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ABSTRACT. We prove that the essential smoothness of the gravitational
metric at shock waves in GR, a PDE regularity issue for weak solutions
of the Einstein equations, is equivalent to a geometrical condition which
we call the Riemann flat condition. This provides a geometric context
for the open problem as to whether regularity singularities (where the
essential smoothness of the gravitational metric is Lipschitz continuous)
can be created by shock wave interaction in GR, or whether metrics Lip-
schitz at shocks can always be smoothed one level to C*! by coordinate
transformation. As a corollary of the ideas we give a proof that locally
inertial frames always exist in a natural sense for shock wave metrics
in spherically symmetric spacetimes, independent of whether the metric
itself can be smoothed to C*' locally. This final result yields an ex-
plicit procedure (analogous to Riemann Normal Coordinates in smooth
spacetimes) for constructing inertial coordinates for Lipschitz metrics,
and is a new regularity result for GR solutions constructed by the Glimm
scheme.

1. INTRODUCTION

We introduce the Riemann flat condition on a spacetime connection I'
and prove that this condition is necessary and sufficient for determining the
essential smoothness of weak solutions of the Einstein equations at appar-
ent singularities where the gravitational metric tensor ¢ is only Lipschitz
continuous C%!. The condition applies in the general setting of connections
I' € L, under the assumption that the curvature tensor Riem(I") has the
same regularity as the connection, Riem(I") € L, a natural framework for
shock wave solutions in GR. The Riemann flat condition is the condition
that there exists a Lipschitz tensor T’ such that the associated connection
I' — T is Riemann flat, and we prove that there exists a coordinate trans-
formation within the C'™! atlas which smooths the metric components from
C%! to O if and only if I is Riemann flat[] The theory applies at points

1The space C%! denotes the space of Lipschitz continuous functions, and C*! the space
of functions with Lipschitz continuous derivatives. A function is bounded in C%?! if and
only if the function and its weak derivatives are bounded in L*°, c.f. [7], Chapter 5.8.
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of arbitrarily complex shock wave interactions, in n-dimensions, without as-
suming any spacetime symmetries. The space of of L* connections with L
Riemann curvature tensor is closed under C!' coordinate transformations,
so in light of the above equivalence, this space is a natural framework for
shock wave theory in GR.

One could interpret Theorem in the spirit of the Nash embedding
theorems [I3]. Namely, since the addition of a Lipschitz tensor would not
alter the discontinuous jumps across shocks which form the singular set of
I", Theorem states that one can smooth the connection if and only if
there exists a Riemann flat L connection I' = ' 4+ I' which has the same
jump discontinuities as the original connection I' on the same singular set,
because I is a continuous function. Thus since I is flat, it can be interpreted
as an extension of the singular part of I" into flat space, so the open question
of regularity singularities can be thought of as whether one can embed the
singular part of I' into ambient flat space without changing the jumps.

To prove that a connection I' that meets the Riemann flat condition can
always be smoothed to C1! by a C%! coordinate transformation, the main
step is to prove that if the Riemann curvature tensor is zero in the weak
sense, then there exists a C'! coordinate transformation that maps the
connection to zero, even if the connection is only in L*°. That is, the main
step in proving the equivalence of the Riemann flat condition for connections
of nonzero curvature, is to fully resolve the problem of metric smoothing in
the special case when the curvature of the connection is zero. The Riemann
flat condition is the starting point for our further developments, [17, [I§].
As a corollary of the ideas we exhibit an explicit construction procedure
and proof that locally inertial frames exist in a natural sense at points of
arbitrary shock wave interaction in spherically symmetric spacetimes when
the gravitational metric is only Lipschitz continuous. This establishes that
the C%! shock wave metrics generated by the Glimm scheme in [8], are
locally inertial at every point, independent of whether the metric can be
smoothed locally to C1''. These new results are stated below in Theorems
1 and 2 of Section Bl

2. MOTIVATION AND BACKGROUND

It is well known that shock waves form in solutions of the Einstein-Euler
equations, the equations that couple the spacetime geometry to perfect fluid
sources, whenever the flow is sufficiently compressive [12], [19] [5]. But it is
an open question as to the essential level of smoothness of the gravitational
metric for general shock wave solutions admitting points of shock wave in-
teraction. The existence theory [§] for shock waves in GR based on the
Glimm scheme, (see also [2]), only yields Lipschitz continuity of the space-
time metric, a metric regularity too low to guarantee the existence of locally
inertial coordinates within the atlas of smooth (C?) coordinate transforma-
tions [I5]. That spacetime is locally inertial at each point p, (i.e., there exist
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coordinate systems in which the metric is Minkowski at p, and all coordinate
derivatives of the metric vanish at p), was Einstein’s starting assumption for
General Relativity, [6]. The requisite smoothness of the metric sufficient to
guarantee the existence of locally inertial frames within the smooth atlas,
is the metric regularity C!, one degree smoother than the C%! metrics
constructed in [§]. In the smooth case, the Riemann normal coordinate con-
struction generates a smooth transformation to locally inertial coordinates.
In [15], the authors proposed the possibility that shock wave interaction
might create a new kind of spacetime singularity which we named regularity
stngularities, a point in spacetime where the gravitational metric tensor is
Lipschitz continuous, but essentially less regular than C!.

Like other singularities in GR, such as the event horizon of the Schwarzschild
spacetime, a singularity requires a singular coordinate transformation to reg-
ularize it. Thus the possibility remains that the spacetime metric at shock
waves might be smoothed from C%! to C™! within the larger atlas of less
regular C! coordinate transformations, because these transformations in-
troduce jumps in the derivatives of the Jacobian which hold the potential to
eliminate the jumps in metric derivatives. It remains an outstanding open
problem as to whether such transformations exist to smooth the metric to
CY! at points of shock wave interaction in GR. If such smoothing transfor-
mations do not exist, then regularity singularities can be created by shock
wave interaction alone. In particular, this would imply new scattering effects
in gravitational radiation, [16].

The starting point for addressing this basic regularity question for GR
shock waves is Israel’s celebrated 1966 paper [10], which proves that, for
any smooth co-dimension one shock surface in n-dimensions, the gravita-
tional metric can always be smoothed from C%! to Cb! by transformation
to Gaussian normal coordinates adjusted to the shock surface. This trans-
formation was identified as an element of the C1! atlas in [20]. However,
these coordinates are only defined for single, non-interacting shock surfaces
and do not exist for the more complicated C%! metrics constructed in the
Groah-Temple framework [8]. The only result going beyond Israel’s result
was accomplished in [I4], where first author proved that the gravitational
metric can always be smoothed from C%! to C! at a point of regular shock
wave interaction between shocks from different characteristic families, in
spherically symmetric spacetimes. The proof is based on a surprisingly com-
plicated new constructive method based on analyzing non-local PDE’s tai-
lored to the structure of the shock-wave interaction. It is not clear whether
or how this proof could be extended to more complicated interactions. For
more complicated shock wave interactions in spherically symmetric space-
times, and general asymmetric shock interactions in (3 + 1)-dimensions, the
question as to the locally flat nature of space-time, or whether regularity
singularities can be created by shock wave interactions, remains an open
problem.
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The atlas of 1! coordinate transformations was introduced in [20] as the
natural atlas for shock wave metrics with C%! regularity in GR, because C':!
coordinate transformations preserve the Lipschitz continuity of the metric,
and map bounded discontinuous curvature tensors to bounded discontinuous
curvature tensors. For perfect fluids, shock waves are weak solutions of the
Finstein-Euler equations, G = «T' coupled with Div T = 0, where G is the
Finstein tensor, T is the energy-momentum tensor for a perfect fluid, and
k is the coupling constant, c.f. [3] 22]. At shock waves, T is discontinuous
and contains no delta function sources, the latter distinguishing shock waves
from surface layers. The Einstein equations then imply that the curvature
tensor G must also be free of delta function sources at shock waves, [10].
Since G contains second derivatives of the gravitational metric g, it follows
that all delta function sources in the second derivatives of g must cancel out
to make G bounded and discontinuous at the shocks. The results in [20]
prove that this cancellation of delta function sources is a covariant property
within the C1! atlas. To rule out delta function sources in G, it is sufficient
to assume the Riemann curvature tensor is bounded in L™

