ≥ 1, p > n, as the
smooth case.

The Riemann-flat condition, the point of departure for this paper, gave
us the idea that a closed set of elliptic equations for metric smoothing might
be expressed within a Cartan type framework of matrix valued differential
forms. Standard PDE methods do not apply to the Riemann flat condi-
tion by itself, but in this paper we show that the equations close when the
Riemann-flat conditions is coupled to a similar equation for the Jacobian of
the sought after coordinate transformation which smooths the connection.
The final system (1.1)-(1.5) is obtained by coupling this to an auxiliary
equation expressing the integrability of the Jacobian.

2. Matrix valued differential forms

In this section we develop a theory of matrix valued differential forms in
the special case when the dimension of the matrix components agrees with
the dimension of the space, n. The exterior derivative d and its co-derivative
δ operate on matrix valued k-forms component-wise, and the wedge product
introduces the matrix commutator, both of which are independent of the size
of the matrices. However, to close the equations, we need to introduce two
new operations, c.f. (1.4). The first operation maps matrix valued 0-forms

A to vector valued 1-forms ~A via contraction of one matrix indices with dxi.
The second is a vectorized divergence ~div which maps matrix valued k-forms
to vector valued k-forms by taking the divergence with respect to the lower
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matrix index. These vectorizing operations are meaningful only for matrix
valued forms in which the matrices and the dimension of the space are both
equal.

Keep in mind, this is a Euclidean framework because we only consider
matrix valued differential forms in the fixed coordinate system x in which
our connection Γ ≡ Γk

ij is originally assumed to be given, and we take
the auxiliary metric on x to be Euclidean. Since x is assumed fixed, the
covariance properties of these differential forms is not an issue.

2.1. Euclidean Cartan calculus for Lorenzian connections. To start,
we interpret the connection Γ as a matrix valued 1-form Γµ

ν ≡ Γµ
νidx

i, in
which case the Riemann curvature tensor of Γ can be written as the matrix
valued 2-form

Riem(Γ) = dΓ + Γ ∧ Γ, (2.1)

c.f., Lemma 2.1. By a matrix valued differential k-form A we mean an
(n×n)-matrix whose components are k-forms over n-dimensional base space
Ω ⊂ R

n, and we write

A = A[i1...ik]dx
i1 ∧ ... ∧ dxik ≡

∑

i1<...<ik

Ai1...ikdx
i1 ∧ ... ∧ dxik ,

for (n × n)-matrices Ai1...ik that are totally anti-symmetric in the indices
i1, ..., ik ∈ {1, ..., n}. As is standard, we always indicate an increasing order-
ing of indices by a square bracket around the indices and we set

dxi1 ∧ ... ∧ dxik ≡
∑

π∈Sk

sgn(π) dxiπ(1) ⊗ ...⊗ dxiπ(k) , (2.2)

where Sk denotes the set of all permutations of {1, ..., k}. We define the
exterior derivative of a matrix valued k-form by

dA ≡ d
(

A[i1...ik]

)

∧ dxi1 ∧ ... ∧ dxik

= ∂lA[i1...ik]dx
l ∧ dxi1 ∧ ... ∧ dxik , (2.3)

and we define the wedge product of a matrix valued k-form A with a matrix
valued l-form B = Bj1...jldx

j1 ∧ ... ∧ dxjl as

A ∧B ≡
1

l!k!
Ai1...ik ·Bj1...jl dx

i1 ∧ ... ∧ dxik ∧ dxj1 ∧ ... ∧ dxjl , (2.4)

where the dot denotes standard matrix multiplication. The wedge product of
a matrix valued k-form with itself is non-zero unless the component matrices
commute, which we now illustrate for a matrix valued 1-form A = Aidx

i by
computing

(Aidx
i) ∧ (Ajdx

j) ≡ Ai·Ajdx
i ∧ dxj

= Ai·Aj

(

dxi ⊗ dxj − dxj ⊗ dxi
)

= (Ai·Aj −Aj ·Ai) dx
i ⊗ dxj (2.5)

and this vanishes if and only if AiAj −AjAi = 0. Thus, Γ ∧ Γ in (2.1) is in
general non-vanishing.
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To define the co-derivative δ and the Laplace operator ∆ for matrix valued
k-forms, define the Hodge star operator ∗ by

A ∧ (∗B) ≡ 〈A ;B〉dx1 ∧ ... ∧ dxn, (2.6)

for matrix valued k-forms A and B, where we define the matrix valued inner
product as

〈A ;B〉µν ≡
∑

i1<...<ik

A
µ
σ i1...ik

Bσ
ν i1...ik

, (2.7)

which is the Euclidean inner product on the components of k-forms. The
Hodge-star operator ∗ maps k-forms linearly to (n − k)-forms and (2.6) is
equivalent to the orthogonality condition (for increasing indices)

dx[i1∧...∧dxik ]∧∗
(

dx[j1∧...∧dxjk]
)

=

{

dx1 ∧ ... ∧ dxn, if i1 = j1, ..., ik = jk,

0 otherwise,

(2.8)
since we find from the definition of the wedge product (2.4) and (2.8) that
(

A ∧ (∗B)
)µ

ν
= A

µ
σ[i1...ik]

Bσ
ν[j1...jk]

dxi1 ∧ ... ∧ dxik ∧ ∗
(

dxj1 ∧ ... ∧ dxjk
)

= 〈A ;B〉µν dx
1 ∧ ... ∧ dxn.

By (2.8), the Hodge star maps a basis element to its complementary element,

from which we find that ∗ ∗ A = (−1)k(n−k)A, (where the factor (−1)k(n−k)

appears when passing the dual basis element to the left hand side), and so

∗−1 = (−1)k(n−k) ∗ .

The co-derivative of a k-form A is now defined (in the standard way) as the
(k − 1)-form

δA ≡ (−1)n−k ∗
(

d(∗−1A)
)

(2.9)

and the Laplace operator as

∆ ≡ δd+ dδ. (2.10)

The Laplacian acts on each component of A as the scalar Laplacian,

(∆A)µνi1...ik = ∆
(

A
µ
νi1...ik

)

=

n
∑

j=1

∂j∂j
(

A
µ
νi1...ik

)

, (2.11)

c.f. Theorem 3.7 in [6], (where the last identity in (2.11) holds when xi are
Euclidean coordinates, the case we have here). A straightforward computa-
tion shows that δA = 0 for 0-forms A, and if k = 1, then the co-derivative
is the divergence,

(δA)µν =
n
∑

i=1

∂iA
µ
ν i. (2.12)

With the exception of property (2.5) of the wedge product, matrix valued
differential forms behave like standard scalar differential forms with scalar
multiplication replaced by matrix multiplication whenever components are
multiplied. In particular, the derivative operations (2.3), (2.9) and (2.10)
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simply act component-wise on matrix components. We now prove that (2.1)
holds for the Riemann curvature tensor

Riem(Γ)µν ≡ R
µ
νijdx

i ⊗ dxj ,

the components of which are given by

Riem(Γ)µνij ≡ R
µ
νij ≡ Γµ

νj,i − Γµ
νi,j + Γµ

σiΓ
σ
νj − Γµ

σjΓ
σ
νi (2.13)

and where we interpret µ and ν as matrix indices.

