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The title is intended to conjure up Riemann’s

Habilitation Lecture of 1862, usually translated
as:

“On the Hypotheses which Lie at the
Foundation of Geometry”

—Although Riemann based his theory on
Riemannian metrics, Riemann’s curvature is
now viewed more generally as a property of
a connection T'.
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In a series of papers with collaborator
Moritz Reintjes, we have established that
the regularity of a connection [’ can
“always” be lifted to one derivative above
its Riemann curvature tensor Riem(I')

— T his extends important work of
Kazden-DeTurck and Uhlenbeck from
(positive definite) Riemannian metrics to
Lorentzian metrics of General Relativity
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Our theory includes the discovery of the
Regularity Transformation equations (R1-
equations)

...as well as a subsequent existence theory to
establish optimal regularity and Uhlenbeck
compactness for general connections.



| begin with a statement of our results:



| begin with a statement of our results:

The RI-equations are a nonlinear elliptic
system of equations with matrix valued
differential forms as unknowns...



The RT-equations:

AT
AJ

0dl — 8(dJ~ ANdJ) +d(J 1 A),
5(J-T) —(dJ;T) — A,

div(dJ AT) + div(J dT) — d({d.J;
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The RI-equations:

AT = 8dU —d(dJ P AdJ) +d(JA),
AJ = §(J-T)—{dJ;T) — A,

dA = div(dJ AT) + div(J dT) — d((d.J; T)
A = v

dJ =0 on 9.

(dJ = Curl(J) = 0;Jt — 0;J!")
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The RI-equations:
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The RI-equations:

A = o6dl —6(dJ " AdJ) +d(J 1 A),
@1 = §(J-T) - (d];D) - A,

—

dA = div(dJ AT) +div(JdT) — d((dJ;T)).

0A = v

~— W

The 4-d coordinate Laplacian
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The RI-equations:

— 54D 6(dJ " A dJ) +d(J A,
= §(J D) — (dJ;T)
— div dJ/\@—I—diV J@—

The 4-d coordinate Euclidean Laplacian

—Not the wave operator that goes
with the connection 1!
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The RT-equations are NOT constructed
from invariant quantities...

They are constructed from the Euclidean
metric of the coordinate system in which
components are given...

Hence they are elliptic independent of
metric signature...
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Existence Theorems for the RI-equations
establish coordinate transformations

T — y
sufficient to smooth an affine connection

to optimal regularity...

|’ one derivative above Riem(F)

For metric connections

g two derivatives above Riem(F)



The existence of such coordinate
transformations rules out “regularity
singularities” in General Relativity.



The existence of such coordinate
transformations rules out “regularity
singularities” in General Relativity.

This is a fully multi-dimensional theory,
requiring no symmetry assumptions...
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Our existence theorem for the RT-equations
is based on elliptic regularity in L? —spaces:

Theorem (R-T 2021): If
' € L?? and Riem(I') € LP, p > n/2
in a given coordinate system T,

then there always exist local coord trans
T — Y such that in Y-coordinates,

e Wh?, Riem(T') € L



Extra derivative implies compactness
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Extra derivative implies compactness
for sequences {I';},_; of affine connections:

Theorem (R-T 2021): If
[, € L and Riem(I';) € L?, p>n/2

with uniform bounds, then there exists a
convergent subsequence in ¥ -coordinates:

I'; = I' strongly in LP, weakly in W1?
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Same for smooth solutions:
If: I',Riem(I') e W™P m >1.

Then: £ — Yy gives

[ € W™THP, Riem(T') € WP

9

“l.,e., 1" one derivative above Riem(I')
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Vector Bundle version of the RT-equations
= Same Theorems

Both compact and non-compact Lie Groups:

AA = §dA—5(dU A dU)
AU = USA— (U'n)"HdU" ;ndU)

A = Non-optimal Connection

U = Gauge Transformation to optimal
regularity...(we do case SO(r, s))



Extends important results of Kazden-DeTurck
and Uhlenbeck for (positive definite)
Riemannian metrics and compact Lie groups...

...to arbitrary connections on vector bundles
allowing for compact and non-compact Lie
groups...

...including the Lorentzian metrics and affine
connections of General Relativity...



By the RI-equations, optimal regularity and
Uhlenbeck compactness follow from the
transformation law for connections alone...

...the starting Hypothesis of Geometry

Hence our title...



Introduction

The Riemann Curvature Tensor



Thesis statement: The existence of
non-optimal metrics is a direct
consequence of Riemann’s program to
find a tensorial measure of curvature.

l.e., Riem(I") involves second derivatives
of the metric, but transforms by first
derivative Jacobians



In Riemann’s Theory of Curvature:

Metrical properties of a space are given by a
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In Riemann’s Theory of Curvature:

Metrical properties of a space are given by a
Riemannian metric J : ds = gijda;'idxj

g gives the lengths of tangent vectors and curves:

: 1

911 = /i3

(ONE [as= [ 1ala



gJ transforms like a bilinear form under * —

ox' OxJ
Jpv = Jij oyt OyY

(components)

gy = J'goJ (nxn matrices)



For (positive definite) Riemannian metrics, we
recover flat Euclidean space locally...

