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WE PROVE: For generic, non-resonant entropy profiles, the
equations obtained by linearization admit k-mode solutions each of
which perturbs to a one parameter family of “pure tone” solutions of

the nonlinear Euler equations, displaying the same frequency in space
and time as the linear k-mode.

CONCLUDE: 2x2 Shock formation first proved by Riemann 1n 1860,
and made definitive in the Glimm-Lax decay result of 1970, is not
indicative of what generically happens in 3x3 compressible Euler.

* There really 1s a nonlinear theory of musical tones!
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COMPRESSIBLE EULER EQUATIONS

The compressible Euler equations consist of three

coupled nonlinear PDE’s that can be interpreted as the
continuum version of

Newton’s Laws of Motion
(1) Conservation of Mass: (Continuity Equation)
(2) Newton’s Force Law: (Continuum Version)

“ The time-rate of change of momentum equals minus
gradient of the pressure”

(3) Conservation of Energy: (Continuum Version)

...shock-waves introduce a canonical
dissipation 1nto this zero dissipation limit...



Compressible Euler Equations:
Eulerian Coordinates:

® For wave propagation in X-direction :

pr + (pu)x =0

Compressible

<= (pu) + (pu” +p)x =0
Euler

Ei+{(F+ Plutx =0

® System (Ma), (Mo), (En) describes the time
evolution of a compressible fluid...

p = 2= =density

vol

u = velocity

p=pressure

I — enerqy
vol

= pe + 5 pu’

e = ——99 —gpecific internal energy
mass
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Compressible Euler Equations:
Lagrangian Coordinates:

Change to material coordinate co-moving with the fluid

x:/OXp@)de

(Ma),(Mo),(En) are equivalent to Lagrangian Equations

Ur + pr = 0 (Euler)

An equation of state relating p, p, €
is required to close the equations...
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The Entropy:

Time-irreversibility is measured by the entropy, which
evolves according to a derived conservation law:

The specific entropy S is a state variable obtained
by integrating the second law of thermodynamics

ds = %53 pdeU (2nd Law)

v = 1/p= specific volume

entropy
mass

S = specific entropy

A consequence is the “adiabatic constraint”

(TSecond Law of ) 4 (M&),(MO),(EH) — (Ent)

hermodynamics

(ps)t + (psu)x =0 <ump s =0 (Ent)
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Compressible Euler Equations:
Lagrangian Coordinates:

(Ma),(Mo),(En) are equivalent to Lagrangian Equations

Uy — Uy —
Ut T Pg = (Euler)
St —

We perturb off “quiet state” solutions:

p=po, u=0, s=s(x)

Y p(z) will be non-constant... “pressure and velocity |

are constant across
contact discontinuities”
\_ D

% s(x) can be discontinuous...
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A LONG STANDING OPEN PROBLEM

The existence of space and time periodic solutions of compressible
Euler has been an open problem since the time of Euler and Riemann.

For most of the history of fluid mechanics it was believed that
periodic solutions could not exist due to shock-formation.
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SHOCK-WAVES

Shock-waves produce increase ot entropy and dissipation...

Shock Wave

(time-irreversible)

(time-reversible)

Smooth Solution

Shock-waves are inconsistent with space-time periodicity...



The Difficulty in a Nutshell

® The compressible Euler Equations form a system of 3-coupled
nonlinear conservation laws of form---

® Basic warmup problem: scalar Burgers Equation:

1
Ut + 5(?1,2)31j = ()

us +uu, =0

\

V(lyu)U(CE, t) = 0

\

“u=const. along lines of speed u”

v

“inconsistent with time-periodic evolution”
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The Problem:

® Basic warmup problem: scalar Burgers Equation:

uy +uu, = 0

\

“inconsistent with time-periodic evolution™

Shock implies solution " Shock-wave
can never return in time

T 4

t = End of classical solution

Rarefactive | .
\ Compressive

AN

=)V



This always happens in the 2x2 p-system obtained by
closing the first two Euler equations with

p = p(p)
t pt + (pu)z =0 (Ma)
e {<pu>t +(pu? +p(p)e =0 (Mo

Theorem: (Riemannl860) Shock waves generically form
in the isentropic and isothermal 2x2 systems...

Theorem: (Lax 1964) Genuinely nonlinear 2x2 systems
like the p-system always form shock-waves when there is
compression initially...
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Theorem: (Glimm/Lax 1970) This generically happens
in 2x2 systems like the p-system...

Shoclk-wave Forward-R
Wave

Backward-C
Wave

A
g

> I

“Periodic solutions decay by shock dissipation at rate |/t”



History/Background

Periodic Solutions of
Compressible Euler

Ref. Tuesdell, Lindsay, Johnson and Cheret...
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® |[68/-- In Book 2 of Principia Newton attempted to
describe the dynamics of continuous media and
propagation of sound waves, but did not get it quite right.

® |748-- D'Alembert introduced the linear wave equation
to describe displacements of a vibrating string.

® |75]-- Euler completed Newton’s program by deriving
the equation (Mo) for conservation of momentum.

® |759-- Euler linearized his equation and demonstrated
the density solved D’Alembert’s wave equation for the
vibrating string.

¥ This established the framework for the linear theory of
sound and musical tones.

® Ref: Tuesdell, etc.

Since Euler, it appeared that the linear theory of sound based on
modes of vibration, was inconsistent with the nonlinear theory!



History/Background

® |808-- Poisson developed the method of
characteristics.

® |848-- Challis pointed out that in some cases Poisson’s
solutions appeared to break down.

® |848-- Stokes proposed discontinuous solutions to
describe shock waves.

® |860-- Earnshaw introduced simple waves.

® |860-- Riemann proved that compressive solutions of
Euler’s equations “always” suffer gradient blowup.

“...portions of the wave where the density decreases in
the direction of propagation, will accordingly become in-
creasingly more narrow as it progresses, and finally goes
over into compression shocks.



History/Background

After Riemann...

...shock-waves became the central issue in
the study of the compressible Euler
equations...

® |atter part 19°th century-- got thermodynamics and the
roles of entropy and energy straight.

® |880’s-- Rankine-Hugoniot gave correct treatment of
discontinuous solutions and entropy condition at shocks.

® |957-- Lax formulated the general theory of
conservation laws.
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® |964-- Lax proved finite time blow-up in derivatives for
2x2 (isentropic) systemes.

P.D. Lax, Development of singularities of solutions of nonlinear hyperbolic par-
tial differential equations, Jour. Math. Physics, Vol. 5, pp. 611-613 (1964).