The authors’ work in [I6] indicated that the problem of the existence
of locally inertial frames might be independent from the problem of the
essential C%! regularity of a general connection ] To make this distinction
precise, we defined in [16] a regularity singularity to be a point p where
the connection is essentially less smooth than C%! in the sense that there
does not exist a C! coordinate transformation in a neighborhood of p that
smooths the connection to C%! in that neighborhood. Independently, we say
the L°° connection is locally inertial at p, if there exists a coordinate system
within the C'! atlas in which the connection vanishes at p, and is Lipschitz
continuous just at p. Thus, locally inertial coordinates could exist at p even
though the essential smoothness of the metric is less than C%!. Based on
this, we say a regularity singularity at a point p is weak if there exists a
locally inertial coordinate system at p, and strong if the connection does not
admit locally inertial coordinates at p. For example, at a weak regularity
singularity in GR, locally inertial coordinates would exist at p, but the metric
smoothness remains below C1!, too low for many desirable properties to
hold, (e.g. the Penrose-Hawking-Ellis Singularity theorems [9])H From this
point of view, Theorem 3 below establishes that GR solutions generated by

2Note that there is no loss of generality in assuming the entire Riemann curvature
tensor, not just the Einstein tensor G, is bounded in L, because the existence of delta
function sources in the curvature tensor automatically prevents Lipschitz regularity of the
connection.

3For metric connections, the Christoffel formulas give the connection in terms of first
derivatives of the metric, so C%' regularity of the connection is equivalent to C*! regu-
larity of the metric, [22].

15ee [1 4, [TT] for results on lower regularity solutions of the vacuum Einstein equations,
a setting that rules out shock-waves.
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the Glimm scheme cannot produce strong regularity singularities, but leaves
open the possibility that weak regularity singularities still exist.

3. STATEMENT OF RESULTS

Let M be an n-dimensional manifold endowed with a symmetric connec-
tion T' such that the compoentents of I and its curvature tensor Riem(I")
are bounded in L* in coordinate system x. The space of L°° connections
with L curvature tensors is invariant under C1'!' coordinate transforma-
tions, [20], and provides a general covariant framework in which to address
essential metric regularity at shock waves in GR. Since we are interested
in a local theory, assume I' is given in a fixed coordinate system x* defined
in a neighborhood U of a point p, and assume that in z-coordinates the
connection components I‘fj satisfy

ITloo = max Tl 2o @y < Mo, (3.1)
727-]

for some constant My > 0. When y coordinates are distinguished from
x, we use the standard convention that components in z-coordinates use
indices i, j, k, ... while components in y-coordinates use «, 3,7, .... Our main
theorem states that there exists a C1'! coordinate transformation that lifts
the regularity of I from L*> to C%! if and only if the connection meets the
Riemann flat condition, which we state first:

Definition 3.1. A symmetric connection I' € L™ is said to meet the Rie-
mann flat condition at a point p if there exists a symmetric Lipschitz con-
tinuous (1,2)-tensor ff] defined in a neighborhood of p, such the connection
Iy =15 -TF (3.2)
satisfies Riem(T') = 0 weakly in L, (c.f. ([F3) below).
Theorem 3.2. Assume Ffj is a symmetric L™ connection satisfying (31l
in x-coordinates defined in neighborhood U of a point p € M, and assume
Riem(T) € L>™. Then there exists a C%! transformation yox ™! such that in
y-coordinates Fgﬁ/ e C% if and only if T' meets the Riemann flat condition.
Moreover, the smoothing transformation y o x=1 is given in terms of (3.2)
by
62ya _ aya A
Oxidzi — dxk Y
Because the addition of a Lipschitz tensor cannot cancel a delta function
in the curvature, Theorem immediately gives a sufficient condition for
a shock wave solution of the Einstein equations to have a strong regularity
singularity at p.
The main step in proving Theorem [3.2]is to establish the following propo-
sition which asserts that Riemann flat connections are Euclidean, even when
the connections are only assumed in L.

(3.3)
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Proposition 3.3. Assume ff] are the components of an L* symmetric

connection I' in x-coordinates defined in a neighborhood of p € M. Then
Riem(I') = 0 in the L™ weak sense in a neighborhood of p if and only
if there exists a CY' transformation y o x~' such that, in y-coordinates,

fgﬁ/ = 0 a.e. in a neighborhood of p.

Our second theorem uses ideas in the proof of Theorem [3.3] to give a con-
structive proof that locally inertial frames always exist in a natural sense for
the C%! shock wave metrics generated by the Glimm scheme in spherically
symmetric spacetimes in [8], independent of whether the metric itself can
be smoothed to C'1.

Theorem 3.4. Let M be a spherically symmetric Lorentz manifold with
an L metric connection I' and Riemann curvature tensor bounded in L.
Then, for any point p € M, there exists locally inertial coordinates y at p,
that can be reached within the atlas of C%' coordinate transformations, in
the sense that a representation of the L equivalence class of the connection

Fgﬁ/ in y-coordinates vanishes at p and is Lipschitz continuous at p.

In particular, the Lipschitz continuity of Fgﬁ/ at p is necessary and suf-
ficient to remove the Coriolis terms introduced in [16]. Theorem [3.4] thus
proves that Coriolis terms are removable and that no strong regularity singu-
larities exist in spherically symmetric spacetimes, but it remains open as to
whether the metric can always be smoothed to C'! at points of shock wave
interaction. Thus, the problem of whether (weak) regularity singularities
can be created by the Glimm scheme is still an open question.

4. PRELIMINARIES

We establish that the class of L*° connections with L°° curvature tensors is
preserved by the atlas of C1'! coordinate transformations y o =1, To start,
assume the components Ffj are given L°° functions in z-coordinates, and
introduce the components Rk“j of the Riemann curvature tensor Riem(I")
as distributions on the space C§° of smooth test functions with compact
support. For a smooth connection I', the coefficients of Riem(I") are

RFjij = Curl(T); + [04, Ty17, (4.1)
where I'; denotes the matrix I'; = (Ffj)kal o and
Curl(D)%; =Ty g =T, —Th,; and [0y, T]f =TT —T5Tq (4.2)

give the “curl” and “commutator” terms, respectively, where a comma de-
notes differentiation with respect to z. For an L°° connection Ffj, the com-
ponents of Riem(I") are linear functionals defined as

R[] = —Curl(T)s ] + / [T, Ty da
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= [(hwa-rthes) @+ [warifva, )

where ¢ € C§°(U) are test functions on some open set Y C R™ and dz is
standard Lebesgue measure. Riem(I") is bounded in L if there exists L™
functions Rk such that

R[] = / R, b,

and in this case R” 1i; denotes the L function as well as the distribution.
Thus Riem(I") = 0 if Rklij = 0 as an L™ function. The starting point for
this paper is the transformation law for connections
2, a
k _ 1k By r 0%y
Iy =Ja ', J; J; +J0‘8283
-1

is the Jacobian of a C'%! coordinate transformations yoz ™!,

(4.4)

where J* = g 5

and J. denotes its inverse.