9i;(p) = ;5 + O(|p — po|*)

l.e. gij = 0ij Implies ds® =dx]+---+dx;



For metrics of signature 6(r, s), we locally
recover flat (Minkowski) space...

gij(p) = di5(r,8) + O(|p — pol*)
l.e. gij = 0i5(r,s) Implies

ds? = —da? — - —da? +da?, | +--da?,,



Riemann’s idea: the second order errors could
be measured by a tensor—the curvature
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Riemann’s idea: the second order errors could
be measured by a tensor—the curvature

gij (p) — 57;]‘

— Riem(I") measures second derivative Taylor
errors but transforms by first derivative Jacobians...
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Riemann Curvature Tensor:

—transforms by | st derivative Jacobians
. Oy~ 0x® 0zt O
IR Dt QyB Oy Hyd

R s = (tensor)

—But measures 2nd derivatives in the Taylor series

9i5(p) = 0i; @_ @‘/j




Riemann Curvature Tensor:

—transforms by | st derivative Jacobians
pa  _ pi Oy® 0x® Ox' O’
By0 7 TUIRE 9t 9yB Oy Oyyd

(tensor)

—Thm (Riemann): R =0 iff O(|p —po|)* =0

gij (P —de @ j
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a connection [:
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Christoffel Symbols
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Defining Riemann curvature in terms of
a connection [:

Metric: ds = g;; dx'dz’

1

Connection: i = 59“’ {—9ik.oc + 9ojk + Gko.i}

1" does not transform as a tensor

. Oy® Ox Ox® oy 0%

% — F ' : i :
By 7 IR gt 9yB Oy Ozt DyBoyY
U o o U
Tensor




Defining Riemann curvature in terms of
a connection [:

Metric: ds = g;; dx'dz’

1

Connection: i = 59“’ {—9ik.oc + 9ojk + Gko.i}

1" does not transform as a tensor

o« _ i Oy Ox? Oz* Oy~ 0°x'
By 7 IR gt 9yB Oy Ozt DyBoyY
Tensor 2nd Derivatives
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Defining Riemann curvature in terms of
a connection [:

Metric: ds = g;; dx'dz’

1

Connection: i = 59“’ {—9ik.oc + 9ojk + Gko.i}

I' bounds the derivatives of @

[' ~ Og

(pointwise)



Defining Riemann curvature in terms of
a connection [:

Metric: ds = gijdxidwj

. 7 1 10
Connection: ik — 59 {—gjk,a T 9oij,k T gka,j}
Riemann

Curvature:
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Defining Riemann curvature in terms of
a connection [:
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Defining Riemann curvature in terms of
a connection [:

Metric: ds = gijdxidfj
. 1
Connection: ;k — 5 e {_gjk,a T Jojk T gka,j}
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Defining Riemann curvature in terms of
a connection [:

Metric: ds = gijdxidfj
. 7 1 10
Connection: ik — 59 {—gjk,a T 9oij,k T gka,j}
Riemann
Curvature;: R =dl" + [F’ F]

R does NOT bound ALL the derivatives of T" |



Defining Riemann curvature in terms of
a connection [:

Metric: ds = g;; dx'dz’

. 1
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Defining Riemann curvature in terms of
a connection [:

Metric: ds = g;; dx'dz’

. 1
Connection: ]k = —g { 9ik.oc T Goj k T gkcm}

Riemann
Curvature: __l_ F P
dl' is pointwise bounded by R

Co-derivatives 01" are uncontrolled (pointwise)



View |’ as a matrix valued |-form:
I'=T.dz" = (F;)k da®
Then: R=dI'+1'AT

R is a“Curl” plus a “Commutator”

as nxn matrices expressed as wedge product



Optimal
Regularity
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Definition: We say a metric § has
optimal regularity if it is two derivatives
more regular than Riem(I")

For metric connections: 1" ~ Og

g optimal if and only if 1" optimal



Theorem: The existence of Non-optimal
metrics (and connections) is a direct

consequence of the tensorial nature of
Riemann’s curvature...

l.e., Riem(T") involves second derivatives of

the metric, but transforms by first derivative
Jacobians
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“Proof:”
Assume g, 1" are optimal in x-coords:
Riem(T') € C*, T'e C*t1, g€ CHt2
Transform to Y-coordinates: £ — Y

Assume; J = 0z c OF+l1

Oy




In Y-coordinates:




In Y-coordinates:

fo _ i Oy® Oz’ Oz" - Oy“ 04z
Pr IR gt yB Oy Oxt OyP oy
SN\
oo \t, I 1
Crr

Ck Ck—l-l 1 Ck—l—l C’k

Connection in Y-coordinates: I & ok



In Y-coordinates:

po  _ p Oy® Oz Oz OxI
o IR 9xt OB Oy Oy?

VAR BN,

C" C" ch

Curvature in y-coordinates: R e C*



Conclude: Under x — vy
ReCF, T eCFl geOrt?

v \ v

ReCr, TeCr, geCrt!

A coord trans T — Y at regularity g
lowers the regularity of ¢,I' by one order,
but preserves regularity of curvature R.



Same result in Sobolev spaces WP :

ReWm™p T e wmthr gcWwmtap

v \ v

ReW™P T eWmP gecWmthp

A coord trans T — Y at regularity g
lowers the regularity of ¢,I' by one order,
but preserves regularity of curvature R.



Our Question: Does the reverse hold?

l.e., given non-optimal ¢,l ,can you always
find a coordinate transformation £ — Y

which smooths them to optimal regularity?

At the lowest regularity, points of non-

optimality in metrics and connections look
like singularities...



Our work began with GR shock wave
solutions of the Einstein equations
constructed by the Glimm Scheme:
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For Shock-Waves in GR;
g 1s Lipschitz /\

['~ 0g is L
R~ 0%¢g is L™
(dI’ € L™)

“All delta functions cancel outin ] ”

“...but metric only one derivative above curvature”
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For Shock-Waves in GR;
g is Lipschitz /\
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R~ 0%qg is L*°
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At this regularity shock waves look like singularities:

G =T only holds in the weak sense:



For Shock-Waves in GR;
g is Lipschitz /\

['~ 0g is L™°
R~ 0%qg is L*°
(dI’ € L™)

At this regularity shock waves look like singularities:

Locally inertial coordinates don’t exist



For Shock-Waves in GR;
g 1s Lipschitz /\

['~ 0g is L™°
R~ 0%qg is L*°
(dI’ € L™)

At this regularity shock waves look like singularities:

Spacetime does not look “locally flat”



For Shock-Waves in GR;
g 1s Lipschitz /\

['~ 0g is L™°
R~ 0%qg is L*°
(dI’ € L™)

At this regularity shock waves look like singularities:

= > The classical limit is suspect
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(1) There exist coordinate transformations which give
the metric one more derivative...