Lemma 2.1. In fixed coordinates xi, the Riemann curvature tensor is the
matrix-valued 2-form (2.1) with matrix components

Riem(Γ)µν = R
µ

ν[ij]dx
i ∧ dxj = d

(

Γµ
νidx

i
)

+ Γµ
σidx

i ∧ Γσ
νjdx

j . (2.14)

Proof. We use (2.2) and the antisymmetry of Rµ
νij in i and j to write

R
µ

ν[ij] dx
i ∧ dxj = R

µ

ν[ij]

(

dxi ⊗ dxj − dxj ⊗ dxi
)

=
∑

i<j

R
µ
νijdx

i ⊗ dxj +
∑

i<j

R
µ
νjidx

j ⊗ dxi

= R
µ
νijdx

i ⊗ dxj,

without losing any information of the curvature tensor, which turns Riem(Γ)
into a matrix valued 2-form. To prove the second equality in (2.14), use (2.3)
to compute

d
(

Γµ
νidx

i
)

= Γµ
νi,jdx

j ∧ dxi = Γµ
νi,j

(

dxj ⊗ dxi − dxi ⊗ dxj
)

=
(

Γµ
νj,i − Γµ

νi,j

)

dxi ⊗ dxj

and use (2.4) to compute

Γµ
σidx

i ∧ Γσ
νjdx

j = Γµ
σiΓ

σ
νj dx

i ∧ dxj = Γµ
σiΓ

σ
νj

(

dxi ⊗ dxj − dxj ⊗ dxi
)

=
(

Γµ
σiΓ

σ
νj − Γµ

σjΓ
σ
νi

)

dxi ⊗ dxj

which combined yields the sought after second equality in (2.14). �

To proceed, let Wm,p(Ω) be the Sobolev space of functions with partial
derivatives up to m-th order in Lp. We say that a matrix valued k-form
w is in Wm,p(Ω) if its components are functions in Wm,p(Ω), with respect
to the fixed coordinate system x. Assume now that m ≥ 1 and p > n, so
that the Sobolev embedding theorem implies functions in W 1,p are Hölder
continuous, c.f. Morrey’s inequality in [10]. The following Leibnitz rule
holds.

Lemma 2.2. Let A ∈ W 1,p(Ω) be a matrix valued k-form and let B ∈
W 1,p(Ω) be a matrix valued j-form, and assume p > n, then

d(A ∧B) = dA ∧B +A ∧ dB ∈ Lp(Ω). (2.15)

Proof. Assuming first that A and B are smooth, a straightforward compu-
tation gives

d(A·B)µν = 1
l!k!d

(

A
µ
σi1...ik

Bσ
νj1...jl

dxi1 ∧ ... ∧ dxik ∧ dxj1 ∧ ... ∧ dxjl
)



12 M. REINTJES AND B. TEMPLE

= 1
l!k!∂l

(

A
µ
σi1...ik

Bσ
νj1...jl

)

dxl ∧ dxi1 ∧ ... ∧ dxik ∧ dxj1 ∧ ... ∧ dxjl

= ∂lA
µ

σ[i1...ik]
dxl ∧ dxi1 ∧ ... ∧ dxik ∧Bσ

ν

+Aµ
σ ∧ ∂lB

σ
ν[j1...jl]

dxl ∧ dxj1 ∧ ... ∧ dxjl

= dAµ
σ ∧Bσ

ν +Aµ
σ dB

σ
ν , (2.16)

which is the sought after identity (2.15). To extend the above computation
to W 1,p, we use that the difference quotient (along the j-th coordinate axis)
Dhf of a function f ∈ W 1,p(Ω) converges to its weak derivative ∂jf in L1

as h→ 0. It follows that for the product of two functions f, g ∈W 1,p(Ω) we
have at x ∈ Ω

Dh(fg)|x = Dh(f)|x g(x+ h) + f(x)Dh(g)|x. (2.17)

Now, since p > n, we know by the Sobolev embedding theorem that g and
f are Hölder continuous, so that the right hand side in (2.17) converges in
L1 as h→ 0 and implies

lim
h→0

Dh(fg) = g ∂jf + f ∂jg ∈ Lp(Ω).

Thus, since Dh(fg) converges to the weak derivative ∂j(fg) in L
1 as h→ 0,

we conclude that

∂j(fg) = g ∂jf + f ∂jg ∈ Lp(Ω) (2.18)

and thus fg ∈ W 1,p(Ω). Applying (2.18) component-wise for the third
equality in (2.16) leads to the sought after equation (2.15). �

We also require the following Leibnitz rule for the co-derivative.

Lemma 2.3. Let J ∈W 2,p(Ω) be a matrix valued 0-form and w ∈W 2,p(Ω)
a matrix valued 1-form, then

δ(J ·w) = J ·δw + 〈dJ ;w〉 (2.19)

where 〈·; ·〉 is the matrix valued inner product defined in (2.7).

Proof. Using that δ of a 1-form is the divergence (2.12), we find that

(

δ(J ·w)
)α

i
= δ

(

Jα
k w

k
ijdx

j
)

=

n
∑

j=1

∂j
(

Jα
k w

k
ij

)

=

n
∑

j=1

Jα
k,jw

k
ij + Jα

k (δw)
k
i

and this proves the lemma. �

We close this section by introducing the two operations we require to
close the equations, which relate matrix valued to vector valued differential
forms. Note, a matrix valued 0-form Jα

i turns into a vector valued 1-form
Jα
i dx

i by contracting the lower matrix index with a Cartan basis element,
(where α labels the components of the vector). To start, let an arrow over
a matrix valued 0-form A convert A to its equivalent vector valued 1-form,
i.e.,

~A ≡ Aα
i dx

i. (2.20)
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By this, we can express the integrability of the Jacobian J , (c.f., Frobenius
Theorem, [27]), as

d ~J = 0, (2.21)

since

Curl(J) ≡
1

2

(

Jα
i,j − Jα

j,i

)

dxj ⊗ dxi = Jα
i,jdx

j ∧ dxi = d(Jα
i dx

i) ≡ d ~Jα.

For our elliptic system to close, we need one more operation to convert
matrix valued to vector valued differential forms. Namely, for ω ∈ Λ1,p

k (Ω),
we define

−→
div(ω)α ≡

n
∑

l=1

∂l
(

(ωα
l )i1,,,ik

)

dxi1 ∧ ... ∧ dxik , (2.22)

which is the divergence with respect to the lower matrix index, thus creating
a vector valued k-form out of a matrix valued k-form. We close this sub-
section with the following intriguing identity for commuting d and δ which
has no analogue for classical scalar valued differential forms and is the key
identity for the regularity of the final elliptic system to close.

Lemma 2.4. Let Γ ∈ Wm,p(Ω) and J ∈ Wm+1,p(Ω) for p > n and m ≥ 1,
then

d
(−−−−→
δ(J ·Γ)

)

=
−→
div

(

dJ ∧ Γ
)

+
−→
div

(

J ·dΓ
)

. (2.23)

Proof. Since δ of a matrix valued 1-form is the divergence (for fixed matrix
components), we have

(

δ(JΓ)
)α

j
= δ

(

Jα
k Γ

k
jidx

i
)

=
n
∑

l=1

∂l
(

Jα
k Γ

k
jl

)

and thus
(−−−→
δ(JΓ)

)α
=

(

δ(JΓ)
)α

j
dxj =

n
∑

l=1

∂l
(

Jα
k Γ

k
jl

)

dxj ,

from which we find that

d
(−−−→
δ(JΓ)

)α
= ∂i

(

δ(JΓ)
)α

j
dxi ∧ dxj =

n
∑

l=1

∂i∂l
(

Jα
k Γ

k
jl

)

dxi ∧ dxj ,

where in the case m = 1 second derivatives are taken in a distributional
sense. Now, since weak derivatives commute, we obtain from the product
rule (which applies since Γ and derivatives of J are Hölder continuous) that

d
(−−−→
δ(JΓ)

)α
=

n
∑

l=1

∂l∂i
(

Jα
k Γ

k
jl

)

dxi ∧ dxj

=
n
∑

l=1

∂l
(

Jα
k,iΓ

k
jl

)

dxi ∧ dxj +
n
∑

l=1

∂l
(

Jα
k Γ

k
lj,i

)

dxi ∧ dxj

=
−→
div

(

dJ ∧ Γ
)α

+
−→
div

(

J ·dΓ
)α
.