5. PROOF OF THEOREM [B.2k

We first give the proof of Theorem assuming Proposition B3] and
postpone the proof of Proposition [3.3] until the next section. Note first that
the splitting of Ffj into a connection and a (1,2)-tensor is consistent with
the covariant transformation law (4.4]), because the difference between two
connections is always a tensor, c.f. [9]. That is, assuming ' transforms
under a coordinate transformation y® o 2! by the transformation rule of a
connection,

R . . 82 %
a 7 k a a

and T transforms by the transformation law of a tensor,
04, =008,

where Jg¥ = % is the Jacobian and J} k= gia its inverse. It follows that

I =T+ transforms as a connection,
o Ny 92t
Iy, =T, + 15, =T 0500 + { TSR+ Jf‘a 7 } (5.2)
To prove the backward implication, assume there exists a splitting Ffj =
fk + fk in a neighborhood of p with fk- C%! a (1,2)-tensor and with
Fk € Loo a connection such that Riem(T" ) = 0. Thus assuming Theorem [3.3]

Rlem(F) = 0 implies that there exists a coordinate transformation g o !

within the atlas of C''! transformations such that in y-coordinates
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in an L* almost everywhere sense in a neighborhood of p, and hence can
be assumed to vanish everywhere. Thus, by (51 and (5.2)), we have in
y-coordinates that
8, =T Ji kg e ™!

which proves the reverse implication.

For the forward implication, assume there exists a transformation yoxr—! €
CY! such that Iz, € C%! in y-coordinates in some neighborhood of p. In
this case, considering

ok =18, 077 JE+ Jk Oy (5.3)
By X ridyd’ )
we define
Tk =15, 007 7k e o
as the Lipschitz continuous tensor part of I‘fj and
2, o
Ik = Jk aiiéy)g;j (5.4)

as the L> connection part. We now claim the right hand side of (B4) is flat,
satisfying Rlem( ) = 0 in a neighborhood of p, because it is the y-coordinate
representation of the zero connection in z-coordinates. This follows from
Lemma 8 of [20], because weak L curvature tensors transform as tensors.
To see this explicitly, take the curl of (54]) in the weak sense (@3] and
observe that the third order (weak) derivatives cancel because

Curl(®) 0] = — / T8 (st — yiety) da
= / (Js,iy,l] Jk]y lz) ¢ dx

due to the symmetry in ¢ and j. Thus, the components of the Riemann
curvature tensor of (5.4]) are in fact given by the L functions

k k k
Rlij = Ja iy N J ]y li + Fzm gl F]m il -
Using now that Jl,jJ"f =—J; JF = —y kiJa, it follows that
k
‘]PYRIZJ -y ]“J yl] +y k;]J ylz + J]ZFW gl J/ZFJU il

and substituting (5.4]) for the remaining I'’s, the above terms mutually cancel
to give J,ZRZ. ; = 0. This completes the proof of Theorem d

6. PROOF OF PROPOSITION [3.3}

Assume f‘fj are the components of an L°° connection defined in a neigh-
borhood of p € M in z-coordinates satifying the L> bound (B.1]). For the
backward implication of Proposition B.3] assume there exists a Cb! trans-
formation y o 27! such that fgﬁ/ = 0, almost everywhere in y-coordinates.

It follows that Riem(I") = 0 in y-coordinates in the L weak sense of (3.
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But by Lemma 8 of [20] the curvature transforms as a tensor under C:!
coordinate transformations. Thus we must have Riem(f) = 01in L™ in all
coordinates, thereby proving the backward implication.

We now prove the forward implication of Proposition3.3l For this, assume

Ffj(az) is an L>° connection given on some neighborhood U in z-coordinates,

such that Riem(I") = 0 in L®. For the proof we establish a framework in
which the classical argument in [2I] can be extended to the weaker setting of
connections in L*°. The argument can be summarized as follows: The zero
curvature condition is used to construct four independent 1-forms w® =
w;?‘da:j, (o = 1,...,mn), which are parallel in every direction in z(U), i.e.,
V,w* =0, j=1,..,n, where now V; denotes the covariant derivative for I
The parallel condition is then used to construct coordinates y®oz ! in which
I" vanishes. The problem in applying this argument to low regularity L™
connections is that such connections do not have meaningful restrictions
to low dimensional curves and surfaces along which the parallel 1-forms
can be solved for. Thus the main point is that derivatives of mollified L*°
connections do not have a meaningful zero mollification limit in general, but
can be controlled in the presence of an L*° bound on the Riemann curvature
tensor.

The main step in the proof of the forward implication of Proposition B.3]
is stated in Proposition [6.1] below. Without loss of generality, we assume
from here on that the coordinate neighborhood x(U) is an n-cube, i.e. the
direct product of n intervals, x(U) = Z; X --- X Z,,, where I, = (ay, by) for
ap < 0 < bg.

Proposition 6.1. Assume I is a symmetric connection with Riem(f) =0
with x-components ff](a;), x € z(U), satisfying (311). Then there exists
n linearly independent 1-forms w® = widz', o = 1,...,n, with components
w®(x) Lipschitz continuous in x, such that the 1-forms are parallel in the L'

)
SeENse

Hv]wa”Ll(ZB(u)) — 07 Vj — 17 ...,n, (6.1)
for V; the covariant derivative of I.

We complete the proof of the forward implication of Proposition B.3] as-
suming Proposition[6.J1 We then give the proof of Proposition in Section
[7 It suffices to construct coordinates y in which the connection coefficients
I" vanish. For this, define

n zt
y*(xt, ") = Z/O wi(xt, .., 271 t,0,...,0)dt, (6.2)
i=1

where w® are the 1-forms whose existence is guaranteed by Proposition G.1]
Proposition implies that (6.2]) defines a O coordinate transformation.
Moreover, equation (G.I)) tells us that d;wf — Ffjw;j vanishes in L'(z(U)),
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so that the symmetry of the connection ff] = f?z implies
|0jwi — D] ey =0 (6.3)

Fubini’s theorem now implies that there exists a point zg, (which we take
without loss of generality to be the origin zg = 0 in (6.2])), such that (6.3)
implie

‘&w]o-‘ - ajwﬂ(xl, oz 0,..,0)det - da! = 0, Vi,j <l, (6.4)
7]

for each | = 1,...,n, where ; = Z; x --- x Z;. Differentiating (6.2]), and

integrating over z(U), we can apply (6.4]), and thereby commute indices and

derivatives on lower dimensional sets in the iterated integrals based at the
origin, to obtain, (details are omitted)

oy~ )

vl wi,  ja=1.,n. (6.5)

Now transforming to y-coordinates (6.2]), the components of I are given

by
Sk 0%y Ox* i dy® oyP Ox*

U 0xiowi oy P dxt Oxd Ay
But by ([65) we have 24 = %, so (6.I) implies that

a.e. in x(U). (6.6)

oz
%y’ 0 o om0y :
Substituting (6.7]) into (6.6) gives
; . ., Oy OyP OxF .
k _ 1tk Y
Ly =15+ Faﬁ%@a—yv’ a.e. in z(U), (6.8)
oy®

and this together with the fact that the Jacobian 5,7 1s non-singular, implies

flﬁ =0 a.e. in z(U). This completes the proof of Proposition B.3] once we
prove Proposition O

7. PROOF OF PROPOSITION [6. 1}

Assume Ff](:n) is an L°° connection given on some neighborhood U in

x-coordinates, such that Riem(I') = 0 in the L> weak sense. We construct
n linearly independent 1-forms w® = w;* dx' which are Lipschitz continuous
and parallel in the sense of (6.I). Our strategy is to mollify the connection,
and modify the standard argument for constructing parallel 1-forms when
the curvature is zero and the connection is smooth. The mollified connec-
tion, however, has nonzero curvature, so we must keep track of errors in €
sufficiently to prove the curvatures tend to zero in L' when taking the zero

5Note that if such points xo did not exist, then one could use this, together with
positivity, to integrate up to get a nonzero L'-norm, thereby obtaining a contradiction.
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mollification limit at the end. The basic L' estimates for this are established
in Lemmas[7.Iland [[.2] below. The main technicality is that the construction
requires integrating on lower dimensional surfaces, and the boundary terms
arising on these surfaces must also cancel due to zero curvature in the zero
mollification limit. In order to achieve this, we need a peeling property to
ensure that the curvature actually vanishes in the zero mollification limit on
these lower dimensional sets, c.f. Lemma [T.3] below. The mollification pro-
cedure is also required to apply uniqueness theorems for the ODE’s arising
from parallel transport.
To start, consider a standard mollification of ff](:n),

(Poh () = / o P =) (7.1)

with a mollifier ¢ € C§° (:E(Z/{ )), again assuming fixed coordinates % on x(U).
Then . € C* and || — f||L1(x(u)) converges to zero as € — (0. Moreover,

ITellzee < HfHLw/\(be(fc — )] dz = [|T =, (7.2)

so that |||z is bounded independent of €, c.f. B). To construct 1-forms
w® = w dx’, we establish three lemmas regarding the curvature Riem(I',).