OR



Reintjes and | concluded that either:

(1) There exist coordinate transformations which give
the metric one more derivative...

OR
(2) GR shock waves represent a new kind of

Regularity Singularity



The problem of constructing such a coordinate
transformation x — y directly looks impossible...
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The problem of constructing such a coordinate
transformation x — y directly looks impossible...

_ Ox® Oz’
9ap = Yij Dy OyP

\ 1/

Lipschitz
Jg_ 0 ) oz’ Oz’
ay7% = 9y 1778y~ 948 [ Continuous ==

\/Y\_/

“Discontinuities at shocks have to all miraculously
cancel out in the Leibniz products!”



The problem of constructing such a coordinate
transformation x — y directly looks impossible...

_ Ox® Oz’
9ap = Yij Dy OyP

\ 1/

Lipschitz
Jg_ 0 ) Oz’ Oz’
ay7% = 9y 1778y~ 948 [ Continuous ==

W

Nevertheless...Our theorem says such transformations
always exists...



Theorem (R-T): If
['e L° and Riem(I') € L™

in a given coordinate system X,

then there always exist local coord trans
T — Y such that in Y-coordinates,

[ ¢ W', Riem(l) € L™



We get this by solving the RT-equations:

AT = 4§dl —éd(JdJ) +d(J 1 A), (1)
AJ = §(JT)—(dJ;T) — A, (2)
dA = &(dJAT) +dv(JdT) — d((d; D)), O
A = w, (4)

Curl(J) = 0,;JF — (‘)L-J;‘ = (0 on 99, (5)



We get this by solving the RT-equations:

AT = @ 5d(J1dJ) + d(J 1 A), ()
AJ = 6(JT)—(dJ;T) — A, (2)
dA = &(dJAT) +dv(JdT) — d((d; D)), O
A = v, (4)

Key: “ ¢ comes after d:

Curl(J) = 0,;JF — (‘)L-J;‘ = (0 on 99, (5)



Our compactness result can be viewed as a
refinement of compensated compactness:

Theorem (R-T 2021): If
[, € L and Riem(I';) € L?, p>n/2

with uniform bounds, then there exists a
convergent subsequence in ¥ -coordinates:

I'; = I' strongly in LP, weakly in W1?



Our compactness result can be viewed as a
refinement of Div-Curl lemma:

Theorem (R-T 2021): If

and Riem(I';) € LP, p > n/2

with uniform bounds, then there exists a
convergent subsequence in ¥ -coordinates:

['; — I' strongly in LP, |lweakly in W1?
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Compensated Compactness
ITile <C &> I'; = 1" weaklyin [
|dTy]|e <C =>> R(T;) — R(T) weakly in L™

..by generalized Div-Curl Lemma

.e.
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linear



Compensated Compactness
ITile <C &> I'; = 1" weaklyin [
|dTy]|e <C =>> R(T;) — R(T) weakly in L™

...by generalized Div-Curl Lemma

|.e.
v UMV
linear

“Wedge products weakly continuous when
derivative bounds are exterior derivative...”
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AMERICAN MATHEMATICAL SOCIETY
Volume 303, Number 2, October 1987

ON WEAK CONTINUITY AND THE HODGE DECOMPOSITION

JOEL W. ROBBIN, ROBERT C. ROGERS! AND BLAKE TEMPLE?

ABSTRACT. We address the problem of determmmg the weakly continuous
polynomials for sequences.g netions that satisfv general linear first-orde

differential constraints. \We prove that wedge products are weakly continu-
ous when the differential constraints are given by exterior derivatives.)This is

sufficient for reproducing the Div-Curl Lemma of Murat and Tartar, the null
Lagrangians in the calculus of variations and the weakly continuous polynomi-
als for Maxwell’s equations. This result was derived independently by Tartar
who stated it in a recent survey article [7]. Our proof is explicit and uses the
Hodge decomposition.

1. Introduction. The characterization of weakly continuous functionals has
been an important tool in some recent developments in partial differential equa-

tions. In particular, the Div-Curl Lemma was instrumental in the work of Tartar
IRl and DiPerna {21 on concervatinn lawe and the characterization of the il T ao



Our motivation: Shoclk waves in GR
constructed by the Glimm scheme



GR-Shock Waves



In Einstein’s theory of General Relativity:

The Einstein equations G = kT

are equns for the gravitational metric g = §;;

coupled to the fluid sources 0,D, U

Giilgii] = kT3 (p, p, u)

Divl'=T7,=0



In Einstein’s theory of General Relativity:

The gravitational metric tensor (J determines the
properties of spacetime...

geodesics, parallel translation, time dilation, arc length...

...as well as the connection I' and curvature R

7 1 10
Connection: ik = 59 {—ij,z' + i ik T le;,j}
Riemann R;
Curvature:

ik _ Fl o Fl]’]{ Fl- o Fl o

1k, ) 70+ 1k ko~ 13




Israel (1960s) resolves issue for smooth shock surfaces

Assume 9L and 9dRr are smooth solutions of the Einstein
equations which match Lipschitz continuously across a
smooth shock surface Y;,and let... 9 = gr Uggr

3y >

shock
gr /\
gR gL

gr, U gr

JdR



Israel (1960s) resolves issue for smooth shock surfaces

The map * — y to Gaussian normal coordinates
regularizes the shock wave when the curvature and
connection are in [°° ...