® |965-- Glimm’s celebrated existence theory-
represented smooth solutions by using weak-shocks.

J.Glimm, Solutions in the large for nonlinear hyperbolic systems of
conservation laws, Comm Pure Appl Math, Vol XVII, 697-715 (1965).

® |970-- Glimm and Lax periodic solutions of 2x2 GR
systems always form shock-waves and decay like 1/t.

J. Glimm, P.D. Lax, Decay of solutions of systems of nonlinear hy-
perbolic conservation laws, Memoirs Amer. Math Soc. 101(1970).
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Courant Institute 1980, experts thought Glimm-Lax
extended to 3x3 Euler, and weak shocks explained
musical tones...
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® |964-- Lax proved finite time blow-up in derivatives for
2x2 (isentropic) systemes.

P.D. Lax, Development of singularities of solutions of nonlinear hyperbolic par-
tial differential equations, Jour. Math. Physics, Vol. 5, pp. 611-613 (1964).

® |965-- Glimm’s celebrated existence theory-
represented smooth solutions by using weak-shocks.

J.Glimm, Solutions in the large for nonlinear hyperbolic systems of
conservation laws, Comm Pure Appl Math, Vol XVII, 697-715 (1965).

® |970-- Glimm and Lax periodic solutions of 2x2 GR
systems always form shock-waves and decay like 1/t.

J. Glimm, P.D. Lax, Decay of solutions of systems of nonlinear hy-
perbolic conservation laws, Memoirs Amer. Math Soc. 101(1970).

...experts suggested Glimm-Lax explained
the attenuation of sonar signals observed by Navy.



History/Background

® |974-97 Blow-up results extending Lax to 3x3

systems could not rule out the time- periodic
solutions...

F. John, Formation of singularities in one-dimensional wave propagation,
Comm. Pure Appl. Math., Vol. 27, pp. 377-405 (1974).

T.P. Liu, Development of singularities in the nonlinear waves for quasi-linear

hyperbolic partial differential equations, J. Diff. Eqns, Vol. 33, pp. 92-111
(1979).

Li Ta-Tsien, Zhou Yi and Kong De-Xing, Global classical solutions for gen-
eral quasilinear hyperbolic systems with decay initial data, Nonlinear. Analysis.,
Theory., Methods. and Applications., Vol. 28, No. 8, pp. 1299-1332 (1997).

Blowup result by Chen/Young (2010).



History/Background

® |984-88-- Time periodic solutions conjectured to
exist based on nonlinear geometric optics...

A. Majda and R. Rosales, Resonantly interacting weakly
nonlinear hyperbolic waves 1. A single variable, Stud. in

Appl. Math., 22, pp. 149-179 (1984).

A. Majda, R. Rosales and M.Schonbeck, A canonical

system of integrodifferential equations arising in resonant
nonlinear acoustics, Stud. in Appl. Math., 79, pp. 205-
262 (1988).

R.L. Pego, Some explicit resonating waves in weakly
nonlinear gas dynamics, Stud. in Appl. Math., 79, pp.
263-270 (1988).

(Scalar/Asymptotic Models)



History/Background

® |996-99-- Rosales et al produced numerical
simulations and conjectured the possibility of
periodic, or quasi-periodic attractor solutions.

M. Shefter and R. Rosales, Quasi-periodic solutions in weakly nonlinear gas
dynamics, Studies in Appl. Math., Vol. 103, pp. 279-337 (1999).

D. Vaynblat, The strongly attracting character of large amplitude nonlinear
resonant acoustic waves without shocks. A numerical study. M.I1.'T. Dissertation,

(1996).
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MY LONG TERM PROGRAM with YOUNG

® TJo Explicitly Construct...
® Jo Understand the Structure of...

® TJo Give a Mathematical Proof of Existence of...

Space and Time Periodic Solutions
of the
Compressible Euler Equations

® Step |: ldentify the mechanism by which time-
periodic/shock-free solutions are possible.

® Step 2: Find the simplest possible time periodic
structure and realize solutions at the linearized level.

Y Step 3: Give a complete mathematical proof that
linearized solutions perturb to nonlinear solutions.

We have now completed Step 3:

l.e. we have a rigorous existence theory!
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OUR LONG TERM PROGRAM

We completed Steps | and 2 over a decade ago, but

to complete Step 3 we needed to construct an iteration
scheme and prove convergence in the presence of
resonances and small divisors.

A Nash-Moser-Newton method to expunge resonant
linearized operators looked like the only way to go!

But how to expunge?
And how to get uniformity in the small divisors!?

We formulated a consistent strategy in a scalar model...

INVERSION OF A NON-UNIFORM DIFFERENCE OPERATOR AND
A STRATEGY FOR NASH-MOSER

B. TEMPLE AND R.YOUNG

Meth. Appl. Anal. Vol. 29, No. 3, pp. 265-294, September 2022
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We prove: When formulated in terms of a projection,
uniform small divisors factor out !

FlUl=PEU|=PLLEU] =P LN [U]

N\ \
/ r| nvertiblej

ar . ) Nonlinear
Linearized operator at a

LFIXED constant state! - LOperatorJ

Essentially: P L = Diag{A1, Ao,...}, A; = 0 (invertible)
N =7+ O(a) (bounded invertible)

Theorem: Solutions of F[U| = 0 exist by the

Implicit Function Theorem in Banach Spaces (Lyapunov-Schmidt).

Y We do not need Nash-Moser, and we do not need to expunge!
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Observation 1: Evolutionin XU preserves the symmetries
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u(z,t) odd int  u(x,—t)=—u(x,1)
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Observation 2: Solutions respect X-reflection symmetries

(1) The reflection symmetry at £ = O :

p(—z,t) = p(x,1),
u(—xz,t) = —u(x,t)

(2) The reflection symmetryat £ = £ :

p(l +x,t) =pl —x, t+T/2),
u(l +x,t) = —ull —x, t+T/2)

Condition (2) is analogous to (1) observing that even/odd
periodic functions are also even/odd about the half period T/2.

* We now impose boundary conditionsat * = 0 and £ = /4
which guarantee continuity at axes of reflection

r=0 and x =/(.
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The boundary condition which imposes continuity under
reflectionat x = 0

u(0,t) = 0. (IC)

The boundary condition which imposes continuity under
reflection at £ = £ :

pl,t+T/2)=w(lt), ult+T/2)=-u(t) (BC)
These are self-adjoint boundary conditions!