A

Lemma 7.1. Assume Riem(I") is bounded in L°>°. Then the mollified cur-
vature satisfies the e-independent bound

. - 12 . -
HRlem(Fe)HLw(m(u)) S C“F“Lw(w(u)) + [[Riem(I") ‘Lw(gc(lxl))’ (7.3)

where ¢ is a combinatorial constant depending only on n.

Proof. Recall that the Riemann curvature tensor can be written as a curl
plus a commutator,

Riem(I') = Curl(l)+ [, 17, (7.4)
c.f. (@) - (@2). For the mollified “curl-part” of the curvature, observe that
Curle Py = 5 (Rh(w) — (P )
— [ (b1 r0a - 8) ~ T @) 60— 3)) s
_ / (f;g(gz)%qsg(x —F) — ff,»(i’)%@(w - i’))di’

which is the weak curl of I'. Because Riem(f) is assumed to be in L, we
conclude that there exists L™ functions that represent the curl of ', since
the commutator part in (AIJ]) contains no derivatives of I'. Denoting this
L function by Curl (f) € L™, the previous equations imply

Curly(P,) = / Curls(P)é (z — 7) di. (7.5)
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Using now the splitting (7.4)) we write (7.3]) as

Curly(F)(@) =~ [ (I0.1) - Riem () (3) ou(x - 2)dz
from which we conclude that

HCurl < ||[C,1)

+ HRiem(f)

+ HRiem(f)HLw,

M e

for some constant c. Thus, using the splitting (7.4]) for fe, we have
HC’url

0,17,

HRiem(f‘E) + HRiem(f)

I < Mz + [P

which gives the € independent bound (7.3) and proves Lemma [7.1] O

Lemma 7.2. Assume Riem(T") is bounded in L>°. Then Riem(T'¢) converges
to Riem(T") in L' (z(U)) as € — 0.

Proof. Multiplying each component of Riem(T;), (R.)¥ 1ij> by @ test-function
¥ € C§°(z(U)) and integrating over z(U), we find
[ P gite = [t [ (o)t

z(U)
== [ (@ s = Ciws) ot [ (R0 (E) ) v
z(U) z(U)

Now, as € approaches zero, (fe)kij — f‘kij in L', so taking this limit in the
last line of the previous equation and using that the test functions and their
derivatives are bounded, we conclude

ti [ (R)yyode == [ (P = The,) do+ [IBaDilfwde = R, [0l

e—0

where we used the weak form of the Riemann curvature (43) in the last
line. This proves Lemma O

The following lemma establishes the L'-peeling property crucial for as-
signing initial data consistently in the construction of parallel one-forms

©10).

Lemma 7.3. Assume Rlem( ) = 0. For every sequence € — 0 there exists

a subsequence e (with ¢, — 0 as k — oo) and some point (', ..., 7") €
I x...xTI, such that the mollified curvature satisfies the L' peeling property
at T = (z',...,2"), by which we mean that for each m = 1,....n,

lim/ / ) lw (b, .. z™, 2™ ) dat - da™ =0, (7.6)

Ek—>0 71 m
that 1is,

k = 1 =
(R g™ s ey —0 05 0.
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Proof. Define & = (2',...,2™) € Iy X ... x I, and T = (2™F!,...,2") €
TLm+1 X ... X I,. Fubini’s Theorem implies that

Ry = [ Ry
TiX... XLy,
is an integrable function over Z;,41 X ... X Z,. Since, Riem(I'.) converges to
zero in L' (x(U)) by Lemma[.2 it follows that (Rg)klij converges to zero in

LY (Zyi1 % ... x I,,), namely

/ (Re)klij(j)di’ = / (Re)klij dr — 0, as e€— 0.
Imt1X... XLy u

Therefore, there exists a subsequence €)' (with €' — 0 as k — oo) and

some point T € Zpy41 X ... X Z,, at which (Rékm)klij(') converges to zero as
k — oo. For this point z, it follows that (Rekm)klij(',i) converges to 0 in
LY Ty x ... x I, x {z}) as k — c0.

Now, applying this construction with respect to Z7 x ... x Z,,, we first find
a point z" € 7,, together with a subsequence 62_1 of € such that

(Rezfl)’flij( 2 — 0,  in LYZy x ... xT,_1), as k— oo.

Given this convergence on the n — 1 sub-cube Zy X ... x Z,,_1 x {Z"}, we
again apply the above construction (but now with respect to the sub-cube)
to obtain a point Z"~! € Z,,_; and a subsequence EZ_2 of 62_1 such that

(Rngg)’“lij( LELEY) — 0,  in LYy x ... X Th_3), as k— oo.

Continuing, we successively find a subsequence ¢}, of € and a point (zZ*, ..., Z") €
x(U) at which the peeling property (7.6) holds. This proves Lemmal[73l O

Our goal now is to construct n linearly independent 1-forms w® = (w?), da*,

a = 1,...,n, of the mollified connections I, by parallel translating in z-
coordinate directions ey, ...,e,, one direction at a time, starting with ini-
tial data given at a point ¥ where the peeling property holds to control
the L'-norms of the curvature on the initial data. The resulting 1-forms
wd = (w), dz*, will not be parallel in every direction because the curvature
of the mollified connections is in general nonzero. However, since the Rie-
mann curvature converges to zero in L'ase— 0, one can prove that the w¢
tend to parallel 1-forms in the limit € — 0, once their convergence in C%!
has been established. Concerning this convergence, the uniform L*° bound
on the curvature alone will imply that the resulting 1-forms are Lipschitz
continuous uniformly in €, so that the Arzela-Ascoli Theorem yields a con-
vergent subsequence of the 1-forms w¢ that converge to Lipschitz continuous
1-forms wildzni, oy wWidz as € — 0.

To begin the construction of the parallel 1-forms, assume a sequence € — 0
such that the curvature satisfies the peeling property (7.6) at the point

T = (z',..,2"). Assume without loss of generality that z = (0,...,0), and
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I = (—1,1) = 7 for each k = 1,...,n. We begin with the construction of
1-forms on the two-surface Z; x Zo x {Z3} x ... x {Z"} which are parallel in
the x2-direction, and then extend to (z',...,2") € () by induction, in the
following four steps:

Step (i): First solve for 1-forms w® = (w&);da?, for a = 1,...,n, parallel
along the z'-axis by solving the ODE initial value problem

0 (W), .
Vi (W), (@,0) = %@1,@—(rﬁ)fjw?)k(:vl,m:o, (7.7)
@) (0,0) = e (7.8)

where we suppress the dependence on (23, ..., ") = (0, ...,0), which are fixed.
To insure linearly independent 1-forms locally, we choose the initial data for
the 1-forms at the point (0,0) to be the n-independent coordinate co-vectors
e® = dx®. For the construction we keep « fixed and, for ease of notation in
Steps (i)-(iv), we write w® = widz® instead of w® = (wW);dx’.

Taking ¢t = x!, (Z1)-(Z8) is an initial value problem for an ODE of the
form

u+ Ao =0,

where u(t) = (wi(t,0),...,w5(t,0)) € R™, and (Ae)f(t) = (fe)’fj(t,O) is an
n X n matrix which is smooth and bounded in the L* norm, uniformly in
€, by (T2). Thus the Picard-Lindeloff existence theorem for ODE’s implies
there exists a unique local smooth solution u(t) = w(¢,0). Moreover, the
Gronwall inequality together with the L* bound on A, imply the resulting 1-
forms wé(x!,0) = w(x!, 22, ..., 2") = w(2,0,...,0) are bounded, uniformly
in €, which then yields Lipschitz continuity in the z!'-direction, uniformly in
€.