This completes the proof. �
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2.2. The Riemann-flat condition in terms of matrix valued differ-
ential forms. Consider the transformation law for a connection

(J−1)kα
(

∂jJ
α
i + J

β
i J

γ
j Γ

α
βγ

)

= Γk
ij, (2.24)

where Γk
ij denotes the components of the connection in xi-coordinates, Γα

γβ

denotes its components in yα-coordinates, and where Jα
i = ∂yα

∂xi denotes

the Jacobian of the coordinate transformation. Assume now that Γk
ij ∈

Wm,p(Ω), Jα
i ∈ Wm+1,p(Ω) and Γα

γβ ∈ Wm+1,p(Ω), for m ≥ 1, so the Jaco-

bian J smooths the connection Γk
ij by one order. For these given coordinates

x and y, define

Γ̃k
ij ≡ (J−1)kαJ

β
i J

γ
j Γ

α
βγ . (2.25)

Then requiring Γ̃ to transform as a (1, 2)-tensor, (2.25) defines the tensor Γ̃.
By this, (2.24) can be written equivalently as

(J−1)kα ∂jJ
α
i = (Γ− Γ̃)kij . (2.26)

Now, since adding a tensor to a connection yields another connection, (2.26)

is just the condition that J transforms the connection Γ − Γ̃ to zero. This
implies Γ−Γ̃ is a Riemann-flat connection, Riem(Γ−Γ̃) = 0. In the language
of matrix valued differential forms (2.26) reads

J−1dJ = Γ− Γ̃,

where J is a matrix valued 0-form and Γ and Γ̃ are matrix valued 1-forms.
Note (2.24) - (2.26) apply to Γk

ij ∈ L∞(Ω) and Γα
γβ ∈ C0,1(Ω), and it is

proven in [22] that the reverse implication is also true, even at this low level
of regularity of Γ ∈ L∞. The equivalence is this: One can smooth an L∞

connection Γ one order to C0,1 by a C0,1 coordinate transformation if and
only if the “Riemann-flat condition” holds, and we say that the Riemann-
flat condition holds if there exists a Lipschitz continuous rank (1, 2)-tensor

Γ̃k
ij with symmetry Γ̃k

ij = Γ̃k
ji such that Riem(Γ − Γ̃) = 0 holds. Based on

this, we now record the following version of the Riemann flat condition and
related equivalencies applicable to the smoothness classes Γ ∈Wm,p relevant
for this paper.

Theorem 2.5. Let Γk
ij be a symmetric connection in Wm,p(Ω) for m ≥ 1

and p > n (in coordinates xi). Then the following points are equivalent:

(i) There exists a coordinate transformation xi 7→ yα with Jacobian J ∈
Wm+1,p(Ω) such that Γα

βγ ∈Wm+1,p(Ω) in y-coordinates.

(ii) There exists a symmetric (1, 2)-tensor Γ̃ ∈ Wm+1,p(Ω) and a matrix
field J ∈Wm+1,p(Ω) which solve

J−1dJ = Γ− Γ̃, (2.27)

Jα
i,j − Jα

j,i = 0. (2.28)
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(iii) There exists a symmetric (1, 2) tensor Γ̃ ∈Wm+1,p(Ω) such that Γ− Γ̃
is Riemann-flat,

Riem(Γ− Γ̃) = 0. (2.29)

(iv) There exists a symmetric (1, 2) tensor Γ̃ ∈ Wm+1,p(Ω) which, when
viewed as a matrix valued 1-form in x-coordinates, solves

dΓ̃ = dΓ +
(

Γ− Γ̃
)

∧
(

Γ− Γ̃
)

. (2.30)

Proof. The equivalence of (i) and (ii) follows from (2.24) - (2.26), where
(2.28) is the Frobenius integrability condition. That (ii) implies (iii) follows
because (2.26) implies the Riemann-flat condition (2.29). The equivalence of
(iii) and (iv) follows from Lemma 2.1. Finally, the implication (iii) to (i) is

established in [] in the case of the lower regularity class Γ ∈ L∞, Γ̃, J ∈ C0,1.

The more regular case of Γ ∈Wm,p, Γ̃, J ∈Wm+1,p here, follows by a similar
argument using compactness in Wm,p of the unit ball in Wm+1,p, in place
of the Arzela-Ascoli theorem. (Details omitted.) �

We close this section by proving the following lemma, relating symmetry
of Γ̃ to integrability of J for solutions of the Riemann-flat condition.

Lemma 2.6. Let Γ ∈Wm,p(Ω) be symmetric. Assume (J, Γ̃) ∈Wm+1,p(Ω)
solve the Riemann-flat condition (2.27). Then J satisfies the integrability

condition (2.28) if and only if Γ̃ is symmetric, Γ̃k
ij = Γ̃k

ji.

Proof. In components (2.27) reads (J−1)µσ∂iJ
σ
j = Γµ

ij − Γ̃µ
ij, so clearly, sym-

metry on the right hand side is equivalent to symmetry on the left hand
side. �

2.3. Review of elliptic regularity estimates. We review basic elliptic
regularity results relevant for the RT-equations (1.1) - (1.4). Note, the
Laplacian ∆ = dδ + δd acts component-wise on differential forms, so reg-
ularity estimates for the scalar Poisson equation extend directly to matrix
valued differential forms. We assume from now on that Ω is a bounded open
set in R

n with smooth boundary, (at least C1,1).

Theorem (Elliptic Regularity): Let u ∈W 2,p(Ω) be a scalar, ∞ > p > 1.
Then there exists a constant C > 0 depending only on Ω, m,n, p, such that

‖u‖W 2,p(Ω) ≤ C
(

‖∆u‖Lp(Ω) + ‖u‖W 1,p(Ω) + ‖u‖
W

2− 1
p ,p

(∂Ω)

)

. (2.31)

Estimate (2.31) is equation (2,3,3,1) in [12]. Estimates for the regularity
of the first order equations (3.1) that parallel the estimates for the classical
Poisson equation (2.31) are given by the Gaffney inequality, which we now
state, (c.f. Theorem 5.21 in [6]).
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Theorem (Gaffney Inequality): Let u ∈ Wm+1,p(Ω) be a k-form for
m ≥ 0, p ∈ (1,∞), 1 ≤ k ≤ n − 1 and (for simplicity) n ≥ 2. Then there
exists a constant C > 0 depending only on Ω, m,n, p, such that

‖u‖Wm+1,p(Ω) ≤ C
(

‖du‖Wm,p(Ω)+ ‖δu‖Wm,p(Ω)+ ‖u‖
W

m+
p−1
p ,p

(∂Ω)

)

. (2.32)

Again, estimate (2.32) for scalar valued differential forms extend to ma-
trix valued differential forms. In this paper we only rely on the following
elliptic estimate with respect to the Wm+1,p-norm, for m ≥ 1, on compactly
contained subsets of Ω, which we prove here for completeness.

Lemma 2.7. Let f ∈ Wm−1,p(Ω) be a scalar, where m ≥ 1, p ∈ (1,∞).
Assume the scalar u ∈ Wm+1,p(Ω) solves ∆u = f . Then, for any open set
Ω′ compactly contained in Ω, there exists a constant C > 0, depending only
on Ω′, Ω, m,n, p, such that

‖u‖Wm+1,p(Ω′) ≤ C
(

‖f‖Wm−1,p(Ω) + ‖u‖Wm−1,p(Ω)

)

. (2.33)

Proof. Let Ω′ be an open set that is compactly contained in Ω . Equation
(9.36) of Theorem 9.11 in [11] gives estimate (2.33) in the case m = 1, that
is,

‖u‖W 2,p(Ω′) ≤ C
(

‖f‖Lp(Ω) + ‖u‖Lp(Ω)

)

. (2.34)

Now, from the definition of the Wm+1,p-norm, we find that

‖u‖Wm+1,p(Ω′) =
∑

|α|≤m−1

‖Dαu‖W 2,p(Ω′), (2.35)

where α denotes a standard multindex and Dα the corresponding combi-
nation of partial derivatives, c.f. [10]. Differentiating ∆u = f by Dα and
applying (2.34) to each term on the right hand side of (2.35) then yields

‖u‖Wm+1,p(Ω′) ≤ C
∑

‖α|≤m−1

(

‖Dαf‖Lp(Ω) + ‖Dαu‖Lp(Ω)

)

≤ C
(

‖f‖Wm−1,p(Ω) + ‖u‖Wm−1,p(Ω)

)

,

which is the sought after estimate (2.33). �

3. A system of elliptic PDE’s equivalent to the Riemann Flat

Condition

In this section we derive a pair of nonlinear Poisson equations equivalent
to the Riemann Flat Condition in the form (2.27), such that it closes up

in the unknowns (J, Γ̃), with regularity in each term formally consistent

with Γ ∈ Wm,p, but Γ̃, J ∈Wm+1,p. This accomplishes the first step in our
program to apply elliptic regularity results to solve the problem of regularity
singularities. To start, observe that equations (2.27) - (2.28) are under-

determined for unknowns (J, Γ̃). On the other hand, (2.30) is a system

of equations for Γ̃ alone which is consistent with Γ̃ being one degree more
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regular than Γ, Γ̃ ∈ Wm+1,p, but a necessary condition to solve them is
that the exterior derivative of the right hand side must vanish. The latter
imposes additional conditions on Γ̃ that must be satisfied. The objective of
this section is to derive equations (1.1) - (1.4) from (2.27) - (2.28), a system

of elliptic PDE’s which closes up in (J, Γ̃), and prove that finding solutions of
this PDE is equivalent to solving the Riemann-flat condition (2.27) - (2.28).