Theorem: Assume a smooth T-periodic nonlinear solution

satisfies (IC) and (BC). Then the solution extends by reflection
symmetries to a smooth

4¢-periodic solution of compressible Euler.
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Conclude: To construct T-time and 4¥¢-space periodic
solutions of compressible Euler, it suffices to prove
existence of solutions to the boundary value problem:

ut + p(v, s(x))z =0 (Buler)
r=0: u(0,t) =0 (1€)
r=1/: p(t,t+T/2) = p(L,1) (BC)

u(l,t+T/2) = —u(l,t)

We prove existence of nonlinear solutions by perturbing off
of linearized solutions.

Linear solutions can be constructed by Sturm-Liouville
Theory because the boundary conditions are self-adjoint!



STATEMENT OF THEOREMS




STATEMENT OF THEOREMS

We can now state our results precisely:



STATEMENT OF THEOREMS

We can now state our results precisely:

Linearizing (Euler) about “quiet” state p = p,u = 0, s = s(x)
determines the linear wave equation.



STATEMENT OF THEOREMS

We can now state our results precisely:

Linearizing (Euler) about “quiet” state p = p,u = 0, s = s(x)
determines the linear wave equation

Ptt — Oz(m) Pxx — 0. (I—)



STATEMENT OF THEOREMS

We can now state our results precisely:

Linearizing (Euler) about “quiet” state p = p,u = 0, s = s(x)
determines the linear wave equation

Ptt — 0'2(ZE> Pxx — 0. (I—)

|.e., linearize

v(p,s(x))r —urz =0, u +p, =0 (Euler)



STATEMENT OF THEOREMS

We can now state our results precisely:

Linearizing (Euler) about “quiet” state p = p,u = 0, s = s(x)
determines the linear wave equation

Ptt — 0'2(ZE> Pxx — 0. (I—)

|.e., linearize
v(p,s(x))r —urz =0, u +p, =0 (Euler)
to get

pa?_|_ut :Oa ux"|_0-2(x)pt:()v

which is equivalent to (L).
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We can now state our results precisely:

Linearizing (Euler) about “quiet” state p = p,u = 0, s = s(x)
determines the linear wave equation.

Ptt — 0-2(55) Pxx — 0. (I—)

The BVP: (L),(IC),(BC) is solvable by separation of variables...

The eigen-frequencies wy = \/Xk — square roots of the
Sturm-Liouville eigenvalues, give the frequencies of pure-tone
solutions of (BVP) for the linearized equations.

Sturm-Liouville theory implies W} are isolated, and grow
linearly with wave number k.
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Solutions of the linearized equations by Sturm-Liouville

Theorem [TY 2023|: Linearizing (Euler) around a quiet
state p = p,u = 0, s(x), Sturm-Liouville theory deter-
mines a sequence of pure-tone solutions of the linear

(BVP):
p(x,t) = p+ dr(x) cos (wit)
u(x,t) = Y (x)sin (wit)

where ¢, and ;. are the eigenfunctions of the Sturm-
Liouville problem, £ =1,2, 3, ....

Our Main Theorem establishes that each non-resonant
linearized pure-tone solution perturbs to a one parameter
family of pure-tone solutions of the nonlinear compressible
Euler equations, with the same frequency and time period

T, = 2%

wk'



STATEMENT OF THEOREMS

DEFN: A k-mode is non-resonant if Wk is not a rational
multiple of any other eigen-frequency,

ﬂgﬁ@ for all 7 # k
Wi



STATEMENT OF THEOREMS

DEFN: A k-mode is non-resonant if Wk is not a rational
multiple of any other eigen-frequency,

ﬂgﬁ@ for all 7 # k
Wi

Theorem:|TY 2023] All non-resonant linearized k-modes
perturb to periodic solutions of the nonlinear compress-
ible Euler equations with the same space/time periods.

In Lagrangian coordinates the solutions take the form
p(x,t) = P+ adp(z) cos (wit) + O(a?),
u(z,t) = ay(z)sin (wit) + O(a?).

o = amplitude = perturbation parameter

®1., Y. = Sturm-Liouville eigen-solutions
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DEFN: An entropy profile is completely non-resonant if
every frequency is non-resonant.

Theorem:|TY 2023] Completely non-resonant entropy
profiles are generic in L'.

Corollary: The compressible Euler equations generically admit
pure-tone periodic solutions for every wave number £ = 1,2, 3...
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“Generic” can be made precise as follows:

(1) For piecewise constant entropy profiles, completely non-
resonant entropy profiles have full measure.

So all linearized modes perturb to nonlinear periodic solutions
for a.e. pw-constant entropy profile.

(2) More generally, if we define the set of allowable entropy
profiles to be

B={se L0, 0@) = /~v,(p,5(x)) € L', loga(-) € BV},

(where O is the inverse linearized wave speed...)

Then the set of non-resonant entropy profiles are generic Iin
the sense that it is the complement of a countable union of
nowhere dense sets with respect to the Ll-topology on 5.

l.e., completely non-resonant entropy profiles are of second
Baire category in 5 with respect to the Ll-topology on 5.
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STATEMENT OF THEOREMS

As a corollary we obtain an infinite family of pure tone solutions
satisfying the acoustic boundary condition u = 0.

t A
Tpt-=======——-
nonlinear k-mode
period T
— / > T
0 s(z) /

Applies to any PW-smooth non-resonant entropy profile s(x).

Each linearized k-mode perturbs to nonlinear.

A Symmetry Reflection Principle extends solutions on |0, £]
to solutions with time period 7} and space period 4¢.
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THE REFLECTION SYMMETRY PRINCIPLE

Assume given entropy profile s(x).

Restrict to solutions even in p, odd 1n wu.

Impose self-adjoint boundary conditonsat £ =0, =/

u(0,t) = 0. (IC)

pl,it+T/2) =pl,t), ul,t+T/2)=—u(l,t) (BC)

Theorem: Assume a smooth solution starts from T-periodic
initial data at x=0 satisfying

p(0,t) = 0 even,
u(0,t) = 0, (acoustic)

and evolves to satisfy (BC) at * = /.