Step (ii): Given the wé(z',0) from Step (i), assume for simplicity w¢(z,0)
exists for all 2! € (—1,1), use w®(x!,0) as initial data to solve for the parallel
transport in the z2-direction starting from 22 = 0, by solving the ODE initial
value problem

Ows N\ Kk
e €71 2 _ J 1 2 € 1 2\
Vowi(a', %) = 322 (x,x%) — <I‘E>2j wp(x,z%) =0, (7.9)
Wizt 2?) = wz',0) at z*=0. (7.10)

For fixed 2! € (—1,1), taking ¢ = 2%, (Z.9)-(7.10) is an initial value problem
for

i+ A =0, (7.11)

with u(t) = wé(x!',t) € R" and (Ae)f(t) = (fe)gj(:nl,t) an n X n matrix
which is smooth and bounded in the supnorm uniformly in €, according
to (Z2). The Picard-Lindel6ff theorem implies that there exists a unique
smooth solution w¢(z',t), and for ease we again assume w®(z',t) to be de-
fined throughout the interval —1 < t < 1 for each 2! € (—1,1). The
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e-independent supnorm bound ||Ac||ze < |T|ec on Zy X Iy, together with
the Gronwall inequality for (ZI1]), imply the supnorm bound

[wll oo (2, x72) < Ko, (7.12)
where we use Ky to denote a universal constant depending only on I,
independent of e. Moreover, ||A|lr~ < |||l implies the we(z!,2?) =
wé(zt, 22,0, ...,0) satisfies a Lipschitz bound in the z2-direction,
Ow*
|5 < Ko, (713)
Ox Lo°(Ty xT)

where Ky again depends on f, independent of €. Controlling the Lipschitz
bound (ZI3)) in the x!-direction is accomplished in Step (iii).

Step (iii): To obtain Lipschitz continuity of w€(z!, #2) in the z'-direction,
uniformly in € and 22, we estimate the change of u = V{w® in x2-direction,
starting from 22 = 0 where u = V{w¢(z!,0) = 0 by construction. By the
definition of curvature, we can write

\%) [w,i;l] = ViVaw;, + (Re)jo Wes (7.14)
so the definition of covariant derivative gives

0 N N
Vi glec = ﬁ [wlgc;2] - (FE)Tkaﬂ - (FE)(lj2lec;J .

Substituting this into (7.14]), using we.2 = 0, we find that (7.14)) is equivalent
to

% [sz;ﬂ + (fﬁ)({2wl§;o‘ — (Re)jg wy = 0. (7.15)
On the other hand, the definition of V§ gives
€ € 9 € M \o , € M \o , €
V5 [%;1] = 922 [wk;l] - (Ps)zkwa;l - (PE)21wk;o . (7.16)
Substituting (7.16) into (Z.I5), a cancellation gives the ODE for u = wy 4,
9 € M \o € o €
) [Wk;ﬂ — (Pe)qpwo1 — (Re)jgy wo = 0. (7.17)

Thus, for fixed 2!, letting ¢t = 22 and ug(t) = wz;l(azl,t), k=1,..,n, the
x2-directional change of u is determined by the system of ODE’s

i+ Acu+ Be =0, (7.18)

where u = (uq, ..., u, ), and the n x n-matrix A, as well as the n-vector B,
are

(Ae)y, = —(l)3  and (Be)p = — (Re)ja1 wo-
In addition, we have by Lemma [T and (7.12]) that
[BellLee < [|Rel| Lov [|wg || e < Ko, (7.19)
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for some constant K independent of ¢, and the L°°-norm is taken on Z; X Zs.
Applying the Gronwall inequality in (7.I8]), using the bound on A, we obtain

t
fhal(6) < Ko [ |Blat, (7.20)
0

for Ky > 0 independent of €. Estimate (Z.20) and (7.19) together with the
definition of the covariant derivative, wf; = wf; — <f€>;71 wg., implies the
supnorm of the derivative %wf is bounded uniformly in € by
owy,
ozt

for some generic constant K independent of e. We conclude that the com-
ponents w¢(z!, 22,0, ...,0) are Lipschitz continuous in (z!, 2?), uniformly in
€.

t
(< & [ 1Bde+ |(Raus] < Ko (7.21)
0

Step (iv): In the final step, we use induction to extend the construc-
tion of w® , and obtain the Lipschitz estimate corresponding to (Z.2I)) in
n-dimensions. To implement the induction step m — 1 to m, with m < n,
requires controlling m — 1 commutators of covariant derivative. The step
m = 3 is essentially different from m = 2 because it is at this step that,
for example, Viw does not vanish on the initial data surface Z; x Zo. This
is the obstacle to constructing locally inertial frames for n > 3 in the next
section.

For the induction assumption, let we(x!,...,2™71,0,...,0) be the 1-form
in C*°(Zy x ... X Zj,—1) which generalizes the construction in Steps (i) - (ii)
as follows: We assume the parallel transport condition,

Viw(z!,...,2z%,0,...,0) =0, Vk<m-—1, (7.22)
and we assume the Lipschitz norm of w® to be bounded uniformly in e

analogously to (7.20). That is, for each | < m — 1 we assume

HweHLoo(Ql) =< Ko,

where again Ky denotes a constant Ky depending on f, independent of e,

and we assume that
l

/ ’ (Re)le wj’(xl, ozt 10, ...,0) dt‘ )
0

(7.23)
Note that (T.23]) together with the curvature bound from Lemma [Z1] imply
the e-independent bound

m—1

whi (@', ., 2™710,...,0) < Ko Z
=1

w01 (@_1) < Ko,
where O =77 x ... x Iy x {0} x ... x {0} for [ = 1,...,n and

m—1

e lleo ) = | oo ey + > 190 | e -
=1
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The induction step now is to prove that there exists a 1-form w® €
C>(Q,,) which agrees with w® when 2™ = 0 and satisfies the Lipschitz
bound (7.23)) on €, for some constant Ky > 0 independent of €, such that
for each k < m the parallel transport condition (.22)) holds. (For ease, we
assume that Z; = (—1,1) for each [ = 1,...,n.) Asin Step (ii), we extend w*®
from €2,,_1 to £, by solving the ODE for parallel transport in z"*-direction,

Ve of(xt..,2™,0,...,0) =0 (7.24)
for fixed z',...,2™~! and with initial data
Ozt ., 2™ 0, ..., 0) = w2t .., 2™ L0, ..., 0).
We denote the solution of (.24]) again by w® = @&°. Analogous to Step (ii),
w® € C™(Q,,) and the parallel condition (7.22]) is satisfied by construction
for each k < m. Moreover, the Gronwall inequality implies that w® is sup-
norm bounded over €, and by (7.2)) this bound is independent of e. The
e-independent bound on [|0;,w|| 1 (q,,) now follows from (7.24]).
It remains to prove e-independent bounds on ||9;w¢|| e (q,,) for each j < m

to prove the Lipschitz bound analogous to (T.23)) on €2,,. For this we prove
the following Lemma.

Lemma 7.4. The 1-forms solving (7.29)) satisfy

Z‘l
/ (Ro)Z wo| (@t £,0,.,0) dt|
0

(7.25)

m
|w,§;j|(:p1, wnz™0,...,0) < Ky Z
=1

for some constant Ky > 0 depending only on f, independent of €.