3y >

shock
gL /\
gR gL

gr, U gr

JdR



Theorem (Reintjes 2014): Extends Israel to regular
shock-wave interaction with spherical symmetric

“Gaussian Normal Coordinates
break down at P’’: 22




The coordinate transformations solve non-local PDE
highly tuned to the structure of the interaction...

Trying to guess the coordinate system (eg harmonic or
Gaussian normal) didn't work.

Rankine-Hugoniot jump conditions come in to make
seemingly over-determined equations consistent...

... the general principle appeared entirely mysterious.



M. Reintjes, Spacetime is Locally Inertial at Points

of General Relativistic

Shock Wave Interaction

between Shocks from Different Characteristic Fam-
ilies, Adv. Theor. Math. Phys., arXiv:1409.5060.

M. Reintjes and B. Temple, No Reqularity Singu-

larities Fxist at Points of General Relativistic

Shock Wave Interaction between Shocks from

Different Characteristic Famalies,

Proc. R. Soc. A 471:2

0140834.

http://dx.doi.org/10.1C

98 /rspa.2014.0834



GR-Shock Waves
by the
Glimm Scheme



Assume a gravitational metric ansatz of
the SSC form:

ds* = —B(t,r)dt* 1 - r2dr?

Plug into the Einstein equations :

G =rT

Tij = (p + p)uiuj + pgij



Standard Schwarzschild Coordinates

where

(1)+(2)*(3)*+(4)

A\ B, BA,
(A> B TBT 2TABBTAT
i) <§> 2B A
@==P (|)+(3)+divT=0

(weakly)



Theorem: (Te-Gr) The equations close in a
“locally inertial” formulation of (1), (2) & Div T=0:

{Th} o+ {\/ABT]‘\)}} = —%\/ABT]?}, (1)
{T](\’}}70+{\/ABT]%}} = —% AB{%TA1}+ (jrA) (Tyf — Taz) 2)
2L ERTH - () - 1)
rd, = (1—A)—kr?Tyy, (3)
rB, = B(lA_ A) + §/<;7“2T]%41. (4)
700 _ pc + p 70! — pct +p v
1—(2)° 1— (1)
p+ (f")2 14 v L w
c 22 —
Tll—1 (/U)Q,OC2 A _7"_2 \/Euo



{Tf}})OJr{\/ABT]?}}, — —%\/ABT](\)}, (1)

{T]?}}70+{\/@Tj}},l = —% AB{%TA141+ (1A_7~A) (Trf — Tap) 2)
+ 2T - () - 41

rd, = (1—A)—kr°Tsy, (3)

rB, = Bi-4) -+ E/ﬁ:rzTﬁ. (4)

A A




{Tf}})OJr{\/ABT]?}}’ — —%\/ABT](\)}, (1)

{T$}70+{@Tj}}’l = —% AB{%TA141+ (1A_7~A) (Thy — Ta7) 2)
+ 2T - () - 41

rd, = (1—A)—kr°Tsy, (3)

rB, = B(l; A) -+ §/€T2T]%41. (4)

*

The metric components A,B...




{Tf}})OJr{\/ABT]?}}’ — —%\/ABT](\)}, (1)

{T$}70+{@Tj}}’l = —% AB{%TA141+ (IA_TA) (Thy — Ta7) 2)
+ 2T - () - 41

rA, = (1—A)—krTsy, (3)

rB, = B(lg A) -+ §/€T2T]%41. (4)

The metric components A,B...
...are only one derivative
smoother than the sources T




{Tff})OJr{\/ABT]?}}’ — —%\/ABT](\)}, (1)

{T$}70+{@Tj}}’l = —% AB{%TA141+ (1A_7~A) (Thy — Ta7) 2)
+ 2T - () - 41

rA, = (1—A)—krTsy, (3)

rB, = B(lg A) -+ §/€T2T]%41. (4)

The metric components A,B...
...are only one derivative
smoother than the sources T

Since G = KT »




y
{Tﬁ}},ﬁ{\/ABTg;}’ — - VABTY}, (1)

{T]?;}7O+{\/ETA1}}71 = —% AB{%T}}JF (IA_TA)(T]&)}—TA%) 2)
+ 2T - () - 41

rA, = (1—A)—krTsy, (3)

rB, = B(lg 4) + glﬁl’lgTﬁ. (4)

The metric components A,B...
...are only one derivative
smoother than the sources T

The metric is only one order
derivative smoother than
the curvature tensor...

Since G = KT »
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A, B are Lipschitz Continuous
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Conclude: For shock wave solutions of the Einstein
equations G = «T generated by the Glimm Scheme:

@® Solution: ds® = —B(t,r)dt” A - r2dQ)?
A, B are Lipschitz Continuous

® Riemann Curvature Tensor: i (t,r) € L™

® Fluid variables: p(t,r),p(r,t),v(r,t) € L™

Conclude: These are non-optimal solutions which
can be smoothed to optimal regularity by our THM...



Comments:
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symmetry...



Comments:

-Existence by Glimm’s method could only be
accomplished in “singular” coordinate systems (SSC)

-Non-optimal coordinates are not special to spherical
symmetry...

-Wave equation methods have not reproduced
Glimm’s theorem, even for 1 4+ 1 classical fluids
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Comparison with other results:

Prior results on optimal regularity GR were
derived from 3+| formulation



Comparison with other results:

Prior results on optimal regularity GR were
derived from 3+| formulation

Our theory is based on 4-d elliptic equations
based on 4-d geometry of spacetime...



® Comparison with other results:
Positive Definite case: (Kazdan-DeTurck 1981)



® Comparison with other results:
Positive Definite case: (Kazdan-DeTurck 1981)

Some regularity theorems in riemannian geometry

Deturck, Dennis M. ; Kazdan, Jerry L.
Annales scientifiques de I'Ecole Normale Supérieure,

Série 4, Tome 14 (1981) no. 3, pp. 249-260.



http://www.numdam.org/search/%22DeTurck,%20Dennis%22-c/
http://www.numdam.org/search/%22Kazdan,%20Jerry%20L.%22-c/

® Comparison with other results:
Positive Definite case: (Kazdan-DeTurck 1981)

“Transformation to Harmonic Coordinates
regularizes the metric...”



