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Abstract: We show that when entropy variations are included and special relativity is
imposed, the thermodynamics of a perfect fluid leads to two distinct families of equa-
tions of state whose relativistic compressible Euler equations are of Nishida type. (In
the non-relativistic case there is only one.) The first corresponds exactly to the Stefan-
Boltzmann radiation law, and the other, emerges most naturally in the ultra-relativistic
limit of a γ -law gas, the limit in which the temperature is very high or the rest mass very
small. We clarify how these two relativistic equations of state emerge physically, and
provide a unified analysis of entropy variations to prove global existence in one space
dimension for the two distinct 3 × 3 relativistic Nishida-type systems. In particular, as
far as we know, this provides the first large data global existence result for a relativistic
perfect fluid constrained by the Stefan-Boltzmann radiation law.

It was shown in [6,10] that for non-relativistic perfect fluids a unique equation of state
of the form p = a2ρ emerges from a γ -law gas in the (appropriately re-scaled) limit
γ → 1. A global existence theorem for the 3 × 3 non-relativistic compressible Euler
equations was then proven for this model equation of state. This non-relativistic equa-
tion of state is unique, but has questionable physical interpretation as an isothermal gas,
cf. [8]. Surprisingly, in contrast with the classical γ → 1 limit, the equation of state
p = a2ρ emerges in two fundamental limits, not one, when special relativity is imposed:
it is exact in the case of the Stefan-Boltzmann radiation law, and also emerges in a most
natural ultra-relativistic limit of a γ -law gas, the limit in which the temperature is very
high or the rest mass very small [2], (not the awkward limit γ → 1). Our results clarify
how these two relativistic equations of state emerge physically, and provide a unified
analysis of the entropy variations for the resulting two distinct relativistic Nishida sys-
tems that leads to a large data global existence theorem for both. In particular, as far as
we know, this provides the first large data global existence result for a relativistic perfect
fluid constrained by the Stefan-Boltzmann radiation law.
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1. The Relativistic Euler Equations

The relativistic Euler equations in one spatial dimension form a system of conservation
laws which can be written as [9],

Ut + F(U )x = 0, (1)

where,

U =
(

n√
1 − v2

, (ρ + p)
v

1 − v2 , (ρ + p)
v2

1 − v2 + ρ

)
(2)

and

F(U ) =
(

nv√
1 − v2

, (ρ + p)
v2

1 − v2 + p, (ρ + p)
v

1 − v2

)
. (3)

We designate: v the gas velocity in a chosen Lorenz frame; ρ the proper energy den-
sity; p the pressure; ε the specific internal energy; n the particle number; S the specific
entropy; and T the temperature. We choose units where the speed of light is one and
note that the thermodynamic quantities are related by the second law of thermodynamics,
T d S = dε + pdτ , where τ = 1/n is the specific volume.

To close the system (1) we consider equations of state of the form

p = a2ρ. (4)

With (4) the system (1) contains special properties; in this limit one can prove global
solutions exist and depend continuously on the initial data in the density, pressure and
velocity variables, for initial data with arbitrarily large, but finite, variation [3,9]. We will
use this existence result to prove a large data existence theorem for an ultra-relativistic
gas that incorporates entropy and temperature variations via an equation of state of the
form,

ε(n, S) = A(S)nγ−1, (5)

with 1 < γ < 2. Once the existence of bounded variation solutions is proven, its unique-
ness and continuous dependence can be analyzed using techniques in [5]. We assume
the function A satisfies the following conditions:

A ∈ C1(R+, R
+), and A′(S) > 0 for S > 0. (6)

This family includes the equations of state for a polytropic gas, A(S) ≈ e
γ−1

R S and one
modeling a radiation dominated gas constrained by the Stefan-Boltzmann radiation law,
A(S) ≈ Sγ , [11]. (When γ = 4

3 this gives the condition that ρ ≈ T 4.)
The proper energy density ρ is the sum of the rest mass energy and internal energy. For

a gas with particles of rest mass m and specific internal energy ε this gives ρ = n(m +ε).
Based upon this relation the equations of state (5) do not reduce to (4); however, we
observe now that they do in the ultra-relativistic limit where either the rest mass is
very small (e.g. neutrinos or, in the limiting sense, massless thermal radiation) or the
temperature very large, m

T � 1, [2]. In this limit it follows that

ρ = n(m + ε) ≈ nε. (7)
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Indeed using the second law of thermodynamics under assumption (7), (5) reduces to
an equation of state of the form (4) with a2 = (γ − 1),

p = n2 dε

dn
= n2(γ − 1)A(S)nγ−2 = (γ − 1)A(S)nγ = (γ − 1)nε = (γ − 1)ρ.