Then the solution extends by reflection to a 4¢-periodic
solution of compressible Euler.
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T-periodic solution 0 <z </
Condition (1) reflect x = (0
Condition (2) reflect & = ¢ t

m
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THE PERIODIC TILE

(IC) gives continuityat £ = 0

(BC) gives continuity at ' = /4

a3

e
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Characteristics in nonlinear solution—one entropy jump
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Turns Out: Even modes meet acoustic boundary condition

N

Arbitrary entropy profile sg(x), 0 < x < /4
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THE EXISTENCE THEOREM

The Reflection Principle reduces the problem of existence of
periodic solutions of compressible Euler to the following
boundary value problem (BVP):

Compressible Euler: s=s(x), 0<x<V/.

px_l_ut:Oa

(Euler)
Uy — Up(p, s(z))pe =0

Boundary Conditions:

r=0: p(0,t)= even T-periodic function of ¢
(1C)

u(0,t)=0
r=140: pl,t+T/2)=p,t) BC)
w(l, t +T/2) = —u(l, 1)
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THE EXISTENCE THEOREM

Nonlinear solutions of (Euler),(1C),(BC) solve:

FlU =5 .8T/4. U] =0

7

~

Imposes
(BC) at
. x =/

~

\//\/\//

J

a ™)
evolve to
_ L= €J

\

5 Start with A
i-data U(t)

meeting (I1C)
J
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THE EXISTENCE THEOREM

Nonlinear solutions of (Euler),(1C),(BC) solve:

FlU =5 .8T/4. U] =0

Linear solutions of (L),(lIC),(BC) solve:

LR . ST/4. LUl =0

2

The linearized operator factors out!

FlUl =2 .84 £.71- €U =0
N m————
DF; N

‘ \

'\ )
We can change con.stant Mrvertible )
state to P T Z while .
, Nonlinear
keeping L FIXED at
_ Operator
constant state D ! — y

— J
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THE EXISTENCE THEOREM

FlU| = DsF o N[U] =0

/N

(- . ‘ )
Linearized operator at a " Invertible
FIXED constant state Po Nonlinear

- J

Operator
- J

By Sturm-Liouville, modes in kernel d.f,, have periods
Ty, k=1,23..

Choose 1} in kernel and assume non-resonance...

Now expand solutions with Fourier modes of fixed period 1.
The resulting linearized operator d.Jf, is diagonal.

By construction, only the k-mode is in the kernel of d.F '



Conclude:
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THE EXISTENCE THEOREM

FlU| = DsF o N[U] =0

/N

(- . ‘ e )
Linearized operator at a " Invertible
FIXED constant state Po Nonlinear

- J

Operator
- J

Essentially: DJF5; = Diag {1, A2,...}, A; = 0 (invertible)
N =T+ O(a) (bounded invertible)

Theorem: Solutions of F[U] = 0 exist by the

Implicit Function Theorem in Banach Spaces.

(Auxiliary and Bifurcation equations of Lyapunov-Schmidt).



Our new proof arose from ideas in the
completion of Steps | and 2.

Review
of
Prior Results.
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PRIOR WORK

In prior work: Yole proposed a simplest possible
wave pattern for periodic propagation...

The pattern formally balanced compression and
rarefaction along every characteristic:

The Mechanism requires at least three coupled
equations...




SIMPLEST PERIODIC PATTERN

We looked to construct the simplest solution of

vV — Uy, = 0
us + p(v,s(x))z =0 (L)
St — 0

such that Rarefaction and Compression is in balance along
every characteristic...

We perturb off “quiet state” solutions:
p=po, u=0, s=s(x)

Simplest case: s(z) jumps between two constant states.



8

\so/ \sol \sol \so/
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---Our Proposal—
The simplest global periodic structure in the xt-plane



Our Proposal



RAREFACTION

and

COMPRESSION



Compressible Euler Equations:
Lagrangian Coordinates:

Assume given entropy profile: so(x)

pa?_l_ut:op

(L)
Uy — Up(pa SO(x))pt = ()



Compressible Euler Equations:
Lagrangian Coordinates:

The system supports three wave families:

| -waves 2-waves 3-waves
)\1 — —C )\2 = )\3 — C




® 3 characteristic families associated with (\;, R;) :

| -waves
(back)
dx
T\ = —
e T
3-waves
Genuinely
Nonlinear
le A >0

2-waves
dx
=X =0
dt ~ 2

2-waves

3-waves
(forward)

—:)\326

| -waves

Linearly
Degenerate
VRQ )\2 = ()

Genuinely

Nonlinear
VRS Az > ()




® Three eigen-families of dF’ ...

2-waves

| -waves
)\1 — —C
1
Rl — C
0
Conclude:

Ao =0

_pS/pT
Ry = 0
1

|

S is constant through 1,3-waves

u, p are constant through 2-waves




® The 2-field (A2, R2) is Linearly Degenerate:

VR2>\2 = ()

2-waves can be rescaled into time-reversible
contact discontinuities

2-contact discontinuity

Conclude: time-periodic solutions allow for
discontinuities in entropy S




Compressive and Rarefactive VWaves
(R/C)

Consider |,3-waves at constant entropy S:

1-wave = “backward’-wave

—

3-wave = “forward’-wave

Definition: The R/C character of a wave in a general
smooth solution is defined (pointwise) by:

Forward R it s; <0,
Forward C it s; > 0,
Backward R iff r; >0,
Backward C it r. < 0.




When the ENTROPY is CONSTANT...

Theorem: R/C character is preserved along
backward and forward characteristics

t

Backward-C
F d-R
Wave orwar

A Wave

S5




The R/C character of a wave
CAN CHANGE
at an entropy jump...

For Example:

t

>

| -wave (-)

2-wave

3-wave (+)

> U



The R/C character of a wave
CAN CHANGE
at an entropy jump...

For Example:

t

A

-

out

(A4

Xe)

out

> U



The R/C character of a wave
CAN CHANGE
at an entropy jump...

For Example:

t

R;ut Rj)_ut
N4>
(=1 (0), us (1) K
(zr(t), un(®)
C_I_ my |l MR R_




The Rankine-Hugoniot jump conditions characterize
how R/C changes at an entropy jump...

Theorem 5. The following inequalities characterize when a nonlinear wave
changes its R/C wvalue at an entropy jump:

RZ;L - Co—ut
Cin = Boyy

LT

R+ — Cc_)‘_ut

i1
- - .
Cz'n — Rout

For Example:

»

X}

ift qunLZ'L < urp < mrzy,

iff mpip < up < qfmpip, oNE
R _ R\’
iff —quLz'L < ’llL < _Tan.:La L= <m—L>

\_ J

iff _TnLéL < '&'L < —quTLLZ.IL.

R-I-
\ out
\ V4
(ZR(t)v uR(t))
R.

