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Abstract

Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is

not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–

Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial

differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal

dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy

production is positive both on gradients near those of solutions to the dissipation-free equations and on

gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the
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version of the Navier-Stokes equations consistent 
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should propagate at sub-luminal speeds            .v  c
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By Navier-Stokes we mean equations in which 
dissipation is measured by bulk and shear viscosity, 
and heat conductivity alone.             .



Navier-Stokes is a leading order theory of dissipation, 
correct to first order in viscosity and heat conduction.          
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p = pressure
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⇢u2 = energy density

The Classical Navier-Stokes equations:
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Three dissipation parameters:



⇢t + div(⇢u) = 0

Compressible 
Euler
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 Compressible Navier-Stokes Equations

Three dissipation parameters:
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Consider the momentum equation:
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Consider the momentum equation:
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Consider the energy equation:

shear and bulk viscosity
Energy changes due to
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Consider the energy equation:

Heat
Conduction

div(r✓) = �✓ + l.o.t
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Consider the energy equation:

Newton Law

of Cooling

Heat
Conduction

Note:             can depend on temperature 
(and density), but this does not affect leading 
second order terms

⌘, ⇣,�
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The Classical Navier-Stokes equations consist of 
the first order compressible Euler equations 
together with second order dissipation terms linear 
in velocity and temperature gradients on the RHS.



NS is a parabolic-like system like the heat equation
— all linearized modes decay, but have speeds 
that tend to infinity with wave number…
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…the NS equations are not causal…
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Question 3:  What would constitute a derivation of 
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Following the work of Eckhart (1940s), L. Landau 
and S. Weinberg, math physics essentially gave up 
looking for a causal version of NS, and this led to 
the Israel-Stewart and Mueller-Ruggeri theories of 
dissipation, based on kinetic theory following  
Grad’s classical Theory of Moments.  



These theories are causal, but much more 
complicated, and known to be incorrect far from 
equilibrium.  For example, IS equations do not 
admit shock profiles for strong shocks.
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Reference:   We began by reading work of Jin and 
Xin (See also Liu, Levermore, et al) in which 
conservation laws with parabolic terms are derived 
by a Chapman-Enskog type expansion from 
relaxation models based on the wave equation.  

Reference:   See also an causal models introduced 
by Lichnerowicz/Choquet-Bruhat and studied 
recently by Disconzi…
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(3)  The system should be  sharply causal.

(2)  The resulting system should be equivalent to 
the Eckhart and Landau equations to leading 
order in viscosity and heat conduction.
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same variables that make the compressible Euler 
equations symmetric hyperbolic as a first order 
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gradients, we impose three selection criteria… 



Theorem (Freist-Temp): There exists

a unique relativistic dissipation tensor �T
that meets conditions (1)-(3).

Equations:

Div(T +�T ) = 0

T ij = (⇢+ p)uiuj + pgij

Div(N +�N) = 0

Stress tensor for
 a perfect fluid

I have to define         and          …    �T �N



Assume perfect fluid:
m = particle mass⇢ = n(m+ e(n, s)) = energy density

s = specific entropy

e = internal energy

e = kn

��1
exp

✓
s

cv

◆
= cv✓ (polytropic equation of state)

✓ = temperature cv = specific heat

de = ✓ ds� p d

✓
1

n

◆

✓ = es(n, s)

(2nd law of thermodynamics)

p = n2en(n, s)



� =

4
3⌘ + ⇣ + (� � 1)2

⇣
m2

h✓

⌘


1� (� � 1)
�
1� m

h

�

⇣̃ = ⇣ + ⇣̃1 + ⇣̃2 ⇣̃1 = (� � 1)2
✓
m2

h✓

◆
⇣̃2 = (� � 1)2

⇣
1� m

h

⌘
�

h =
⇢+ p

n
= specific enthalpy

⌘ = shear viscosity

⇣ = bulk viscosity

� = heat conductivity

u = (u0,u) = 4� velocity

Then in the particle frame:

 =
�✓2

n

determined by�T0 ⌘, ⇣,�

�T0 =

✓
�r · u ��u̇
��u̇ ⌘Su+ ⇣̃r · u I

◆
-



N↵ = nu↵ (number current density)

̃ =


h
=

�✓2

h2
�̃ =

�

h

 ↵ =
u↵

✓

 =
h

✓
� s

(classical Godunov variables)

(generalized Godunov variable)

determined by ⌘, ⇣,��N0

��N0 =
⇣
�̃ ̇ + �̃r · u, ̃r � �̃u̇

⌘



Our proposal for relativistic Navier-Stokes:

(rest frame expressions)
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�
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↵�
�
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@
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↵
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✓
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◆
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��N0 =
⇣
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 and        can be written invariantly:�N�T
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These equation have many remarkable properties:

In fact, its the limit of a 5x5 symmetric hyperbolic 
system as a parameter tends to zero.