3.1. Cauchy Riemann systems and Poisson equations. In this sub-
section we get started by briefly reviewing the classical equivalence between
Poisson equations and Cauchy Riemann type equations for matrix valued
differential forms at the level of smoothness we are dealing with. This is the
starting point for our derivation of the elliptic system (1.1) - (1.4) in Sec-
tions 3.2 and 3.3. The Riemann-flat condition is stated in terms of exterior
derivatives, and we apply the ideas in this section to replace the J equa-
tion, which as a first order equations is formally unsolvable, into a second
order Poisson equation which is solvable. The starting point is the following
classical result for scalar valued differential forms, c.f. [6]. (We prove a
generalization of this in Lemma 3.1 below.)

Theorem: Assume f is a smooth (k+1)-form and g is a smooth (k−1)-form
such that df = 0 and δg = 0. Then a k-form u solves

du = f and δu = g (3.1)

if and only if u solves

∆u = δf + dg (3.2)

with boundary data du = f and δu = g on ∂Ω.

To introduce some ideas underlying Theorem 1.1, we now state and record
the proof of a version of the classical result regarding the equivalence of
(3.1) - (3.2), which applies to solutions of nonlinear PDE’s involving matrix
valued differential forms which more closely model (1.1) - (1.4). For this,
assume f maps k-forms to (k+1)-forms and g maps k-forms to (k−1)-forms,
let Λm,p

k (Ω) denote the space of matrix-valued k-forms with components in
Wm,p(Ω), and assume that

f : Λm+1,p
k (Ω) −→ Λm,p

k+1(Ω),

g : Λm+1,p
k (Ω) −→ Λm,p

k−1(Ω). (3.3)

The loss and gain of derivatives in f and g are introduced to model the right
hand side of (1.1) - (1.4).

Lemma 3.1. Assume f and g as in (3.3), and assume m ≥ 2, 1 < p <∞,

such that d
(

f(w)
)

= 0 and δ
(

g(w)
)

= 0 for any w ∈ Λm+1,p
k (Ω). Then

u ∈ Λm+1,p
k (Ω) solves

du = f(u) and δu = g(u), (3.4)
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if and only if u solves

∆u = δ
(

f(u)
)

+ d
(

g(u)
)

(3.5)

with boundary data

du = f and δu = g on ∂Ω. (3.6)

Proof. To prove that (3.4) implies (3.5), recall that ∆ ≡ dδ + δd by (2.10).
Taking δ of du = f(u) and d of δu = g(u) and adding the resulting equations,
gives (3.5), and restricting (3.4) to ∂Ω gives (3.6). This proves the forward
implications.

For the backward implication, assume (3.5) and (3.6). To show that u
solves du = f(u), take the exterior derivative d of the Poisson equation (3.5).
Observing that ∆ ≡ dδ+ δd commutes with d (and δ) and using d2 = 0 and
df(u) = 0, we obtain

∆
(

du− f(u)
)

= 0. (3.7)

Thus each component of du − f(u) is a harmonic function in Ω. Moreover,
by (3.6), each component of du − f(u) vanishes on the boundary, implying
du−f(u) = 0 in Ω, thereby establishing the first equation in (3.4). Similarly,
taking δ of (3.5), using δ2 = 0 and δg(u) = 0, we find

∆
(

δu− g(u)
)

= 0, (3.8)

which combined with boundary data (3.6) implies δu−g(u) = 0 in Ω, so the
second equation in (3.4) also holds. This proves the backward implication.

�

The above theorem and proof are correct at the level of classical derivates,
but for the A equation in system (1.1) - (1.4) we need to see that Lemma
3.1 holds for solutions one degree less regular. We state this as a lemma:

Lemma 3.2. Lemma 3.1 is also true for m ≥ 1, 1 < p <∞.

Proof. The forward implication follows as in Lemma 3.1 because the bound-
ary data makes sense in Lp by the trace theorem, [10].

For the backward implication at the lower regularity m = 1, we must take
derivatives in a distributional sense. For this, take the L2 inner product on
matrix valued forms to be

〈·, ·〉L2 ≡

∫

Ω
tr
(

〈· ; ·〉
)

, (3.9)

where tr(·) denotes the trace of a matrix and 〈· ; ·〉 is the matrix valued
inner product defined in (2.7). Using the definition of Hodge star (2.6), the
product rule (2.15) for matrix value forms, and Stokes Theorem, its easy to
see that the standard integration by parts formula for k-forms extends to
matrix valued forms,

〈dw, v〉L2 + 〈w, δv〉L2 = 0, (3.10)
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where w is a matrix valued k-form and v a matrix valued k + 1-form, both
differentiable and at least one of them vanishing on ∂Ω, (c.f. [6, Theorem
1.11]).

Now assume ∆u = δf + dg holds in Ω, du = f , δu = g on ∂Ω, and u ∈
W 2,p. We show du = f(u) holds in the Lp sense. By Riesz representation,
it suffices to show that

〈(du − f), φ〉L2 = 0, (3.11)

for all φ ∈ Lp∗(Ω), where 1
p∗

+ 1
p
= 1. Since the Laplacian is invertible,

there exist a ψ ∈ W 2,p∗(Ω) such that ∆ψ = φ, and ψ = 0 on ∂Ω. Since by
assumption, du − f(u) = 0 on ∂Ω, we can apply the integration by parts
formula (3.10) and compute

〈(du− f), φ〉L2 = 〈(du − f),∆ψ〉L2

= −〈δ(du − f), δψ〉L2 − 〈d(du− f), dψ〉L2

= −〈δ(du − f), δψ〉L2 , (3.12)

where in the last equality we use d2u = df = 0. Since δ2 = 0 and δu−g(u) =
0 on ∂Ω, we have

0 = 〈(δu − g), δ2ψ〉L2 = −〈d(δu − g), δψ〉L2 .

Adding this to (3.12), gives

〈(du − f), φ〉L2 = −〈δ(du− f), δψ〉L2 − 〈d(δu − g), δψ〉L2

= 〈(∆u− δf − dg, δψ〉L2 = 0,

which proves du− f(u) = 0 in Ω. A similar reasoning proves that δu = g(u)
holds as well. This completes the proof. �

3.2. A first equivalence to an elliptic system. In this section we de-
rive a system of nonlinear Poisson equations equivalent to the Riemann-flat
condition in the case Γ and Riem(Γ) ∈W 1,p(Ω), p > n. When Γ,Riem(Γ) ∈
W 1,p(Ω), solutions are regular enough to impose boundary conditions, (c.f.
Lemma 3.2), and p > n guarantees Wm,p is closed under taking products.5

Assuming Riem(Γ) ∈ W 1,p(Ω) is equivalent to assuming dΓ ∈ W 1,p(Ω), so
only δΓ is free to be one level less smooth than Γ and dΓ. We begin with
the following two equivalent expressions of the Riemann-flat condition,

dΓ̃ = dΓ +
(

Γ− Γ̃
)

∧
(

Γ− Γ̃
)

, (3.13)

J−1dJ =
(

Γ− Γ̃
)