® Comparison with other results:
Positive Definite case: (Kazdan-DeTurck 1981)

“Transformation to Harmonic Coordinates
regularizes the metric...”

Harmonic Coordinates: Ag ' =0



® Comparison with other results:
Positive Definite case: (Kazdan-DeTurck 1981)

“Transformation to Harmonic Coordinates
regularizes the metric...”

Harmonic Coordinates: Ag ' =0

R;; = Ag gij +l.o.t.s



® Comparison with other results:
Positive Definite case: (Kazdan-DeTurck 1981)

“Transformation to Harmonic Coordinates
regularizes the metric...”

Harmonic Coordinates: Ag ' = ()
R;; :Ag gij +l.o.t.s
Ay,9i5 = R;j +1l.0ot.s

Elliptic Regularity lifts g 2-derivatives above R



® Lorentzian Case is Problematic...

Harmonic Coordinates: gL = 0

g gi; = Rij +l.0.t.s

Regularity of g comes from the boundary

Results based on 3+1...

Anderson, Lefloch-Chen (vacuum)...
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® Lorentzian Case is Problematic...

Harmonic Coordinates: gL = 0

g gi; = Rij +l.0.t.s

Regularity of g comes from the boundary

Results based on 3+1...
Anderson, Lefloch-Chen (vacuum)...

(Our theory removes all technical assumptions...)



® Lorentzian Case is Problematic...

Harmonic Coordinates: gL = 0

g gi; = Rij +l.0.t.s

Regularity of g comes from the boundary

Results based on 3+1...
Anderson, Lefloch-Chen (vacuum)...

(...and applies to general connections.)
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THEOREM 1.6 (Main theorem). Let (M, ¢g) an asymp-
totically flat solution to the
(1.1) together with a maximal foliation by space-like hy-
persurfaces 2; defined as level hypersurfaces of a time
function ¢t. Assume that the initial slice (X2g, g, k) is such
that the Ricci curvature Ric € L*(X,), Vk € L*(X),
and 2o has a strictly positive volume radius on scales
< 1, ie. 750(Xp,1) > 0. Then the following control
holdson 0 <t < T

1R Lo 2 < O [ VE|| e 12wy < C

inf ro(3,1) > 1.

0<t<T



THEOREM 1.6 (Main theorem).' Let (M, ¢g) an asymp-
totically flat solution to the
(1.1) together with a maximal foliation by space-like hy-
persurtfaces >; defined as level hyvpersurfaces of a time

function  Applies to vacuum Einstein ) 9 %) is such

: 4 2
that the  oquations G = 0 k€ L),
and 2. L. Jdius on scales

< 1, ie. 750(Xp,1) > 0. Then the following control
holdson 0 <t < T

G =~k
IRl o) < C.IVRLS, mof S

inf ro(3,1) > 1.

0<t<T



THEOREM 1.6 (Main theorem). Let (M, g) an asymp-
totically flat solution to the Einstein vacuum equations
(1.1) together with a maximal foliation by space-like hy-
persurfaces 2; defined as level hypersurfaces of a time
function t. Assume that the initial slice (X, g, k) is such
that the Ricci curvature(Ric € L*(X,), Vk € L*(X),
and >y has a strictly positive volume radius on scales

l

The assumption on initial data:

Ric € L*(%), Vk € L*(%))




THEOREM 1.6 (Main theorem). Let (M, g) an asymp-
totically flat solution to the Einstein vacuum equations
(1.1) together with a maximal foliation by space-like hy-
persurfaces 2; defined as level hypersurfaces of a time
function t. Assume that the initial slice (X, g, k) is such
that the Ricci curvature(Ric € L*(X), Vk € L*(Xo)
and 2o has a strictly positive volume radius on scales
< 1, ie. 750(Xp,1) > 0. Then the following control

J

1
Requires the second fundamental form be one
degree smoother than curvature...

inf 70(Sp, 1) > 1.
0<t<T



THEOREM 1.6 (Main theorem). Let (M, g) an asymp-
totically flat solution to the Einstein vacuum equations
(1.1) together with a maximal foliation by space-like hy-
persurfaces 2; defined as level hypersurfaces of a time
function t. Assume that the initial slice (X, g, k) is such
that the Ricci curvature(Ric € L*(X), Vk € L*(Xo)

and 2o has a strictly positive volume radius on scales
< 1, ie. 750(Xp,1) > 0. Then the following control

J

1
Claim: Non-optimal solutions do not meet this
condition in wave-gauge...

int 7o (2, 1) > 1.

0<t<T -



THEOREM 1.6 (Main theorem). Let (M, g) an asymp-

totically flat solution to t.

ne Finsteln vacuum equations

(1.1) together with a maximal foliation by space-like hy-

persurfaces >; defined as

level hypersurfaces of a time

function t. Assume that the initial slice (X, g, k) is such

that the Ricci curvature(Ric € L*(Xg), Vk € L*(Xg)

J

and >y has a strictly positive volume radius on scales

< 1. i
holds Eg: ' e [°°

‘rol

means k & [°°

on Cauchy hyper-surfaces...

o...[FFE D)



THEOREM 1.6 (Main theorem). Let (M, g) an asymp-
totically flat solution to the Einstein vacuum equations

(1.1) together with a maximal foliation by space-like hy-
persurfaces 2; defined as level hypersurfaces of a time
function t. Assume that the initial slice (X, g, k) is such

that the Ricci curvature(Ric € L*(X), Vk € L*(Xo)
and >y has a strictly positive volume radius on scales

= 1.7 Conclude: The L2 theory does RO
holds
not apply when

[', Riem(I') € L™

J

Even for vacuum solutions...