>



Example: Ro_u / Rt

\ out

N

(21.(t), ur (1) ‘ @

»

(2r(1), ur(?))

1M
> U
U
mr, W mr,
R C R|C C C
R R CR C R
—my, @ @ mr —qft my @ ;. mr
R R C C R R C C
LR R cc\M: HZ)R=R oo X )
CR@ C|R @CC RR@ C R @CR
R R R|C R C R C R C CC
@ )

mrr < Mpg myr > MQg



CONCLUDE: we can determine the R/C' changes

across the entropy jump from inequalities on the
time derivative of the solution at the left hand side

of the entropy jump alone. Doing this in all cases
yields the following theorem.

R 7\ R
qgr ML ( | gy, MprL
L W)
R R R C R C
C R C R C|C
@ @
/‘.\}RR CC{/‘
\%/ R R C C \?? z
w1 @ /o \ ®rere
R R R C R C
()

Tangent space showing all possible R/C wave structures when

myp < Mp



R C R
R R C

QO
=~ Q

~af me O 7 m

QQ
QA
@I»)
N-

R R
@ R R

&~ &
~ QO
Q Q
QX

¥

Tangent space showing all possible R/C wave structures when

myr > MQg



® Note: All 16 possible interaction squares
appear EXCEPT ones where R/C value
of both waves change simultaneously:

Not possible:

® CONCLUDE: A wave in one family can

change its R/C value only in the presence
of a wave of the opposite family that
transmits its R/C value

U
Qme @ qI{sz mr, W
R R R C R C R C RIC clC
CR ClR C|C R R CR C R
m ® ©), & @ ;
7 R R C C X R R Cc C
R R ccl \&/ 2R R cc\&
CR@ C R ®CC RR@ C R @CR
R R R C R C R|C R|IC C|C
¥) ()




The simpest consistent R/C pattern

) R =)

3 7 1 5 3
SEOeEOsmOsm
o+ X/G C+@R R+\Z/R R+\Y O-

X (X)) 7 (7) X
o L ovTo- | Rt TR L TR Lot

4 "/ 2/
c+tTo- L rtTo- | Rt TR |0+ TR

> <6> 4 <8> >

oc-lo+tTo- LRt TR | R TR Lot
A\ /) BN /0
o+ XJG R Y/CIR+\Z/ : C+QNR

W (3 Y) Y @ W
Rl rtTo Lr+To- Lo+ TR Lo+

Z\ /'~ Y\ :|: /' X\ /VV
TR LRt T Lot To- Lo+ Tr-
1 (5) 3 (7) 1
I\ N Y T
m m m m

“Extend periodically”

m >m



Each number above is consistent with the
numbered interaction below

t

clC
C R
O

R R C C

R R cCl /o V/ X

Z) R R o X R R clc| \&/
C'R@ C|R @CC gg@ I(ilé @gg

R R R|C R C




Each |,3-characteristic traverses 8-C’s and
8-R’s before returning




The lettered interactions at constant
entropy jump transmit R/C

— | ldentifying these [____

| ,3-characteristics traverse 4-C’s and 4-R’s before
returning
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The simplest possible periodic structure



by numbers and letters

m > m

Labeling the states



Ellipses showing periodicity in (z,u)-plane
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The global nonlinear periodic structure



The speed of the wave crests is like an
effective
“Group-Velocity”

The characteristic=sound speed like a
“Phase-Velocity”
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(1) Simplest structure is space-periodic



periodic

(1) Simplest structure is space



Inspection of the periodic structure indicates:

® Solution jumps between two entropy levels ™ > m

® Starting with time-periodic “initial data” U(t) at
x=0, solution evolves through five operations
before periodic return:

(1) & : Nonlinear evolution at M = M

(2) J: Jumpfrom m =m tom =1m

(3) £: Nonlinear evolutionat M = M

(4) 77': Jumpfrom m =m to M =1m

(5) & : Half period shift



IMPOSING PERIODICITY BY
PERIODIC RETURN

S-JHE-T-EUN=U()




IMPOSING PERIODICITY BY
PERIODIC RETURN

FU=(S-J '€ J-E-I)[U]=0
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mode exists with this pattern.

Linearized |-



Linearized |-mode exists with this pattern.

v

Linear solutions should perturb to exact
solutions of the nonlinear problem




Linearized |-mode exists with this pattern.

v

“We were never able to control the small
divisors in a Nash-Moser Newton Method”




Numerical Plot of First 50 Eigenvalues=Case 0 # 6
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FROM A PRIOR TALK

® We have solved the Bifurcation Equation:

® |t remains to solve the Auxiliary Equation:

AUXILIARY EQUATION: P -FE[X -Z + Wx(e)] =0

(Wx(e) eKT}—P-F[X - Z+Wx(e)] €R

® The eigenvalues are not bounded away
from zero, which leads to issues of small-
divisors analogous to KAM theory.
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FROM A PRIOR TALK

® We have solved the Bifurcation Equation:

® |t remains to solve the Auxiliary Equation:

AUXILIARY EQUATION: P -FE[X -Z + Wx(e)] =0

(Wx(e) eKT}—P-F[X - Z+Wx(e)] €R

® The eigenvalues are not bounded away
from zero, which leads to issues of small-
divisors analogous to KAM theory.



A COMPLETE PROOF OF EXISTENCE
OF SPACE AND TIME PERIODIC
SOLUTIONS OF COMPRESSIBLE EULER

with
R.Young, 2023

) ¢ Step 3: Give a complete mathematical proof that
linearized solutions perturb to nonlinear solutions.

The Details



THE PERIODIC TILE

Compressible Euler equations in Lagrangian Coordinates:
0p +ur =0, Uy —v(p,s)=0

— specific volume

s = specific entropy U= %
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THE PERIODIC TILE

Compressible Euler equations in Lagrangian Coordinates:
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Compressible Euler equations in Lagrangian Coordinates:

/0$—|—ut:()7 ux—v(p,s)t:()
S — Speciﬁc entr()py UV = % — Speciﬁc volume

Assume general constitutive law: P = p(v, 3)
Assume given entropy profile: § = S(QZ), 0<x<V/.
Lagrangian Equations:

pr +ur =0, uz —uvp(p,s(x))pr = 0.
Evolve in x from x = 0 to x = /.