, (3.14)

c.f. (2.30) and (2.27). Recall, J , the Jacobian of the sought after coordinate

transformation, is taken as a matrix valued 0-form, and Γ̃, the sought after
correction to the connection, is taken as a matrix valued 1-form. The follow-
ing lemma displays the remarkable connection between (3.13) and (3.14):

5Since the nonlinearities in the equations involve products of functions in Lp, (and
more generally in Wm,p), and products of Lp functions are not generally in Lp, we assume
p > n so the Sobelev embedding implies Lp functions are Hölder continuous. Then we
can estimate ‖fg‖p ≤ ‖f‖Sup‖g‖Lp for f, g ∈ W 1,p, and similarly for f, g in Wm,p.
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Lemma 3.3. Any matrix valued 0-form J ∈W 2,p(Ω) satisfies

d
(

J−1dJ
)

= −
(

J−1dJ
)

∧
(

J−1dJ
)

. (3.15)

That is, (3.15) explains why the exterior derivative of the right hand side
of (3.13) vanishes, (required to be consistent with the left hand side), since
(3.15) together with (3.13) implies

Riem(Γ− Γ̃) = dΓ− dΓ̃− d
(

J−1dJ
)

. (3.16)

Also, taking the exterior derivative of (3.14) gives precisely Riem(Γ−Γ̃) = 0,
thereby showing directly how information in (3.13) is encoded in (3.14).
(Deriving (3.14) from (3.13) is not so straightforward, c.f. [22].) Our goal
now is to derive our equations directly from (3.14) alone.

Proof of Lemma 3.3: We first show identity (3.15). Since the exterior deriv-
ative defined in (2.3) acts component-wise on matrix valued forms, it follows
that d2J = 0. Moreover, using the Leibniz rule we compute

0 = d(J−1J) = ∂i(J
−1J)dxi = ∂iJ

−1dxiJ + J−1∂iJdx
i = d(J−1)J + J−1dJ,

from which we obtain that

d
(

J−1
)

= −J−1·dJ ·J−1.

Thus, since d2J = 0, we find from the Leibniz rule for k-forms in (2.15) that

d
(

J−1dJ
)

= d
(

J−1
)

∧ dJ + J−1d2J

= −J−1dJJ−1 ∧ dJ
= −J−1dJ ∧ J−1dJ,

where we used for the last equality that matrices commute with basis ele-
ments of k-forms to commute the wedge product with J−1. This establishes
identity (3.15). �

We now derive a set of equations in (Γ̃, J) which is consistent and closes.

For the Γ̃ equations, in light of (3.16), we take the Riemann-flat condition
(2.29) as

dΓ̃ = dΓ− d
(

J−1dJ
)

. (3.17)

The right hand side is consistent with the left hand side since both are
exterior derivatives. Motivated by the fact that only dΓ̃ appears in the
curvature, we allow δΓ̃ to be a free function, and set

δΓ̃ = h, (3.18)

where h ∈ W 1,p is an arbitrary matrix valued 0-form.6 For fixed function
J , one could solve (3.17) - (3.18) for Γ̃ by the existence theory in [6], (the
Poincaré Lemma), since the the consistency condition is that the exterior
derivative of the right hand side of (3.17) vanishes, and δh = 0 for matrix

6The freedom in choosing h reflects the freedom in choosing smooth coordinate trans-
formations to maintain the smoothness of a spacetime connection.
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valued 0-forms. Alternatively, adding δ of (3.17) and d of (3.18) produces
the second order Poisson equation

∆Γ̃ = δd
(

Γ− J−1dJ
)

+ dh. (3.19)

By Lemma 3.1, it follows that any solution of (3.19) which satisfies (3.17)
- (3.18) on ∂Ω, is also a solution of the Cauchy-Riemann system (3.17) -
(3.18) in Ω.

The problem of deriving the J equation is not so simple. It turns out we
need a second order equation, since the consistency condition that the right
hand side of the first order equation (3.14) have a vanishing exterior deriv-
ative, leads to circularity. To see this, we introduce the following lemma.

Lemma 3.4. Assume (3.17) holds for J, Γ̃ ∈Wm+1,p(Ω) and Γ ∈Wm,p(Ω)
for m ≥ 1, then

d
(

J ·(Γ− Γ̃)
)

= dJ ∧
(

(Γ− Γ̃)− J−1dJ
)

. (3.20)

Proof. A straightforward computation using the Leibniz rule for k-forms
(2.15) gives

d
(

J ·(Γ− Γ̃)
)

= dJ ∧ (Γ− Γ̃) + J ·(dΓ − dΓ̃)

= dJ ∧ (Γ− Γ̃) + J ·d(J−1dJ), (3.21)

where we used (3.17) for the last equality, and substituting (3.15) for d(J−1dJ)
yields

d
(

J ·(Γ− Γ̃)
)

= dJ ∧ (Γ− Γ̃)− dJ ∧ J−1dJ,

which is the sought after equation (3.20). �

To see the circularity in the first order equation for J , note that one can
solve the Riemann-flat condition (3.14) for J only under the consistency
condition that the exterior derivative of J times its right hand side should
vanish. By (3.20), the exterior derivative of the right hand side vanishes

if either either dJ = 0, (in which case Γ = Γ̃, and Γ̃ does not have the
regularity we seek), or if (3.14) holds, which just reproduces the equation
for J we started with, which is circular; or else the right hand side of (3.20)
produces a nonlinear PDE in J more complicated than the one we started
with.

Thus, differently from the case of Γ̃, we need a second order equation in J
in order to obtain a solvable PDE. The second order equation for J obtained
from (3.14) is again a non-linear Poisson equation which does not require
the constraint that the right hand side of (3.20) should vanish. To obtain
this, again use ∆ = δd + dδ, and note that for 0-forms J , ∆J = δdJ . Thus
taking δ of equation (3.14), we obtain

∆J = δ
(

J ·(Γ − Γ̃)
)

. (3.22)

Applying (2.19) gives

δ(J ·Γ̃) = J ·δΓ̃ + 〈dJ ; Γ̃〉.
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Thus, replacing δΓ̃ = h by (3.18) yields equation (3.22) in its final form,

∆J = δ
(

J ·Γ)− J ·h− 〈dJ ; Γ̃〉, (3.23)

where again h is a free function. In contrast to the first order equation
(3.14), solving the nonlinear Poisson equations (3.23) allows for more general
boundary data and does not require the right hand side to have a vanishing
exterior derivative.

To summarize, every solution (J, Γ̃) of the Riemann-flat condition (3.14)
also solves the second order equations (3.19) and (3.23). In the next theorem
we prove equivalence of (3.19) and (3.23) with the Riemann-flat condition

(3.14), in the sense that a solution (J, Γ̃) of the Poisson system (3.19) and
(3.23) gives rise to a solution of the original Riemann-flat condition (3.14)

after suitable modification of Γ̃. Remarkably, in contrast to Lemma 3.1, the
second order system (3.19) and (3.23) generate solutions of the first order
system without requiring any boundary conditions.

Theorem 3.5. Let Γ, dΓ ∈ Wm,p(Ω), and assume m ≥ 1, p > n. Then

if (J, Γ̃) solves the Riemann-flat condition (3.14) for matrix-valued 0-form

J ∈ Wm+1,p(Ω) and matrix valued 1-form Γ̃ ∈ Wm+1,p(Ω), then (J, Γ̃) also
solves

∆Γ̃ = δd
(

Γ− J−1dJ
)

+ dh, (3.24)

∆J = δ(J ·Γ) − J ·h− 〈dJ ; Γ̃〉, (3.25)

for h ≡ δΓ̃ ∈ Wm,p(Ω). Conversely, if (J, Γ̃) ∈ Wm+1,p(Ω) solves (3.24)-
(3.25) for some matrix-valued 0-form h ∈ Wm,p(Ω), then the modified pair

(J, Γ̃′) solves the Riemann-flat condition (3.14) in each open set Ω′ ⊂⊂ Ω,
(i.e., Ω′ is compactly contained in Ω), with

Γ̃′ = −J−1dJ + Γ ∈ Wm+1,p(Ω′). (3.26)

Proof. For the forward implication, assume that J and Γ̃ satisfy the Riemann-
flat condition (3.14) in Ω. Taking the exterior derivative d of (3.14) implies
(3.17), while (3.18) follows by definition of h. Adding now δ of (3.17) and d

of (3.18) gives the sought after Poisson equation (3.24) on Γ̃. Moreover, the
argument between (3.22) and (3.23) shows that any solution of (3.14) also
solves the Poisson equation (3.25) for J . This proves the forward implica-
tion.