Conclude: The Regularity Transformation

equations apply at regularities too low to apply
the L2-Theory...

[', Riem(I'), k € L



Summary (Our view): Regularizing coordinate
transformations are highly tuned to a particular
solution, (you have to solve the RI- equations),
and there’s no one ansatz that regularizes them

“all at once”.

C.f. Discussion on our webpage:

https://www.math.ucdavis.edu/~temple/VWebPageRT-
equations.pdf



Derivation of the
RI-equations

“The Regularity Transformation Equations:An
elliptic mechanism for smoothing gravitational
metrics in General Relativity”

Moritz Reintjes, Blake Temple
https://arxiv.org/abs/1805.01004



https://arxiv.org/search/gr-qc?searchtype=author&query=Reintjes%2C+M
https://arxiv.org/search/gr-qc?searchtype=author&query=Temple,+B
https://arxiv.org/abs/1805.01004

The RT-equations:

AT
AJ

0dl — 8(dJ~ ANdJ) +d(J 1 A),
5(J-T) —(dJ;T) — A,

div(dJ AT) + div(J dT) — d({d.J;

U

dJ =0 on 9.

~

I

~— W

)



The RI-equations:

AT
AJ

0dl — §(dJ ' NdJ) +d(J T A),
5(J-T) — {(dJ;T) — A,

div(dJ AT) + div(J dT) — d({d.J;

O

N

free to be chosen

~

~~

).



Here: T" is a matrix valued |-form, .J and A
are matrix valued O-forms, and .J, A are vector
valued |-forms as follows:

[ = f’ﬁzdxz
J = JH J=Jldet AT = Curl(J)
A= A¥ A= Af;dazi dA = Curl(A)

The integrability condition for J is: Curl(J) =0



Two operations on matrix valued forms:
% n
W) = Z O (W) )iy, i ) AT A oo A da'™

(““take divergence in lower matrix component™)

(A ; B)M = Z Al BYL

11<...<1p

( “matrix valued inner product”™)






To derive the RI-equations...

The first breakthrough was the Riemann-flat
condition...



The Riemann-flat
Condition

“Shock Wave Interactions in General Relativity: The
Geometry behind Metric Smoothing and the Existence
of Locally Inertial Frames”

Moritz Reintjes, Blake Temple

https://arxiv.org/abs/1610.02390


https://arxiv.org/search/gr-qc?searchtype=author&query=Reintjes%2C+M
https://arxiv.org/search/gr-qc?searchtype=author&query=Temple%2C+B

The Riemann-flat condition:
Assume I', R € L.

Then: There exists a C!'! coordinate
transformation which smooths I to CV-1
if and only if there exists a tensor I' € C%" st

~o

Riem(I' +1") = 0.



Riem F+F =

rgLOO_j L,Fec(”



The theorem applies at other orders of
smoothness, for example: I',T' ¢ W™?



The same proof works at other orders of
smoothness, for example: I',T' ¢ W™?

A smoothing transformation J e wm+hp
exists if and only if =

9T € WmtLp st



The same proof works at other orders of
smoothness, for example: I',T' ¢ W™?

A smoothing transformation J e wm+hp

exists if and only if

e Wwmtlr st

Riem(I" + F

FeW’mPJ L [ e Wmntlp



The same proof works at other orders of
smoothness, for example: I',T' ¢ W™?

A smoothing transformation J e wm+hp
exists if and only if =

9T € WmtLp st

Riem(I" + F

FeWmPJ L [ e Wmntlp

Geometric & independent of metric signature...



“Proof”: Assume geC™, Tel™ JeC™

d 1o —pi, 0 Or’ 0z" = Oy* 0Ox° OaT
an By ™ Tk gyt oyB Oy | Bz OxT OyP Oy

FTNTE

(10:1 (0.1 Riemann-flat
W
_ng

SO Riem(I' +T1') = 0



The “hard” partis: If
Riem(I'+T') = 0

...then a smoothing transformation exists. W



I' continuous implies T + I has the same jump
discontinuities (shock set) as I

First idea: Find Nash-type embedding theorem
to extend the shock set to a flat connection



Better ldea: Use the Riemann-flat condition to
derive a system of elliptic equations in I',J

“The Regularity Transformation Equations: An elliptic

mechanism for smoothing gravitational metrics in General
Relativity™

Moritz Reintjes, Blake Temple
https://arxiv.org/abs/1805.01004


https://arxiv.org/search/gr-qc?searchtype=author&query=Reintjes%2C+M
https://arxiv.org/search/gr-qc?searchtype=author&query=Temple%2C+B

Derivation of the
RI-equations
from
Riemann-Flat Condition



Start with the Riemann-flat condition:

Assume: g¢geC% T eL>® JeCY!

Then Tk = (J Y EJ2I0TS + (J~1)ka,J¢
T [ J1dJ

Riemann-flat

2-Equivalent forms of
Riemann-flat condition
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The Riemann-flat condition:
Riem(I' —T') = 0 implies
dl' =dl' + (I' = T) A (I' = T)
...an equation for AT

Augment to first order system...

~o

Al =dl' + (T —=T)A (T =1
T = h

SN\

) — co-derivative of Euclidean coord metric



The Riemann-flat condition:
Riem(I' —T') = 0 implies
dl' =dl' + (I' = T) A (I' = T)
...an equation for dT

Augment to first order system...

~o

Al =dl' + (T —=T)A (T =1
5T =(h)

“gauge freedom”



Yields |st order Cauchy-Riemann system for T
dl' =dI' + (I —=T) A (I =T
ST = h
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Yields |st order Cauchy-Riemann system for T

dl' =dI' + (I —=T) A (I =T
oI = h

This is not a solvable system!