Proof. We proceed similarly to Step (iii) and use the definition of the cur-
vature tensor to write for each j < m
Vi Viw = V5Vi,wi + (Re)fm;we- (7.26)

Computing the components of the covariant derivatives in (7.20) in terms of
their connection coefficients, using that wj,, = 0 for all j =1,..,n, we find
that

v;vinwlgc = 8] [wleﬁ;m] - (f‘é)?k[wg;m] - (f‘é)?m[wlef;a] = _(f‘é)?m[wlef;a]
and

v:nv;wlec = am[wlz,j] - (Pf)gnk[w;,j] - (Pf)gnj [wlz;cr]’
Substituting the previous two identities into (7.26]), we find that (7.20) is
equivalent to the system of ODE’s

Omwhij] — (Comrlwes;] — (Re)m;we = 0. (7.27)

aij
Applying the Gronwall inequality to the ODE (T.27)) leads to the estimate

m

x
|w,€€;j|(:171,...,ajm,O,...,O) < KO/O |(R€)%mjwf,|(:171,...,ajm_l,t,O,...,O)dt
+\w,§;j\(azl,...,xm_l,O,...,O), (7.28)



18 M. REINTJES AND B. TEMPLE

where Ky > 0 is independent of ¢ because of (IZZI)E Using the induction
assumption (7.23]) to replace the initial data term |w};j|(:pl, enx™ 1 0,...,0)
on the right hand side of (Z.28]) gives us the sought after estimate (Z.25)). O

The e-independent Lipschitz bound for w® on z(U) = Z; X ... x Z,, now
follows directly from (Z.25]). Namely, ||(Re)7,, w5
to Lemma [Tl and the boundedness of ||wS ||z derived above. We conclude

ws||pe < K()||F||Loo according

Leo(x(U))

o llcos ayy = 19l 2 ey 5

for some positive constant K depending only on I', independent of €. This
completes the induction step and proves that the 1-forms wé(z!,..., ") are
Lipschitz continuous, uniformly in e. This completes Step (iv).

To summarize, in Steps (i) - (iv) we constructed n families of smooth
I-forms (w)®dz?, (with o = 1,...,n), such that each component satisfies
the uniform Lipschitz bound (7.29). Thus, for each a = 1,...,n, the Arzela-
Ascoli Theorem yields a subsequence of the 1-forms (w,)®dx’ that converges
uniformly to a Lipschitz continuous 1-form (w.) — w{* as e — 0. Since
for each o = 1,...,n the initial data in Step (i) was chosen such that each
I-form (w.)#dz’ agrees with the unit co-vector egdazk = dx® at the point
(z!,...,2") = (0,...,0) for any € > 0, the limit 1-form w®dx® is identical
to dz® at (z,...,2") as well. Thus, the 1-forms (w.){dx® are linearly in-
dependent and linear independence throughout z (i) now follows from the
uniqueness of solutions of ODE’s, c.f. (Z.8).

To complete the proof of Proposition [6.1] it remains to prove that the
limit 1-forms are parallel in every direction with respect to [ in the L!
sense of (G.I]). For this, integrate the ODE estimate (Z.25]) for m = n over
xU) =Ty X ... x I, = Qp, to get

lwkillot@ey < KOZH il H%HLw ) (7.30)

where QO = 77 x ... x I; x {0} x ... x {0} C z(U) for | = 1,...,n and
Ky > 0 a universal constant independent of €. Since w® is bounded in
L>(Q,,) independent of €, the L!-peeling property of the curvature (7.6
now implies that the right hand side of (Z.30]) converges to zero for some
subsequence €, — 0. Thus each of the 1-forms w® is parallel in L!(z(U)) in
every direction, as claimed in (6.1]). This completes the proof of Proposition

6.1l a

6The difference between the Gronwall estimate in (Z28) and the one in Step (iii) is
the presence of the second term on the right hand side which is due to the initial data w®
being not parallel for € > 0 and j > 2.
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8. A CONSTRUCTION OF LOCALLY INERTIAL FRAMES

We begin by giving the definition of locally inertial coordinates for L°
connections in n-dimensions:

Definition 8.1. Let I' be an L*> connection. We say a coordinate system
y 1s locally inertial for T' at p if the components satisfy

T3, ()] < Kly —y() ac. (8.1)

for some constant K independent of y. We say I is locally inertial at p if
there exists a locally inertial coordinate system at p.

Condition (BJ]) is equivalent to the existence of an L> representation of
the components I'§_ (y) such that (8I)) holds in the pointwise everywhere
sense, and I'g (y(p)) = 0. In this section we use the coordinate construc-
tion of Section [1 to prove that locally inertial coordinates exist for L°
connections in 2-dimensional manifolds when the Riemann curvature tensor
of the connection is assumed bounded in L°°. Building on this construc-
tion in 2-dimensions, we prove that locally inertial frames always exist in
4-dimensional spherically symmetric spacetimes with Lipschitz continuous
metric. Thus in particular, it is sufficient to apply to the GR shock wave
solutions generated by the Glimm method, [8]. Interestingly, this argument
does not extend to three or more dimensions essentially because the induc-
tion step in (iv) of the proof of Proposition at n > 2 differs from the
n = 2 step by boundary terms arising from the Gronwall estimate (7.28]),
and these terms would not vanish in the zero mollification limit when the
analogue of the peeling property was used for nonzero curvature. To con-
struct locally inertial coordinates in 2-dimensional spacetimes, we construct
1-forms as in Steps (i) and (ii) of Proposition [6.I], (the case Riem(T") = 0),
and define coordinates y® by integrating over these 1-forms. These 1-forms
are not in general parallel, but as a consequence of the L*° curvature bound,
we prove the 1-forms are parallel within error of order O(|z|) when curva-
ture is non-zero. This then implies that the connection is order O(|y|) in
coordinates y®, the condition that y® be locally inertial. Theorem [3.4] of the
introduction follows from Proposition and B4 of this section.

8.1. Locally Inertial Frames in 2-Dimensions. The goal of this section
is to prove the following theorem:

Proposition 8.2. Assume M is a two dimensional manifold endowed with
a symmetric L*°-connection with Riemann curvature tensor bounded in L°°,
and let p € M. Then there exists locally inertial coordinates at p within the
CYHl atlas.

To prove Proposition B2l assume n = 2 in the constructions of Steps (i)
and (iii) of Proposition [6.Il Then for each o = 1,2, we have a subsequence
of the family of 1-forms (w¢)® which converges to a Lipschitz continuous
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I-form w® as € — 0. By (7.9), each w® is parallel in z2-direction in the L!
sense

IVow®|| 1 = 0. (8.2)
However, in contrast to Section [7, we cannot expect w® to be parallel in

xl-direction when Riem(T") # 0. However, as a result of the L> curvature
bound, the w® are approximately parallel in the sense of the following lemma.

Lemma 8.3. The 1-forms w®, obtained from the zero-mollification limit of

(79), satisfy

o I SN P 1 2\ —

ot Twp| (e, 2%) < Ko(l2'| + [2%]) = O(x) (8.3)
almost everywhere, where Ko > 0 is some constant depending only on ||T'||
and ||Riem(I")|| oo .

Proof. Equation (8.2) immediately implies (8.3]) for i = 2 because the right
hand side of(82) vanishes when ¢ = 2. It remains only to verify (8.3
for i = 1. For the case i = 1, observe that the computation (TI4]) - (717
of Step (iii) in Section [, again gives that the ODE (7.9]) implies

ouy

2
for ui, = Vi(we)j and where (R.)7;; denotes the components of Riem(I'¢).
Applying the Grénwall inequality to (84) and the fact that Viw(z!,0) =0
by (77)), we obtain

= (Fe)ggtio + (Re)faz(we)s (8.4)

2

Vi(we)il(a!,2%) < Ko /Ox |(Re)faa(we)s (=", t)dt, (8.5)

where here Ky > 0 always denotes a generic constant depending on ||T'||z
and ||Riem(T")|| s, but independent of €. Using that (7.9]) implies [|wZ ||z <
Ko||T'||ze= together with the curvature bound (7.3]), we obtain from (8.3]) the
further estimate

Vi@l a?) < Kol mas [|RE] o [02] = Kola?.  (86)
Now I'. converges in L'(x(U)) as ¢ — 0, so there exists a subsequence

converging pointwise almost everywhere. From this pointwise convergence
and the fact that %(we)o‘ converges in L (z(U)), we conclude that

Viwg|(z!,2?) < Ko|2?|  ae., (8.7)
which is the sought after error estimate (8.3 for i = 1. O
To prove Proposition B.2] we define for each o = 1,2 the coordinates y“

on z(U) by

1 2

yo‘(:nl,:n2)5/ wf‘(s,:n2)ds+/ w5 (0, s)ds, (8.8)
0 0
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and complete the proof by showing y® are locally inertial at p. By the
definition of y® we have

oy~ a Jy*  Owy}

Ll = wf and —Ll =1

ox 0z’ Ox ox’
which, for ¢ = 1, is the identity that leads to the cancellation in (6.8]).
However, we cannot obtain these identities for the z?-derivative because the
1-forms w® are no longer parallel in the z'-direction. The following approx-
imate identities are sufficient for the existence of locally inertial frames.