To prove the backward implication, assume Γ̃ and J solve (3.24) - (3.25)
for some matrix-valued 0-form h ∈ Wm,p(Ω). Define the matrix-valued 1-
form

w ≡ J−1dJ − (Γ− Γ̃) ∈ Wm,p(Ω). (3.27)

(Note, if we had w = 0, then (J, Γ̃) would already solve (3.14).) Clearly,
setting

Γ̃′ = Γ̃− w = −J−1dJ + Γ, (3.28)

the pair (J, Γ̃′) solves the Riemann-flat condition (3.14). The nontrivial

part of the proof is to show that Γ̃′ has the sought after regularity, Γ̃′ ∈
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Wm+1,p(Ω). By (3.28), since Γ̃ ∈ Wm+1,p(Ω), it suffices to show that w ∈
Wm,p(Ω) is one level more regular, w ∈ Wm+1,p(Ω′), on each compactly
contained subset Ω′ ⊂⊂ Ω. To show this, we derive below that (3.24) and
(3.25) imply w satisfies the Poisson equation

∆w = −d
(

J−1〈dJ ;w〉
)

. (3.29)

Assume for the moment w satisfies (3.29). Since w, h ∈ Wm,p(Ω) and J ∈
Wm+1,p(Ω) and since products of functions inWm,p(Ω) are again inWm,p(Ω)
when p > n, c.f. Lemma 2.2, it follows that J−1〈dJ ;w〉 ∈Wm,p(Ω), so that
the right hand side of (3.29) is in Wm−1,p(Ω). Now, let f ∈ Wm−1,p(Ω) be
a scalar and assume the scalar u ∈ Wm+1,p(Ω) solves ∆u = f . Then, by
the elliptic estimate (2.33) of Lemma 2.7, there exists for each Ω′ ⊂⊂ Ω a
constant C > 0 (depending only on Ω′, Ω, m,n, p), such that

‖u‖Wm+1,p(Ω′) ≤ C ′
(

‖f‖Wm−1,p(Ω) + ‖u‖Wm−1,p(Ω)

)

. (3.30)

Estimate (3.30) extends to any u ∈Wm,p(Ω) with ∆u = f , as can be shown,
for instance, by a mollification argument. In more detail, let f ǫ ∈ C∞(Ω) be
the standard mollifier of f and assume uǫ solves ∆uǫ = f ǫ, then uǫ ∈ C∞(Ω),
f ǫ converges to f in Wm−1,p(Ω) and one can show that uǫ converges to u in
Wm,p(Ω). Thus, applying (3.30) to uǫ and f ǫ and usingWm−1,p-convergence
of f ǫ and uǫ, we find that the right hand side of (3.29) gives an ǫ-independent
bound on ‖uǫ‖Wm+1,p(Ω′) which implies convergence of uǫ to u inWm+1,p(Ω)
and shows that (3.30) holds as well. Now, since w ∈Wm,p(Ω) and

f ≡ −d
(

J−1〈dJ ;w〉
)

∈ Wm−1,p(Ω),

estimate (3.30) applies component-wise to ∆w = f and yields the sought
after regularity w ∈Wm+1,p(Ω′).

It remains to prove that w satisfies (3.29). For this, we use definition
(3.27) of w to compute ∆w ≡ δdw + dδw. To begin, since J is a zero form,
we have δJ = 0, which implies ∆J = δdJ , so we compute starting from
(3.27) that

δ(J ·w)
(3.27)
= δ

(

dJ − J(Γ− Γ̃)
)

= ∆J − δ
(

J ·Γ
)

+ δ
(

J ·Γ̃
)

(2.19)
= ∆J − δ

(

J ·Γ) + J ·δΓ̃ + 〈dJ ; Γ̃〉
(3.25)
= δ(J ·Γ) − J ·h − 〈dJ ; Γ̃〉 − δ

(

J ·Γ) + J ·δΓ̃ + 〈dJ ; Γ̃〉,

so that cancellation gives

δ(J ·w) = J ·
(

δΓ̃− h
)

. (3.31)

Applying (2.19) of Lemma 2.3 to compute δ(J ·w), we write (3.31) as

δΓ̃− h = J−1δ(J ·w) = δw + J−1·〈dJ ;w〉,

or equivalently

δw = −J−1·〈dJ ;w〉 + δΓ̃− h,
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so that

dδw = −d
(

J−1·〈dJ ;w〉
)

+ d
(

δΓ̃− h
)

, (3.32)

On the other hand,

δdw
(3.27)
= δd

(

J−1dJ − Γ
)

+ δdΓ̃

= δd
(

J−1dJ − Γ
)

+∆Γ̃− dδΓ̃
(3.24)
= d

(

h− δΓ̃
)

. (3.33)

Thus, taking d of (3.32) and adding the resulting equation to (3.33), we
obtain (3.29). This completes the proof. �

Note that system (3.24) - (3.25) can be solved for any h ∈ Wm,p(Ω), so,
at this stage, h is a freely assignable matrix valued 0-form. The regularity
Γ̃ ∈ Wm+1,p(Ω) is consistent with equation (3.24), since (3.15) of Lemma
3.3 implies the right hand side of (3.24) to be in Wm−1,p(Ω). Let us finally
remark that we could have established the equivalence of Theorem 3.5 for
(3.25) together with (3.17) - (3.18), however, we find system (3.24) - (3.25)
preferable, since the existence theory for the first order system (3.17) - (3.18)
is more delicate than for (3.24), c.f. [6]. Note that the result of Theorem

3.5 holds with Γ̃′ ∈ Wm+1,p on all of Ω, under the additional regularity
assumption (3.34) for w on the boundary, which we state as the following
corollary.

Corollary 3.6. Let Γ, dΓ ∈ Wm,p(Ω), and assume (J, Γ̃) ∈ Wm+1,p(Ω)

solves (3.24)-(3.25), as in Theorem 3.5. Then, if (J, Γ̃) satisfy on the bound-
ary the condition,

w = J−1dJ + Γ− Γ̃ ∈ W
m+ p−1

p
,p
(∂Ω), (3.34)

then the modified pair (J, Γ̃′) defined in (3.26) solves the Riemann-flat con-

dition (3.14) in Ω and Γ̃′ ∈Wm+1,p(Ω).

Proof. The corollary follows from the proof of Theorem 3.5, using estimate
(3.30) to conclude with the sought after regularity Γ̃′ ∈Wm+1,p(Ω). �

3.3. The main equivalence theorem. We now consider the problem of
imposing (2.28), that is, the condition that J be a true Jacobian, integrable
to coordinates. The goal of this section is to augment system (3.24)-(3.25)
with a first order PDE on the free function h in (3.24)-(3.25) to replace the
integrability condition (2.28). Assume again throughout that Γ,Riem(Γ) ∈
Wm,p(Ω) for m ≥ 1 and p > n.

The key idea to augment system (3.24) - (3.25) with an additional equa-
tion for the free function h which is equivalent to (2.28) expressed in terms
of exterior derivatives. To accomplish this, note first that the integrability
condition (2.28) is equivalent to

d ~J = 0, (3.35)
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since

Curl(J)α ≡
1

2

(

Jα
i,j − Jα

j,i

)

dxj ⊗ dxi = Jα
i,jdx

j ∧ dxi = d(Jα
i dx

i) ≡ d ~Jα.