We look to use our equivalent Riemann-flat
condition to couple this to an equation for J

JldJ=T-T <> dJ=J(I -T)



We have:
dl =dl' + (T —=T)A (I =1
oI = h
dJ =JT —T)



We have:

~ ~

dl =dl' + (T —=T)A (I =1
oI = h
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0J =0  (for O-forms)



We have:

~ ~

dl =dl' + (T —=T)A (I =1
o = h

dJ = JI -T)

0J =0  (for O-forms)

We now construct a closed system in (I, J)

from these 2 forms of Riemann-flat condition

(They start out as equivalent!)



To break the equivalence, apply A = dd + dd to
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To break the equivalence, apply A = dd + dd to
dl =dl' + (T —=T)A (I =1
0T = h
dJ = JI -T)

to get Poisson equations...

AT = 6dT — 6d(J~dJ) +d(J 1 A),

~
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To break the equivalence, apply A = dd + dd to
dl =dl' + (T —=T)A (I =1
0T = h
dJ = JI -T)

to get Poisson equations...

AT = 6dT — 6d(J~dJ) +d(J 1 A),

AJ =8(JT) — (dJ;T) — A,

where h = J 1A is free...



To impose dJ = Curl(J) =0...



To impose dJ = Curl(J) =0...

Require that d of the vectorized right hand side
of the J-equation vanish, i.e.



To impose dJ = Curl(J) =0...

Require that d of the vectorized right hand side
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To impose dJ = Curl(J) =0...

Require that d of the vectorized right hand side
of the .J-equation vanish, i.e.

AJ =8(JT) — (dJ;T) — A,
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“apply vec and take d = 0”

which gives the A-equation



To impose dJ = Curl(J) =0...

Require that d of the vectorized right hand side
of the .J-equation vanish, i.e.

AJ =8(JT) — (dJ;T) — A,
\\_/\/\/

“apply vec and take d = 0”

which gives the A-equation

~o

dA = div(dJ AT) + div(J dT) — d({d.J;T))



This leads to the Rl-equations:

AT = 6&dU —6(dJ ' AdJ) +d(J 1 A),

AJ = 6(J-T)—={(dJ;T) — A,

dA = div(dJ AT) +div(JdT) — d((dJ;T)).
A = v

dJ =0 on 0.



This leads to the Rl-equations:

AT = [8dD —§(dJ~ AdJ) +d(J1A),

AJ = §(J-T)—{dJ;T) — A,

dA = div(dJ AT) +div(JdT) — d((dJ;T)).
A = v

dJ =0 on 0.

[F,dl“ c W™ implies RHS ¢ wm—1p! J




This leads to the Rl-equations:

>
=2
|

SdT — 5(dJ AdJ) +d(J7LA),
[5 J-T) — (dJ:T) Aj

dA = dlv(dJ/\F) —I-dlv(JdF) d((dJ;F ),

>
-
|

-
AN
|
~— V¥

U

dJ =0 on 0.

[F,dF c W™ implies RHS ¢ wm—1p! j




Another “miraculous cancellation” occurs in

in A-equation

AT
AJ

0dl — §(dJ ' NdJ) +d(J T A),
5(J-T) —(dJ;T) — A,
div(dJ AT) + div(J dT) — d({d.J;

U

dJ =0 on 0.

~

I

~— W

)



Consider the A-equation:

AT 5dl — 6(dJ " ANdJ) +d(J 1 A),
AJ = §(J-T)—{dJ;T) — A,
dA

~

div(dJ AT) + div(J dT) — d({dJ; T}),

N NS

\

d(6(JT))




Lemma: (for smooth 1'):

A(5(JT}) = div(dJ AT) + div(J dr)

N T
Wm—Z,p Wm—l,p

dIl' one derivative smoother than 4I'!



Consider the A-equation:

AT 0dl — 6(dJ ' AdJ) +d(J 1 A),
AJ = §(J-T)—{dJ;T) — A,

dA [(ﬁ/’(dj/\ F) + (ﬁf(]dr) — d(<d<]3 fS)’J
N TS

\

d(6(JT))

[F,dl“ c W™ implies RHS ¢ W™ 1r! j
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Finally, I which solves RT-equations may not
be the actual connection transformed by .J...

Theorem: If (T, .J) solves the RT-equations
iff (I',J) does...

["=T-—J"1'dJ
'ewm™tlr Dewmp dJeW™P

[ has the same regularity as I

Conclude: J transformsT" € W™Pto " € Wmtlrp



Theorem: (I, J, A) is a solution of the

RT-equations

AT = 6&dU —od(J 1dJ) +d(J tA),

AJ = §(JT)—{dJ:T) — A,

dA = div(dJ AT) +div(J dT) — d((dJ; T)),
A = v,

Curl(J) = 0;J; — 0;J; =0 on 09,



Theorem: (I, J, A) is a solution of the
RT-equations

AT =
AJ =
dA =
A =

0dl — éd(J " dJ) +d(J ' A),
5(JT) — (dJ;T) — A,
div(dJ AT) + div(.J dT') — d((d.J; T)),

v,

Curl(J) = 0;J; — 0;J; =0 on 09,

if and only if (I',J,4) is a solution.
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flat condition...
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Summary: We start with two first order
equations both equivalent to the Riemann-
flat condition...

Using the co-derivative of the coordinate
Euclidean metric, we convert these in to a
coupled system of Poisson equations...

...and by miraculous cancellations on the
RHS, the solutions provide Jacobians which
lift the connection to optimal regularity...



Steps in the existence
proof for the
RI-equations



The existence proof is based on an iteration
scheme which applies the L? theory of
elliptic regularity at each stage...

The LP-theory of derivatives is a linear
theory, and the RI-equations are
nonlinear, so an iteration scheme is
required...