Theorem: p(x,t) even in ¢t and u(z,t) odd in ¢

18 preserved under evolution in x.
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THE PERIODIC TILE

We restrict to nonlinear evolution from £ = 0 to x = ¥ for
T-periodic solutions with -symmetries

p(z,-) even; u(x,-) odd

To keep solutions within this symmetry class it suffices to
impose them on initial data at * = 0.

The Main Idea is to employ spacetime reflection symmetries
sufficient to extend a solutionin 0 < x < £ across the
boundariesat x = 0, £

(1) The reflection symmetry at £ = O :

p(—z,t) = p(z,t),
u(—x,t) = —u(x,t)

(2) The reflection symmetry at £ = £ :

p(l +x,t) =pl —x, t+T/2),
u(l +x,t) = —ull —x,t+7T/2)

Condition (2) is analogous to (1) observing that even/odd
periodic functions are also even/odd about the half period T/2.
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THE PERIODIC TILE

Condition (1) extends solutions by reflection across x = (
Condition (2) extends solutions by reflection across x = ¢

Two further conditions are required to ensure continuity
at the axis of reflection t =0, = =1¢.

Theorem: Condition (1) extends solutions even in p,
odd in u” by reflection, but continuity at x = 0 requires

u(0,t) = 0. (IC)

Theorem: Condition (2) extends solutions ""even in p,
odd in u” by reflection, but continuity at x = £ requires

p(l,t+T/2) =p(l,t), uwl,t+T/2)=—u(l,t) (BC)

(Turns out: (BC) gives periodicity by “Projection”...

...Instead of having to impose “Periodic Return”!)
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initial data satisfying
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THE PERIODIC TILE

Theorem: Assume a smooth solution starts from T-periodic
initial data satisfying

p(0,t) = 0 even,
u(0,t) = 0, (acoustic)

and evolves to satisfy (BC) at I’ = /.

Then the solution extends by reflection to a 4¢-periodic
solution of compressible Euler.

The resulting solution is:  I*-periodic is time

4¢-periodic in space



THE EXISTENCE THEOREM

The Reflection Principle reduces the problem of existence of
periodic solutions of compressible Euler to the following
boundary value problem (BVP):

Compressible Euler: s=s(x), 0<x<V/.

P =+ Ut — Oa
Uy — Up(p, s(x))pr = 0.

(Euler)

Boundary Conditions:

r=0: p(0,t)= even T-periodic function of ¢
(1C)

u(0,t)=0
r=140: pl,t+T/2)=p,t) BC)
w(l, t +T/2) = —u(l, 1)
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THE OUTLINE

Linearizing (CL) determines a linear wave equation.

Separating variables yields a Sturm-Liouville system in .

The eigen-frequencies wy = v/ Ak , square roots of the Sturm-
Liouville eigenvalues, give the frequencies of pure-tone
solutions of (BVP) for the linearized equations.

Sturm-Liouville theory implies Wp. are isolated, and grow
linearly with wave number k.

Theorem |[TY 2023]: Each non-resonant linear pure-
tone solution perturbes to a 1-parameter family of non-
linear pure-tone solutions of (BVP) with the same time
period 7.
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THE EXISTENCE THEOREM

Sturm-Liouville Theory provides classical linearized solutions
of (BVP) for every entropy profile:

Theorem [TY 2023|: Linearizing CE around a quiet
state p = p, u = 0, so(x), Sturm-Liouville theory de-
termines a sequence of pure-tone solutions of the linear

(BVP):

p(x,t) =P+ ¢x(x) cos (wkt)
u(x,t) = Y (x)sin (wit)

where ¢, and ;. are the eigenfunctions of the Sturm-
Liouville problem, k£ =1, 2,3, ....

Our Main Theorem establishes that each non-resonant
linearized pure-tone solution perturbs to a one parameter
family of pure-tone solutions of the nonlinear compressible
Euler equations, with the same frequency and time period

T, = 2%

wk'



THE EXISTENCE THEOREM

DEFN: A k-mode is non-resonant if Wk is not a rational
multiple of any other eigen-frequency,

&gé () tor all j # &k
Wk
Restrict to entropy profiles within the set

B = {s = s(x) € L0, /] | o€ L' logo € BV}

Theorem [TY2023]: For s(-) € B, every non-resonant
linearized k-mode perturbes to a l-parameter family of
pure-tone solutions of (BVP) for the nonlinear compress-

ible Euler of the form

p(x,t) =D+ acos (wi t) pi(x) + O(a”)
u(z,t) = a sin (wy t) Vi (x) + O(a?).
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THE NONLINEAR FUNCTIONAL

We now define the nonlinear functional /& which imposes
periodicity by projection instead of periodic return...

For this we re-write the boundary condition (BC) as a projection:

r=14~0: pl,t+T/2)=p,t) 8C)
u(l,t+T/2) = —u(L,t)
(BC) is equivalent to (take T =t —T'/4)
p(6,t +T/4) = p(t,t — T/4),
u(l,t+T/4) = —u(l,t —T/4)
Define shift S7Yf(t) = f(t +6) and reflection Rf(t) = f(—t) sO
ST p(e,t)
ST/ 42, t)

p(l,t —T/4) = p(l, —t + T/4) = RS~ T/4p(¢, t)
—u(l,t —T/4) = u(l,—t + T/4) = RS~ T/*u(e,t)

p=t: v=(7) sy -0 @)
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The boundary condition at X =— v :

T —"R
STy, =0 (BC)
2 \/"\(\/ e W/
T |
[projection onto even] [solution at T = @

[quarter period shiftj




THE NONLINEAR FUNCTIONAL

The boundary condition at X =— v :

1 —R
2

Let £ denote nonlinear evolution starting from £ = (0

STIu,) =0 (BC)



THE NONLINEAR FUNCTIONAL

The boundary condition at X =— v :

1 —R
2

Let £ denote nonlinear evolution starting from £ = (0

STIu,) =0 (BC)

Let U(t) = ( Z ((?) > be initial data satisfying (IC)



THE NONLINEAR FUNCTIONAL

The boundary condition at X =— l :

1 —R
2

Let £ denote nonlinear evolution starting from £ = (0

STIu,) =0 (BC)

Let U(t) = ( Z ((?) > be initial data satistying (I1C)

r=0: p(0,t)= even T-periodic function of ¢

(0, £)=0 (<)



THE NONLINEAR FUNCTIONAL

The boundary condition at X =— l :

1 —R
2

Let £ denote nonlinear evolution starting from £ = (0

STIu,) =0 (BC)

Let U(t) = ( Z ((?) > be initial data satistying (I1C)

r=0: p(0,t)= even T-periodic function of ¢

(0, £)=0 (<)

Define

FlU = EESTTHEU().