(8.9)

Lemma 8.4. The coordinates y® defined in (8.8) satisfy fori,j =1,2

\gy —wf|(@he?) < Ko(le'| + |2, (8.10)
Oy~ w1 o ) )
‘&w&pz 57| @) < Ko(lz'|+12%)  ae,  (811)

where Ky > 0 is some constant depending only on ||I'|| e and ||Riem(I")|| o0 .

Proof. The case i = 1 follows directly from (83). For the case i = 2,
differentiate (8.8)) in the 22 direction to get
oy~ R
@(xl,ﬁ) = ; ax; (s,2%)ds + w§ (0, 27).

Using that Owd)y converges to 97 in L' (z(U)) as € — 0, the dominated

T2 ox
convergence theorem implies that
o, 1 9 T @ a(we) 2 a 2
02 (x*,2%) = 11_)1% Nrra Ls,2%)ds + w§(0,27), (8.12)

with € convergence in L(z(U)). Substituting

Owe)f _ Owe)i (8(%)‘{‘ 5(%)3)

or2 Ozt B

dx? ozt
into (8I2) gives
(o4 -’El (0% [e%
<8L _ w20f> (‘,1;17'12) = lim <a(w5)1 _ a(w5)2 > (S,x2)d3
0

0x2 0 O0z? Ozl

with convergence pointwise almost everywhere. Now, using that (w)® is

parallel in the z2-direction, 8(5)2? = I'{y(we)g, we have

(05{;62)? - 0S;el>3> = V(e

which leads to

<8L —w§‘> (zt,2?) = —hm/ Vi(we)S(s, xz?) ds. (8.13)

81'2 e—0
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The Gronwall estimate (8.6]) now implies

9y~ ol (12 / i 2

— —wy | (z7,27) < K x%|ds a.e.
o2 2 ( ) ) = 120 0 ‘ ’

which implies the sought after Lipschitz estimate (8.10]).

We now prove ([8I1]). By the dominated convergence theorem, we con-
clude that (8I3)) implies

<% - wg‘) (z',2?) = — /Oxl Viws(s, z%) ds. (8.14)
Differentiating (8.14]) in x!-direction gives us

<% — %) (z!,2%) = —Vy1wg (2!, 2?), (8.15)
and taking the absolute value, the Gronwall estimate (8.7) gives

OO ety < ko o2 = O

which is the sought after almost everywhere estimate (8II]) for j = 1 and
i=2.

It remains to prove (8II]) for i = j = 2. For this, differentiate (813)) in
the 22 direction to obtain

02y~ ows 1 9
(m‘w (@07 = 113%/ V1w (s, 2°) ds.
Note that taking 6%2 as a derivative in the weak sense, we can exchange
lime_,o and 8%2 by the L! convergence of the integrand. Thus by (8.4)),

CCl 8 Z‘l
/0 S5 Vi(wds (s.?) ds = /0 ((PO8V1(wd)s + (R)Falwd)s ) (5,22 ds,
(8.16)
which converges uniformly in x* as € — 0, because the right hand side is
continuous in z? and bounded in light of the Grénwall estimate (86). In
light of the Groenwall estimate (8.G)), the integrand on the right hand side
of (BI6) is in L*°, we conclude that

2

&*y® Owy 22 1
97202 9a2 (z',2%) < Ko |2, (8.17)
which implies the sought after bound BI1]) for i = j = 2. O

Proof of Proposition[8.2: We show that y® defined in (8.8]) are locally inertial
at p. For this, consider the transformation law for connections
Loy O 0y 0y
Y oxk  OxidxI Py ozt Ol

(8.18)
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Combining (83]) and (8I1]), we obtain
62ya

Z?xi(‘)azﬂ FZ] k +O("T‘)

Substituting the previous equation into (8.I8]) and using that wf = gyT: +
O(|z|) by (BI0), the Christoffel symbols Ffj cancel on both sides and we get

We then conclude with the sought after estimate ([8.2]), using that O(|z|) =

O(]y|) and that the Jacobians gif are invertible. This completes the proof

of Proposition O

Finally, it is interesting to point out what goes wrong in the pursuit of
the above construction for locally inertial frames in 3-dimensions. Essen-
tially, the analog of (8I1]) does not hold in 3-dimensions. That is, defining
coordinates in analogy to (8.8) leads to

1 2 3

€T €T T
y(xt, 22, 23) E/ wi(s, 2% x )ds—l—/ wS(O,s,x?’)ds+/ w§ (0,0, s)ds,
0 0 0

(8.19)
and the analog of (89) again holds. However, since Va(we ) (x!, 2%, 23) is
not zero when x3 # 0, we get in (813)) an additional error function bounded
in L* which is O(m3), but whose derivative is not O(z). That is, we obtain

<%—w§‘>($l,:ﬂ :—11_13(1]/ Vi(we)§ (s, z? ds+/ O(z?) ds.

(8.20)
Thus, differentiating (8:20) in 22 direction in order to mimic the step leading

1
to equation (BI0) above, the derivative falls on the term [;" O(z%)ds, the
derivative of an L°° function, which does not in general produce an error

O(x).

8.2. Proof of Theorem 3.4l Assume M is a spherically symmetric Lorentz
manifold, by which we mean that coordinates exist in which the metric ten-
sor takes the form

ds® = —A(:El,$2)(d$1)2—|—2E(l‘1,$2)d$1dl‘2+3($1,l‘2)(dl‘2)2—|—0($1,l‘2)d92,

(8.21)
where the components A, B,C' and E are assumed to be Lipschitz continu-
ous functions, —(AB + E?) < 0 and C > 0. Here dQ? = d¢? + sin(¢)?dh?
is the line element on the unit sphere, 23 = ¢ € (0,7), z* = 0 € (-7, 7),
and we assume without loss of generality that (z', 22) are centered at (0,0),
with (z!,2%) € (=1,1) x (=1,1) = Q3. (General spherically symmetric
Lorentz metrics can generically be transformed to coordinates where the
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metric takes the form (821]), [22].) Assume further that the metric con-
nection I‘fj and Riemann curvature tensor Rfij are bounded in L in co-

ordinates (z!,22%,¢,0). To prove Theorem 3.4} it suffices to prove that the
metric (8.21)) admits locally inertial coordinates at each point p € Q9 within
the atlas of C1! coordinate transformations, in the sense of Definition B.11
To this end, we now extend the constructions in Section Bl to spherically
symmetric spacetimes. We start with the following lemma:

Lemma 8.5. Assume the metric (8.21) is Lipschitz continuous. If the
Einstein tensor of the metric ([8.21) is bounded in L>, then C(zt,2?) €
CH1(Qy).