The proof that the iterates converge
relies on only two theorems from
classical elliptic PDE theory...



Theorem (Elliptic Regularity): Let f € W™ 1P(Q), m > 1,

and uy € WerpT?l’p(@Q) both be scalar functions. Assume u €
WmtLp(Q)) solves the Poisson equation Au = f with Dirichlet data
ulga = ug. Then there exists a constant C' > 0 depending only on
(), m,n,p such that

|ullwmsio) < O(HfHWml,p(m + \|uOHWm+zgol,p(m))-



Theorem (Elliptic Regularity): Let f € W™ 1P(Q), m > 1,

and uy € WerpT?l’p(@Q) both be scalar functions. Assume u €
WmtLp(Q)) solves the Poisson equation Au = f with Dirichlet data
ulga = ug. Then there exists a constant C' > 0 depending only on
(), m,n,p such that

|ullwmsio) < O(HfHWml,p(m + \|uOHWm+zgol,p(m))-

Theorem (Gaffney Inequality): Let u € W™THP(Q) be a k-form
form >0,1 <k <n-—1 and (for ssmplicity) n > 2. Then there
exists a constant C' > 0 depending only on €2, m,n,p, such that

Jullwmsso@) < O (lldullwmaey + ISullwmr@ + el sy o)
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® One of the main obstacles to overcome was
how to reduce the existence theorem at each
iterate to a problem with Dirchlet boundary
conditions... so standard linear elliptic
regularity applies...

For this we introduce ancillary variable
Y so that dy = J d*y=dJ = Curl(J)

..this requires coupling the RI-equations to
additional equations in (y, V)



... This produces a system of following form...

AT = F(T, J, A),
AJ =F(T,J) - A,
dA = dF (T, J)
5A = v,



...we don’t have to impose dJ =0 on 99...
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...we don’t have to impose dJ =0 on 99...

AT = F(T, J, A),
AJ =F(T,J) - A,
dA = dF (T, J)
5Z:v,

. dy = J so any boundary condition is OK



Theorem: (smooth solutions):
If: I', Riem(I') e WP m >1.

Then: £ — Y gives

[ € WP Riem(T) € W™P

“l.,e., T' one derivative above R?jem(I‘)”



Reference: (update)

“Optimal metric regularity in General Relativity follows from
the RT-equations by elliptic regularity theory in Lp-spaces™

Moritz Reintjes, Blake Temple
https://arxiv.org/abs/1808.06455



https://arxiv.org/search/gr-qc?searchtype=author&query=Reintjes%2C+M
https://arxiv.org/search/gr-qc?searchtype=author&query=Temple,+B
https://arxiv.org/abs/1808.06455

The low regularity case T € L°°, LP

Is more problematic...



Nonlinear term not closed under
iteration in L°° or P

AT = 6dT —|5(dJ P AdT)|+ d(J T A),

AJ = §(J-T)—(dJ;T) — A,

dA = div(dJ AT) +div(Jdr) — d({dJ;T)).
A = w

dJ =0 on 0.
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to uncouple the T' equation from the others:
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For this we use the gauge freedom in the RT-equations
to uncouple the T' equation from the others:

B = A+ (dJ;T)
W = v+5<dJ;f§,

9

Reduced RI-equations: (linear!)

AJ = §(J-T)- B
dB = div(dJ AT) + div(J dT),

—

0B

w.



For this we use the gauge freedom in the RT-equations
to uncouple the T' equation from the others:

B = A+ (dJ;T)

A J

W = v+5<dJ;f’§,

Reduced RI-equations: (linear!)

AJ = §(J-T)- B,
dB = div(dJ AT) + div(J dT),
5B = w.

Solve for J first...then solve nonlinear Poisson
equation to get the regularity of I



Theorem (R-T): If

['e L and Riem(I') € L™
in a given coordinate system I,

then there always exist local coord trans
T — Y such that in Y-coordinates,

[ c Wi?, Riem(I') € L™



Theorem (R-T 2021): If

[ € L*P and Riem(T) € LP, p > n/2
in a given coordinate system I,

then there always exist local coord trans
T — Y such that in Y-coordinates,

e Wh?  Riem(T) € LP



Conclusion



This theory is geometric, applies independent of
matter sources or metric signature, requires no
symmetry assumptions, and makes no apriori

assumptions on the spacetime other than its
regularity...
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Optimal regularity is a consequence of the
transformation law for connections alone...

Non-optimal I’ exist because because Riem(I")
is second order, but transforms as a tensor...

Riem(I') involves only dI°, but controls
ALL the derivatives of 1.

Q: Might this refined compactness theorem
find application for existence theories in GR!?
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Cor: GR-shock waves by the Glimm scheme
in SSC are one derivative more regular than
previously known...

Q: What do the metrics look like in
coordinates of optimal regularity?

Q: Could non-optimal coordinates play a role
for existence theories for GR-shocks in multi-d?



Cor: It suffices to solve the Einstein
equations in coordinates where the metric
is non-optimal and be assured that the
solutions exhibit optimal regularity in other
coordinate systems...



Cor: It suffices to solve the Einstein
equations in coordinates where the metric
is non-optimal and be assured that the
solutions exhibit optimal regularity in other
coordinate systems...

Cor: If a connection loses one derivative
relative to the curvature in a numerical
simulation, it is not a geometric problem...



The RT-equations are based on Einsteins 4-D
theory of spacetime, not classical 3+1...

Q: Can this be done within the 3+1 framework
of the initial value problem!?

Ans: We don’t know how to do this!



Open Problem...

Given I',dI' € L™ does there exist coordinate
transformation which achieves T', € C°'?
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Open Problem...

Given I',dI' € L™ does there exist coordinate
transformation which achieves T', € C°'?

The Riemann-flat condition gives T, ¢ ¢
...but elliptic regularity is problematic...
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