THE NONLINEAR FUNCTIONAL

The boundary condition at X =— v :

1 —R
2

Let £ denote nonlinear evolution starting from £ = (0

STIu,) =0 (BC)

Let U(t) = ( Z ((?) > be initial data satisfying (IC)

r=0: p(0,t)= even T-periodic function of ¢

(0, £)=0 <

Define

FlU = EESTTHEU().
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‘Nonlinear evolution
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THE NONLINEAR FUNCTIONAL

The boundary condition at X =— v :

1 —R
2

Let £ denote nonlinear evolution starting from £ = (0

STIu,) =0 (BC)

Let U(t) = ( Z ((?) > be initial data satisfying (IC)

r=0: p(0,t)= even T-periodic function of ¢
(1C)

u(0,t)=0
Define
FlU =£EST1EU()
\,/\(‘\/ \/\(\J
‘Imposes (BC)at z = £ by ‘Nonlinear evolution’
FlU] = 0. fromz=0t0z=1¢
_ Y,
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THE NONLINEAR FUNCTIONAL

A special case solves u = 0 at £ = £ :

1T —R
; T4, ) =0 (BC)
Simpler 7T —"R
Condition: ; U,-) =0 (A)
U v/

@rojeotion onto evenj

C‘Ki”S odd u and leaves even p unchangedﬂ




THE NONLINEAR FUNCTIONAL

A special case solves u = 0 at £ = £ :

T —R
2
Simpler 1 —R

Condition: ; Ul,-) =0 (A)

AT/, =0 (BC)

Thus (A) implies u=0 and (BC) at £ = ¢, so is special case.
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A special case solves u = 0 at x = £ :
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Thus define: ~ Fa[U] = =B EU()].

F,[U] =0 impliesu =0 and (BC)at x = .

Theorem |TY 2023]: Assume T-periodic data U(t)
satisfies (IC) and F,|U| = 0. Then U(t) evolves

to a T-periodic solution of the compressible Fuler
equations satistfying u = 0 at both x =0 and x = /.



THE NONLINEAR FUNCTIONAL

A special case solves u = 0 at £ = £ :

I;Rs— L) = 0 BC)

Thus define: ~ Fa[U] = =B EU()].

F,[U] =0 impliesu =0 and (BC)at x = .

Theorem |TY 2023]: Assume T-periodic data U(t)

satisfies (IC) and F,|U| = 0. Then U(t) evolves
to a T-periodic solution of the compressible Fuler
equations satistfying u = 0 at both x =0 and x = /.

These turn out to be the even mode solutions of (%) !



PROOF OF EXISTENCE

The problem of existence of spacetime periodic solutions
of compressible Euler is now reduced to the problem of solving

FlU =£E8T2EUMH] =0
starting from T-periodic initial data U(-) at x = 0 satisfying:
o=l )= (") o
We perturb about a “quiet” state (reversible solution of Euler)
p=p,u=0,s=s(x
Linearizing £ about p =p, u =0, s = s(x) vyields
ptt — 0°(T)Pzw = 0 (L)

which can be solved by separation of variables.



PROOF OF EXISTENCE

The linearize operator which goes with

FlUI=5RES12E[U()

IS thus

DF[V] =52 S T2 L[V ()]

where L[V (-)] denotes linearized evolution by (L) from

r=0 to x=V/.

Solutions of (L) with boundary conditions (IC),(BC) solve

DF[V] = LR S T2L[V()] =0

which can be solved by separation of variables and
Sturm-Liouville Theory:



THE LINEARIZED PROBLEM

Separating variables 1n the linear wave equation yields a Sturm-
Liouville system 1n .

Square roots of the Sturm-Liouville eigenvalues give the eigen-
frequencies W[k of pure tone linearized periodic solutions.

Sturm-Liouville theory implies W[ are 1solated and grow
linearly with k.

Theorem [TY 2023] Assume the s(x) € B where
B={se L0, | o(x) = \/~up(p. 5(x)) € LY, loga () € BV |

Then the linear boundary value problem (IC),(BC) admits
the following family of pure tone periodic solutions:

p(x,t) =P+ ¢x(x) cos (wkt)
u(x,t) = Yr(x)sin (wit)

where ¢, and v, are the Sturm-Liouville eigenfunctions.

k=1,2.3, ...



THE NONLINEAR PROBLEMI

DEFN: A k-mode is non-resonant if W is not a rational
multiple of any other eigen-frequency,

&gQ for all 7 # k
Wi

Theorem:|TY 2023] All non-resonant linearized k-modes
perturb to periodic solutions of the nonlinear compress-
ible Euler equations with the same space/time periods.

In Lagrangian coordinates the solutions take the form
p(x,t) = p + adr(x) cos (wit) + O(a?),
u(z,t) = ap(z)sin (wit) + O(a?).

« = amplitude = perturbation parameter

Proof. It suffices to prove that linearized mode solutions of

DF[V] =0 perturb to solutions of F{U] =0 by IFT



The Bifurcation Problem



THE NONLINEAR PROBLEMI

For ease of expression we introduce notation:
y(z,t) = p(z,t) + u(z, )
so the even partis P and the odd partis U :

_ I+R _ I-R
P = ) Y, U = ) y

In terms of Y the periodic tile problem is

fp(y()) — I_ZRS_T/45?/Q = 0.

and the acoustic boundary value problem is:

Falyo) = 555 Eyo = 0.



THE NONLINEAR PROBLEMI

The Main Point:

The linearized operator factors out of the nonlinear operators!

Theorem: |TY 2023| The nonlinear operators Fp and
F 4 factor as:

Fp = I;R STTIALN, Fu= I_QR LN.

_ NN
DFp(p) DF(p)

where N = £71€ is bounded invertible.

Consider general case: F = Fp =I5B S T/ALN



THE NONLINEAR PROBLEMI

Consider general case: F=Fp=ESTNLN
N—

DF(p)

Fix a non-resonant k-mode solution of linearized operator:

DF(p)Ye] =0

Vi(t) = P+ 91 (0) cos (wnt) + (0) sin (1)

p(0, 1) u(0,t) =0

= D + ¢r(x) cos (wgt)

Now express arbitrary i-data y(t) as F-series using fixed period



THE NONLINEAR PROBLEMI

Theorem: |[TY 2023| The linearized operators respect
7-modes, and

DF(p)lcos (j251)] = 6;(T) sin (j 2 1)
DF(p)cos (k%t)] = 0

where 0,(7T') = a; # 0 if Y} is non-resonant.