Now, to combine (3.35) with the Poisson equation (3.25), observe that
−→
∆J = (∆Jα

i )dx
i = ∆(Jα

i dx
i) = ∆ ~J, (3.36)

since ∆ acts component-wise on matrix valued k-forms by (2.11). Thus,
interpreting the Poisson equation (3.25) in a vector sense, applying (3.36)
and taking d of the resulting equation (3.25), we obtain

∆d ~J = d
(−−−−→
δ(J ·Γ)

)

− d
(−→
J ·h

)

− d
(

−−−−→
〈dJ ; Γ̃〉

)

,

where we used that ∆ and d commute. Therefore, if J solves (3.35) in
addition to (3.25), then A ≡ J ·h must satisfy the equation

d ~A = d
(−−−−→
δ(J ·Γ)

)

− d
(

−−−−→
〈dJ ; Γ̃〉

)

. (3.37)

The right hand side of (3.37) is a vector valued 2-form and vanishes when
taking its exterior derivative (since d2 = 0) so that (3.37) is well-posed for

A given J and Γ̃. Our next goal is to show the backward implication, that
(3.37) together with the Poisson equation (3.25) on J imply (3.35).

Lemma 3.7. Let Γ ∈ Wm,p(Ω) for p > n and m ≥ 1, and let Γ̃ ∈
Wm+1,p(Ω), J ∈Wm+1,p(Ω) and A ∈Wm,p(Ω) be given. Assume J solves

∆J = δ(J ·Γ) − 〈dJ ; Γ̃〉 −A, (3.38)

(the Poisson equation (3.25) with h = J−1A). Then J satisfies the Curl-free
condition (3.35), if and only if A solves

d ~A = d
(−−−−→
δ(J ·Γ)

)

− d
(

−−−−→
〈dJ ; Γ̃〉

)

(3.39)

and

d ~J = 0 on ∂Ω. (3.40)

Proof. For the forward implication, assume J solves (3.35). Then A ≡ J ·h
solves (3.39) by the argument in (3.35) through (3.37). Moreover, (3.40)
follows upon restriction of (3.35) to ∂Ω, (using that derivatives of J are
Hölder continuous because p > n). This proves the forward implication.

For the backward implication, assume A solves (3.39) and (3.40). Now,
consider (3.38) as an equation on vector valued 1-forms and assume for the
beginning that m ≥ 2. Then, taking d of (3.38), we get

∆
(

d ~J
)

= d
(−−−−→
δ(J ·Γ)

)

− d
(

−−−−→
〈dJ ; Γ̃〉

)

− d ~A,

so that (3.39) implies

∆
(

d ~J
)

= 0.

Therefore, since d ~J is assumed to vanish on ∂Ω as a Hölder continuous
function, we conclude that (3.35) holds in Ω. This establishes the backward
implication for m ≥ 2.
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Consider now the case that m = 1, then ∆J ∈ Lp(Ω) and we need to take
d in a distributional sense. For this, we proceed as in Lemma 3.2: By Riesz
representation, it suffices to show that

〈d ~J, φ〉L2 = 0, (3.41)

for all scalar valued 2-forms φ ∈ Lp∗(Ω), where 1
p∗

+ 1
p
= 1, and where

〈·, ·〉L2 denotes the standard L2 inner product on differential forms which we
apply component-wise to vector-valued forms. For each such φ, there exists
a scalar valued 2-form ψ ∈ W 2,p∗(Ω) such that ∆ψ = φ, and ψ = 0 on ∂Ω.
Using the product rule (3.9) we compute

〈d ~J, φ〉L2 = 〈d ~J,∆ψ〉L2

= −〈δd ~J, δψ〉L2

= −〈∆ ~J, δψ〉L2 , (3.42)

where the last equality follows since

〈dδ ~J, δψ〉L2 = 〈δ ~J, δ2ψ〉L2 = 0.

Substituting now (3.38) for ∆ ~J =
−→
∆J in (3.41), we find

〈∆ ~J, δψ〉L2 =
〈−−−−→
δ(J ·Γ) −

−−−−→
〈dJ ; Γ̃〉, δψ

〉

L2
− 〈 ~A, δψ〉L2

=
〈−−−−→
δ(J ·Γ) −

−−−−→
〈dJ ; Γ̃〉, δψ

〉

L2
+ 〈d ~A,ψ〉L2 . (3.43)

Substituting (3.39) for d ~A and using the product rule one more time gives

〈d ~A,ψ〉L2 =
〈

d
(−−−−→
δ(J ·Γ)

)

− d
(

−−−−→
〈dJ ; Γ̃〉

)

, ψ
〉

L2

= −
〈−−−−→
δ(J ·Γ) −

−−−−→
〈dJ ; Γ̃〉, δψ

〉

L2
, (3.44)

and substituting back into (3.43), a cancellation gives

〈d ~J, φ〉L2 = 0.

This completes the proof. �

Before we state our main theorem, we discuss the regularity of A. Since
we seek Γ̃ ∈ Wm+1,p and dh = d(J−1A) is a source term on the right hand

side of the Poisson equation (3.24) for Γ̃, we need A ∈ Wm,p (for m ≥ 1)

to be consistent with Γ̃ ∈ Wm+1,p. But this appears to contradict the fact
that the first term on the right hand side of (3.39) contains two derivatives
on Γ ∈ Wm,p. Most remarkably, the consistency follows by our incoming
assumption dΓ ∈Wm,p alone, in light of identity (2.23) of Lemma 2.4,

d
(−−−−→
δ(J ·Γ)

)

=
−→
div

(

dJ ∧ Γ
)

+
−→
div

(

J ·dΓ
)

,

where
−→
div is defined in (2.22). Therefore, since we assume dΓ ∈ Wm,p(Ω),

we find that

d
(−−−−→
δ(J ·Γ)

)

∈Wm−1,p(Ω)
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and we conclude that the regularity of the right hand side of (3.39) is con-
sistent with the regularity on the left hand side.

We now show that the existence of solutions (J, Γ̃′) of the Riemann-flat
condition (3.14) together with the Curl-free condition (3.35) is equivalent to

the existence of solutions (J, Γ̃, A) to a coupled system of non-linear elliptic
equations, system (1.1) - (1.4), and the equations are formally consistent at
the levels of regularity we seek. This establishes Theorem 1.1.

Theorem 3.8. Let Γ and Riem(Γ) be in Wm,p(Ω) for p > n and m ≥ 1.
Then the following equivalence holds:

If there exists an invertible matrix-valued 0-form J ∈ Wm+1,p(Ω) and a

matrix-valued 1-form Γ̃ ∈Wm+1,p(Ω) which solve

J−1dJ = Γ− Γ̃,

d ~J = 0,

c.f. (3.14) and (3.35), then there exists A ∈ Wm,p(Ω) such that (J, Γ̃, A)
solve the elliptic system

∆Γ̃ = δd
(

Γ− J−1dJ
)

+ d(J−1A), (3.45)

∆J = δ(J ·Γ) − 〈dJ ; Γ̃〉 −A, (3.46)

d ~A =
−→
div

(

dJ ∧ Γ
)

+
−→
div

(

J dΓ
)

− d
(

−−−−→
〈dJ ; Γ̃〉

)

(3.47)

δ ~A = v (3.48)

in Ω with boundary data

d ~J = 0 on ∂Ω, (3.49)

where v ∈Wm−1,p(Ω) is a vector valued 0-form free to be chosen.

Conversely, if there exists J ∈ Wm+1,p(Ω) invertible, Γ̃ ∈ Wm+1,p(Ω) and

A ∈Wm,p(Ω) solving (3.45) - (3.49), then there exists a Γ̃′ ∈Wm,p(Ω) such

that for every Ω′ compactly contained in Ω we have Γ̃′ ∈ Wm+1,p(Ω′) and

(J, Γ̃′) solve (3.14) and (3.35) in Ω′.

Proof. For the forward implication, assume there exists Γ̃ ∈Wm+1,p(Ω) and
J ∈Wm+1,p(Ω) which solve the Riemann-flat condition (3.14) together with

the Curl-free condition (3.35). Theorem 3.5 implies that J and Γ̃ solve (3.24)

- (3.25) for some h ∈ Wm,p(Ω), and setting A = Jh it follows that (J, Γ̃)
solve (3.45) - (3.46). Since J satisfies the Curl-free condition (3.35), which
is equivalently to the integrability condition (2.28), Lemma 2.6 implies that

Γ̃ is symmetric. Moreover, since J satisfies (3.35), Lemma 3.7 implies that
A ∈Wm,p(Ω) solves (3.47). This proves the forward implication.