Theorem 1: The equations are symmetric hy-

perbolic in the second order sense of Hughs-Kato-

Marsden (HKM) in the Godunov variable  ↵, 
which make the first order Euler equations sym-

metric hyperbolic as a first order system.

COR: The 5x5 system is well-posed.



Theorem 2: The linearized Fourier-Laplace modes

are dissipative and sharply causal.

All Fourier modes, both transverse and 
longitudinal,  are bounded by the speed of light, 
and the longitudinal mode speeds tend to the 
speed of light in the short wave length limit.

The amplitude of all nonzero modes decays in 
amplitude in forward time-like a parabolic system.

(Demonstration partly numerical in 3x3 case.)



Theorem 3: The equations are first order equiv-

alent to the classical Eckhart and Landau equa-

tions.

Proof:   The idea is that the conserved quantities can be 
replaced by anisotropic averages represented by 
correction terms linear in derivatives, on the order of the 
dissipation.   These can then be incorporated into the 
dissipation tensor on the RHS if one neglects terms higher 
order in the dissipation. 



That is…write 

u↵ = ũ↵ + ✏�ũ↵

n = ñ+ ✏�ñ

n = ⇢̃+ ✏�⇢̃

p = p̃+ ✏�p̃

where                                  are expressions linear 

in the gradients

with coefficients depending on    

�ũ↵,�ñ,�⇢̃,�p̃

@ũ

↵

@x

�
,

@ñ

@x

�
,

@⇢̃

@x

�
,

@p̃

@x

�

ũ↵, ñ, ⇢̃, p̃



Then writing… 

T̃↵� = (⇢̃+ p̃)ũ↵ũ� + p̃g↵� Ñ↵ = ñũ↵

and substituting into

gives the equivalent system  

Div {T +�T} = 0

Div N = 0

Div
n

T̃ +�T + ✏��T̃↵� +O(✏2)
o

= 0

Div
n

N +�N + ✏��Ñ
o

= 0



Defn:  We say two systems

(u↵, n, ⇢, p) ! (ũ↵, ñ, ⇢̃, p̃)

are first order equivalent if there exists a transformation   

such that     

Div(T +�T ) = 0

and     
Div(T̃ +�T̃ ) = 0

Div {N +�N} = 0

Div
n

Ñ +�Ñ
o

= 0

�T̃ = T̃ + ✏��T̃ �Ñ = N + ✏��Ñ



Lemma:   Substituting inviscid gradient identities generates 
a first order equivalence (gradient re-expression)

That is,  substituting into         any identity derived from 

@

@x

↵
T

↵� = 0
@

@x

↵
N

↵ = 0

�T

generates a first order equivalence.



To show our system is first order equivalent to Landau, we 
construct such an equivalence transformation:

Landau

�u = ��u̇

�⇢ = ��r · u
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n
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⇣
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(gradiant re-expression)
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Proof:  Entropy production is given by the quadratic form

Theorem 4: Entropy production is positive on

Eulerian gradients (i.e., gradients of the inviscid

equations su�cient for first order equivalence.)

Q ⌘ S↵
,↵ = �

⇣u↵

✓

⌘

,�
�T↵� �  ,��N�

Expressing Eulerian gradients in the particle frame and 
substituting into the RHS leads to:

Q = ✏

✓
⌘

2✓
kSuk2 + ⇣

✓
(r · u)2 + 

h
|r |2

◆
+O(✏2)



Comment:   The Landau and Eckart systems (which are 
first order related by a velocity transformation) are derived 
by the condition that entropy production be positive on all 
gradients.  Our discussions began with the idea that this is 
too stringent a condition for a theory that is essentially only 
first order in dissipation.

Future work:   Is our system, which is a limit of HKM 
symmetric hyperbolic systems, still well-posed?  

Future work:   Do these relativistic corrections change the 
theory of turbulence? 
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