THE NONLINEAR PROBLEMI

Theorem: |[TY 2023| The linearized operators respect
7-modes, and

DF (p)[cos (j )] = 6;(T)sin (j 1)

DF(p)cos (k%t)] = 0
where 0;(1T") = a; # 0 if Y} is non-resonant.

Conclude:

Fly()] = 255 ST LN [y(-)]




THE NONLINEAR PROBLEMI

Theorem: |[TY 2023| The linearized operators respect
7-modes, and

DF(p)lcos (20)] = 3,(T) sin (220
DF(p)cos (k%t)] = 0
where 0;(1T") = a; # 0 if Y} is non-resonant.

Conclude:

Fly()] = 255 ST LN [y(-)]

A




THE NONLINEAR PROBLEMI

Theorem: |[TY 2023| The linearized operators respect
7-modes, and

DF(p)lcos (20)] = 3,(T) sin (220
DF(p)cos (k%t)] = 0
where 0;(1T") = a; # 0 if Y} is non-resonant.

Conclude:

Fly()] = 5= STLN [y ()]

\//[;F/\j/ A

[y JJ o Cj COS (]Z%t)]
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Theorem: |[TY 2023| The linearized operators respect
7-modes, and
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THE NONLINEAR PROBLEMI

Theorem: |[TY 2023| The linearized operators respect
7-modes, and

DF(p) cos (j254)] = 6,(T)sin (j221)
DF(p)cos (k%t)] = 0
where 0;(T") # 0 if Yj, = cos (j2£¢) is non-resonant.

Conclude:

Fly()] = = RST”U\/[ ()]

NEDEE

[y 4] o Cj COS (]Q%t)]

DF(p)is invertible on complement of k-mode kernel with
small divisors ¢; = 6,(T).

Precisely what’s needed to apply Implicit Function Theorem
and Liapunov-Schmidt.



THE NONLINEAR PROBLEMI

Define:
Hq = {z—l—ac k2—”t | Z, O ER} and

Ho —{Zaj ]2'"t ’Za232s<oo}

J7k JF#k
So the Domainis HS =H{®H,

The Range is

H = {,BS(k%q—:t)} D H_|_,

Hy = {y =) a;s(j3t) | lyll < 00},
with norm 7

lyll? :== 8%+ a56;% 5%

J>1
7>1

Here a; are the Fourier coefficients
J



THE NONLINEAR PROBLEMI
Define the Projection

II:H—>Hy by [ kzwt -I—#Zka] ]t] :=j§ajs(jt),

which projects onto all but the k-mode.

The Liapunov-Schmidt Method:
Auxiliary Equation:

MIF(y’) =0, with y°=p+2z+ac(ksZ )+VTV

Solve for

Q/V(oz, z) € Ha,

~
Bifurcation Equation:

— <sin (k%ﬁt),}"(ﬁ—l— Z + Q. COS (k%ﬁt) + W(a, z))> — 0

\ [ Solve for

oz =z(a)

Both follow from the IFT.




THE NONLINEAR PROBLEMI

Solution of the Auxiliary Equation follows directly from
Implicit Function Theorem in Banach Spaces:

Lemma 18. If the k-mode is nonresonant, there is a neighborhood U C H;
of the origin and a unique C' map

W:U— Hy, written W (p+z+ ac(k%:t)) =: W(a, z) € Ha,

such that, for all z + ac(k%t) € U, we have a solution of the auxiliary

equation (7.35), given by
HF(T) +z + ac(k%t) + W (a, z)) = 0.
Moreover, the map W (a, z) satisfies the estimate
W(a, z) = o(|al),

uniformly for z in a neighborhood of 0.



THE NONLINEAR PROBLEMI

Solution of the Bifurcation Equation follows classical IFT:
fla,z) = <s(k%—2t), F(y0)>

— <Sin (k%ﬁt),]—"(ﬁ + 2z + . Cos (k%ﬁt) + W (e, z))> — 0

We must go to the second derivative:

1

g(oz,z) _f(a Z) a# 07
9(0,2) = 52(0,2).

It suffices to prove

dg 0° f

which is 0.
‘(0 0) 7 0, 0z 0 1(0,0) 7
: 0?
For this we must evaluate Seyo)
0z O (0,0)

which can be explicitly calculate using Sturm Liouville apparatus.



THE NONLINEAR PROBLEMI

The following theorem gives existence of a one parameter
family of solutions of compressible Euler satisfying (IC) and

(BC), which perturb an arbitrary non-resonant k-mode of the
Linearized Equations:

Proof: |[TY 2023| There exists a function W (a, z) of the

Auxiliary Equations and a function z = z(«a) of the Bi-
furcation Equation such that

F|p+ z(a) 4 cos (k%t) + Wia, z(a))] = 0,

where z(a) and W (a, z(a)) are order O(a?).
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COMMENTS

Important Insight: Ve construct solutions at the constant
state P + 2, but only require uniform estimates for the
small divisors of a fixed Linearized operator at the fixed
constant state .

This is because the linearized operator at P factors out of the
non-linear operator, leaving Z as a free parameter.

This is essential because small divisors are not continuous
under perturbation of constant state.

This factoring overcomes a fundamental problem associated
with Nash-Moser which inverts a different linearized operator,
for a different constant state, at each step of a Newton Method.

Such a factoring does NOT happen when periodicity is imposed
by the periodic return condition,

(F —I)[U] = 0.
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CONCLUDING REMARKS

The theory of music based on linear modes of propagation
is not inconsistent with nonlinear evolution.

Long distance signaling that avoids shock wave formation is
inherent in the theory of compressible Euler.

A region of shock free periodic sound wave propagation
opens up around every non-constant entropy profile.

Characteristics move ergodically though the periods,
thereby balancing compression and rarefaction on average.

The waves reflected by the entropy profile are on the

order of the nonlinear waves for small perturbations from
linear, making the balance possible.

Q: s this shock-free regime the actual regime of ordinary
sounds of speech and musical tones heard in nature!
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CONCLUDING REMARKS

Have weak shocks actually been observed in Nature!?
Could it be that only strong shocks are observed in nature?

Equi-temperment tuning of the piano makes frequencies
irrationally related.

Could our ears actually like this better?

Q: Math Question: Do the quasi-periodic mixed modes
of the linearized theory perturb like pure modes do?



END



END
Thank you!