Proof. An explicit computation of the first three contravariant components
of the Einstein tensor G, G'? and G?2, yields

% = wC|g|GM" + Lot

% = —kClg|G*? +lLot.,

% = kC|g|G** +l.o.t., (8.22)
where |g| = —AB— E? and [.0.t. denotes terms containing only zero and first

order metric derivatives, (c.f. MAPLE). From this we can read off the regu-
larity of C'. Namely, when G € L°° and the metric is Lipschitz continuous
metric, the right hand side of (822]) is in L*>°. Thus we conclude that second
order weak derivatives of C are in L, which is equivalent to C € CU1!,

(c.t. []). O

In the proof of the theorem to follow, it is interesting to observe that our
assumption that the curvature tensor is bounded in L comes in at two dif-
ferent points in the argument to imply the existence of locally inertial frames
for (821]) when the connection is only in L. First, we apply Proposition
to the 2-dimensional metric

ds? = —A(z', 2?) (da')? + 2B (2, 2?)da' dz® + B(a', 2?)(da?)?

to obtain coordinates y® in which the connection is Lipschitz continuous at
the center point p = (0,0), but only for indices running from 1 to 2. An ex-
plicit computation then shows that the remaining components involving the
angular indices are in fact Lipschitz continuous, one degree smoother than
L, because C' is the only differentiated metric component in these connec-
tion components, and C' is one degree more regular than A, B and FE, by
Lemma 835 This extra degree of regularity in C' is crucial because it ensures
that the connection coefficients not addressed by our 2-dimensional method,
must be Lipschitz continuous, as a second consequence of our assumption
that the curvature tensor is bounded in L*°. The resulting Lipschitz con-
tinuity of I' at p in y-coordinates allows us to introduce a further smooth
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coordinate transformation, quadratic in y, which breaks the spherical sym-
metry, and sets the value of the connection to zero at the center point p,
while preserving the established Lipschitz continuity at p in y-coordinates.
Proof of Theorem [34): For a = 1,2, we introduce the two 1-forms
w® = wldz! + w§da?

as solutions of Vaw® = 0 with variables (z!, 22) assuming (23, %) = (¢, 0o)
fixed in (0,7) x (—, 7). That is, w! and w? are solutions of

ow

W($ z?) — szwk (zt,2%) =0, (8.23)
for initial data w;?‘(azl,O, $0,00) at 2 = 0 with Vlw?‘(xl,O,qSo,Ho) = 0 for
j =12, cf. (I). Since the angular dependence is kept fixed in (823,
estimate (R3] of Lemma [R3 holds again for both w®, that is,

&u;‘ _ FH
ox? 1 1(¢0,00)
for a = 1,2, where FU‘(qﬁ 00) denotes Ffj evaluated at fixed (¢,0) = (¢o, o).

Similar to (B.8]), we deﬁne the function y® for a = 1,2 as

1 2

ya(xl,x2,¢,9)5/0 w‘f‘(s,m2,¢o,90)ds+/o w5 (0, s, ¢o,00)ds, (8.25)

(the right hand side evaluated at fixed values of the angular variables), and
set 4° = ¢, y* = 6. Thus estimates (810) and (8II) hold,

w + O(|zY] + |22%)), (8.24)

oy~ N
o = wR O+ [2%),
aan ;y ) ,
wonr — on T OUTE 1), (8.26)

for ¢,5,k = 1,2 and o = 1,2, and where the right hand side is evaluated at
the fixed angular values (¢g, ). Combining estimates ([8.24)) and (8.26]), we
obtain for a = 1,2

0%y® B oy”

0xidxd ”|(¢0 00) Ok
To complete the proof, consider again the transformation

oy o Py, 0y oy

+0(2' +1a%), i,j= 1.2 (8.27)

9k = wioad Y ot oar (8.28)
Substituting (8.27) we obtain
o OyP Oy k 81/ 1 2

Using now that the metric and its inverse are smooth in ¢ and 6, we can
Taylor expand F around (¢g,0y) to obtain

Fi% T% 000y = O — ol + 16 — o))
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for i,7 = 1,2. Thus, since the Jacobian gy? is invertible and since gy? =0

for a = 1,2 and k = 3,4, we can write (8.29) as
8, = O(z'|+ 2% +|¢ — ol + 10 — bo)
= O(ly'| + 1y?| + 16— go| +10 —bol), @, fy=1,2. (8.30)

Keeping in mind that y'(0,0) = 0 = %2(0,0) and that y*> = ¢ and y* = 6,
this is the desired Lipschitz estimate for o, 8,7y = 1, 2.

We now derive a Lipschitz estimate of the form (8.30) for the cases when
a, B or v # 1,2. The transformation to the coordinates y® defined in (8.25]),
preserves the spherically symmetric form of the metric representation (8.21]).
We denote the metric in coordinates y® by

ds® = —A(y",y*)(dy")? +2B(y" )y dy + By y?) (dy*)* + O (y', ) d?

(8.31)
for Lipschitz continuous metric components A, B,C, FE, generally different
from the components in (8:2I]). Computing the Christoffel symbols of (8.31]),
we find that the non-zero connection coefficient not subject to the Lipschitz
estimate (830) are given by

1%3 = %7 T}y = (sin ¢)2F:1337

I3 = ;51%7:25;, Iy = (sin¢)’T'3;,

rf; = %a I3; = %a [y = —sin ¢ cos ¢,

Iy = % I, = % I3, = % (8.32)
where C' = 3—5 and O’ = g—;. Observe that we only differentiate C' in the

above coefficient components but we never differentiate A, B or F. Since
C is CH! regular by Lemma BH it follows that the components in (8.32)
are Lipschitz continuous (as long that ¢ # 0). Combining this with the
Lipschitz estimate (830]), we conclude that Fg,y is Lipschitz continuous at p
in coordinate y®.

The Christoffel symbols in (832) are generally non-zero since C' and C”
are non-zero. Since a non-singular coordinate transformation preserving the
metric form (82I) cannot map C and C’ to zero, we need a transforma-
tion that breaks the form (821]). To complete the proof, we now introduce
a coordinate transformation which preserves the Lipschitz continuity at p
and maps the Christoffel symbols to zero at the point p. Without loss of
generality, we assume that y(p) = (0,0, ¢g,0) for some ¢y € (0,7). Since
the Christoffel symbols in coordinates y® are Lipschitz continuous at p (and
hence defined at p), we can introduce (for u = 1, ...,4) the smooth coordinate
transformation

5grgﬁy|p Yy + o1y + cs yP +e (8.33)

TOEE
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where 64 denotes the Kronecker symbol and the constants c* and the con-
stant coefficients cg are defined by

1 1
= —§5grg3 » @02 - 5§L¢0 and Cg = _§5grg3|p¢0'

By our definition of ¢ and cf, it follows from (833)) that

ozt
=0 d —| =0k 8.34
) md S| o (5:34)
Moreover, ([8.33]) implies that
0221
_ SHTQ
ayﬂayv‘p_ ~ Mp. (8.35)

From the transformation law of connections together with ([8:34]) and (835,
we find that the Christoffel symbols in coordinates z# vanish at p. Namely,
(834)) and (B35) imply that the transformation law (828 evaluated at p is
given by

027 %29 g 0zF 02Y e o v
oy T Byfay gy gy~ el T

which implies that the Christoffel symbol in coordinates z# satisfies I'),,| =
P

0, for all o, u,v € {1,...,4}. Clearly, since the transformation is smooth, it
preserves the Lipschitz continuity of I' at p. Denoting the coordinates 2/ by
y®, we proved the sought after Lipschitz estimate (81I). This completes the
proof of Theorem [B3.4] O

9. CONCLUSION

We prove that the question whether there exists a C%! coordinate trans-
formation which smooths an L symmetric connection I' to C%! in some
neighborhood is equivalent to the existence of a Lipschitz continuous (1,2)-
tensor I such that T’ — T' is Riemann-flat in that neighborhood. Somewhat
surprisingly, the coordinate construction in the proof of Proposition [3.3] can
be modified to give locally inertial frames for Lipschitz metrics, and this
applies to solutions of the Einstein-Euler equations generated by the Glimm
scheme, [8], but only in spherically symmetric spacetimes. The C! regu-
larity issue regarding whether the metric can be smoothed to C'!, remains
open, even in spherical symmetry. In summary, the space of L°° connec-
tions with L curvature tensors provides a consistent general framework for
shock wave theory in General Relativity, and the problem whether weak reg-
ularity singularities exist in spherically symmetric spacetimes, or whether
weak or strong regularity singularities exist at points of more complicated
shock wave interaction, remains an open problem for which the results here
provide a new geometric perspective.
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