For the backward implication, assume J ∈ Wm+1,p(Ω), Γ̃ ∈ Wm+1,p(Ω)

and A ∈Wm,p(Ω) solve the elliptic system (3.45) - (3.47), with Γ̃ symmetric

and J invertible. Now, Theorem 3.5 implies that J and Γ̃′ ≡ J−1dJ − Γ
solve the Riemann-flat condition (3.14) in each Ω′ compactly contained in
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Ω, and Γ̃′ ∈Wm+1,p(Ω′) has the required regularity. Moreover, since (3.46)
and (3.47) hold together with the boundary condition (3.49), Lemma 3.7
applies and yields that J satisfies the integrability condition (3.35) in Ω and
therfore also in Ω′ ⊂ Ω. This completes the proof. �

Equations (3.45)-(3.48) are the fundamental equations of this paper, the
RT-eqautions. Theorem 3.8 establishes our main theorem, Theorem 1.1 of
the Introduction, due to the equivalence of (i) and (ii) of Theorem 2.5. One
can extend the result of Theorem 3.8 to all of Ω by assuming (3.34) at ∂Ω,
c.f. Corollary 3.6. Our program in [23] is to develop an existence theory for
(3.45)-(3.49).

3.4. An alternative equivalent elliptic system. In this subsection, we
prove the following proposition which shows that system (3.47) can also be
written equivalently as a system of coupled semi-linear Poisson equations,
but to assign classical boundary data for A we must assume one more order
of smoothness than in Theorem 3.8.

Proposition 3.9. Letm ≥ 2 and assume that Γ and dΓ are both inWm,p(Ω)

for p > n. Let (J, Γ̃) ∈ Wm+1,p(Ω) solve (3.45) - (3.46), where J is invert-
ible. Then A ∈Wm,p(Ω) solves (3.47) in Ω if and only if A solves

∆ ~A = δ
(−→
div

(

dJ ∧ Γ
)

+
−→
div

(

J dΓ
)

− d
(

−−−−→
〈dJ ; Γ̃〉

)

)

+ dv, (3.50)

in Ω with boundary data

d ~A =
−→
div

(

dJ ∧ Γ
)

+
−→
div

(

J dΓ
)

− d
(

−−−−→
〈dJ ; Γ̃〉

)

, (3.51)

δ ~A = v (3.52)

on ∂Ω, where v ∈Wm−1,p(Ω) is a vector valued 0-form free to be chosen.

Proof. This proposition is a consequence of Lemma 3.1 and 3.2. We summa-
rize the argument here for completeness. To prove the forward implication
and derive (3.50), add δ of (3.47) to d of the free vector valued function

δ ~A = v. This gives (3.50). Restricting (3.47) and δ ~A = v to the boundary
gives (3.51) - (3.52).

To prove the backward implication assume first that m ≥ 3, then take d
of (3.50) to get

∆d ~A = dδ
(−→
div

(

dJ ∧ Γ
)

+
−→
div

(

J ·dΓ
)

− d
(

−−−−→
〈dJ ; Γ̃〉

)

)

= dδ
(

d
(−−−−→
δ(J ·Γ)

)

− d
(

−−−−→
〈dJ ; Γ̃〉

))

= ∆
(

d
(−−−−→
δ(J ·Γ)

)

− d
(

−−−−→
〈dJ ; Γ̃〉

))

,

which is equivalent to
∆w = 0,

with w defined by

w ≡ d ~A− d
(−−−−→
δ(J ·Γ)

)

+ d
(

−−−−→
〈dJ ; Γ̃〉

)

.
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Thus, since w vanishes on the boundary by (3.51), we conclude that w = 0 in
Ω which is the sought after equation (3.47). The low regularity case m = 2
follows by Lemma 3.2. This completes the proof. �

4. Program for solving the RT-equations

We have reduced the problem of whether a connection Γ ∈Wm,p(Ω) can
be smoothed one order by coordinate transformation, under the assumption
dΓ ∈ Wm,p(Ω), to the problem of finding solutions (J, Γ̃, A) of the RT-
equations (3.45)-(3.48) with boundary data (3.49) within the regularity class

J, Γ̃ ∈ Wm+1,p(Ω), A ∈ Wm,p(Ω). The main difficulty for constructing an
appropriate existence theory for (3.45)-(3.49) is that the right hand sides
are coupled nonlinearly, and (3.49) is not standard Dirichlet or Neumann
boundary data. Existence for the case Γ ∈Wm,p(Ω), for p > n, m ≥ 1, will
be established in authors’ forthcoming paper [23].

The case Γ, dΓ in L∞, relevant to regularity singularities in GR shock wave
theory, is delicate, and is the topic of authors’ current research. In particular,
the condition (3.49) requires Curl(J) = 0 on the boundary of the domain,
so Lipschitz continuity of J is a regularity too weak to assign boundary
conditions in a classical (strong) sense. (The method of assigning Dirichlet
data in our companion paper [23] is sufficient to resolve this problem, even
in the case of L∞ connections.) Moreover, the existence theory for the linear
Poisson equation admits Calderon-Zygmund singularities when the source
functions are in L∞, so solutions of the RT-equations can fail to be two levels
more regular than the sources. Note that consistency of the RT-equations
(3.45) - (3.49) is not an issue even in the L∞ case, because any Lipschitz
continuous connection can be transformed to a connection no smoother than
L∞ by application of a C1,1 coordinate transformation, and reversing this,
the inverse Jacobian together with Γ̃ will solve the Riemann-flat condition
(3.14) for the transformed connection, where Γ̃ is the Lipschitz connection
in the original coordinates we started with.

We can explore the possibility that Calderon-Zygmund singularities might
be ruled out by imposing further conditions on Γ, for example assuming Γ
lies in the space BMO (Bounded Mean Oscillation), a space containing L∞,
or assuming Γ lies in BV (Bounded Variation), a subspace of L∞ appropriate
for shock wave theory, [24, 7]; or, since the problem is local, by modifying
Γ off an arbitrarily small neighborhood of a given point. We also have the
freedom to choose v in system (3.45) - (3.49).

Consider briefly the freedom to change Γ for the problem of regular-
ity singularities. The problem is to establish the existence of a coordinate
transformation x → y that smooths the connection in a neighborhood of
any given point p. For this purpose, there is no loss of generality in taking
Ω to be Bǫ(p), the ball of radius ǫ centered at p in R

n. Moreover, since the
Riemann-flat condition is a point-wise condition, there is no loss of gener-
ality in replacing Γ by a connection Γ′

ǫ which agrees with Γ on Bǫ(p), but
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extends Γ beyond Bǫ(p) by an auxiliary smooth connection. To make this
precise, let Γ∞ ∈ C∞(Rn) be such an auxiliary connection and define

Γ∗
ǫ = (1− φǫr) Γ∞ + φǫr Γ,

where φǫr is the standard smooth cutoff function satisfying φǫr(x) = 1 if
x ∈ Bǫ(p) and φ

ǫ
r(x) = 0 if x ∈ Br(p)

c, whereBr(p)
c denotes the complement

of Br(p) in R
n, r > ǫ. Clearly, dΓ∗

ǫ ∈ L∞(Rn). Thus, if we can solve the
RT-equations with Γ∗ in place of Γ, we can employ Theorem 1.1 to conclude
that the Riemann-flat condition holds for the original Γ, in a neighborhood
of p. Note here that we have the freedom to choose Γ∞ and Γ̃∞ to be a
known solution of the Riemann-flat condition at the start, and can use ǫ as a
small parameter in an existence theory. We conclude that there is enormous
freedom, all the freedom to choose Γ∞, v and ǫ, r, available to modify the
sources in (3.45) - (3.48) in order to avoid Calderon-Zygmund singularities
when the sources of the RT-equations are in L∞. Addressing the problem of
regularity singularities for connections of regularity lower than W 1,p, p > n,
is the topic of authors current research.
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[6] G. Csató, B. Dacorogna and O. Kneuss, The Pullback Equation for Differential Forms,
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