We find it remarkable in this limit, when special relativity is assumed, the pressure is
still a function of n and S, but reduces to (4) when viewed as a function of ρ alone. This
model allows one to find the temperature evolution of the gas and still take advantage
of the simplifying effects of an equation of state of the form (4). An analogous equation
of state incorporating the entropy was obtained in [6,10] with a rescaled limit γ → 1 in
the non-relativistic case, and a corresponding global existence theorem for the classical
Euler equations was given. In contrast to the classical γ → 1 limit, the equation of state
p = a2ρ emerges in two fundamental limits, not one, when special relativity is imposed.
It is exact in the case of the Stefan-Boltzmann radiation law and also emerges in the
ultra-relativistic limit of a perfect fluid.

With these two equations of state as motivation, the goal of this paper is now to prove
the following:

Theorem 1. Let ρ0(x), v0(x) and S0(x) be arbitrary initial data satisfying, ρ0(x)> 0,

−1 < v0(x) < 1 and S0(x) > 0. Let� = ln [A(S)] for ε(n, S) = A(S)nγ−1, 1 < γ < 2,
and A satisfying (6). Suppose further that

V ar{�0(·)} < ∞, (8)

V ar{ln(ρ0(·))} < ∞, (9)

and

V ar

{
ln

(
1 + v0(·)
1 − v0(·)

)}
< ∞. (10)

Then there exists a bounded weak solution (ρ(x, t), v(x, t), S(x, t)) to (1) in the ultra-
relativistic limit, satisfying

V ar{�(·, t)} < N , (11)

V ar{ln(ρ(·, t))} < N , (12)

and

V ar

{
ln

(
1 + v(·, t)

1 − v(·, t)

)}
< N , (13)

where N is a constant depending only on the initial variation bounds in (8), (9), and
(10).

Theorem 1 is a generalization of the work by Smoller and Temple [9] that includes
the entropy evolution. In other words, in this model we are able to prove global solutions
exist including a physically relevant temperature profile. Smoller and Temple found that
the relativistic Euler equations with equation of state (4) possessed the property that after
each elementary wave interaction in a Glimm scheme, V ar{ln(ρ)} is non-increasing.
This functional, introduced by Liu, is used as a replacement for the quadratic potential
in Glimm’s original analysis, which can be used to show that (9) and (10) implies (12)
and (13). Considering the ultra-relativistic limit, the solutions of Riemann problems are
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independent of S, enabling one to solve for the intermediate state in the projected state
space and place a corresponding entropy wave between them.

In [9] it is shown that for an equation of state of the form (4), the shock curves are
translationally invariant in the plane of Riemann invariants. In our case, this property
continues to hold under certain coordinate changes in the three dimensional non-pro-
jected state space for an equation of state of the form (5). This can be viewed as the
relativistic analogue of the large data existence result in [10] with a family of distinct
temperature profiles.

The main part of the analysis is showing that V ar{S} is bounded in our approximate
solutions. We extend the analysis by Smoller and Temple for the ultra-relativistic regime
with equation of state (5), by utilizing the geometry of the shock curves in the space
of Riemann invariants. Considering only the change of S across shock waves, we find
that V ar{S} is uniformly bounded by V ar{ln(ρ)} for a polytropic equation of state;
however, across the linearly degenerate entropy waves there is no change in pressure
and hence no jump in proper energy density by (4). Thus, another method must be
employed to estimate the strengths of these jumps. For a gas dominated by radiation or
a general equation of state of the form (5), the change in entropy across a shock depends
on the initial entropy value. It is not known a priori that this dependence does not lead
to blow-up in the variation in S.

Furthermore, in certain elementary wave interactions, V ar{S} may actually increase
while V ar{ln(ρ)} remains invariant. Complicating matters, using Δ ln(ρ) as the defi-
nition of wave strengths increases the technicality of the entropy wave estimates. For
example, after the interaction of two shocks of the same family the new shock wave has
strength strictly less than the sum of the two previous. In other words when two shock
waves combine, the strengths are not simply additive, but the new wave strength is less
than the simple sum of the incoming shock strengths.

To alleviate technicalities with the entropy estimates and decreasing shock strengths
after interaction, we use the change of Riemann invariants as a measure of wave strength.
Under this regime, wave strengths are now additive and the sum of all the strengths of
shock waves is shown to be non-increasing in time. In conclusion, using Δ ln(ρ) as a
measure of wave strength dramatically simplifies the interaction estimates for the non-
linear waves, but complicates the problem dealing with the entropy waves.

The rest of this paper is outlined as follows:
In Sect. 2, we analyze the structure of simple wave solutions of (1) and derive

the equations of state corresponding to both a γ -law gas and constrained by the Ste-
fan-Boltzmann law. Using these properties, we prove global existence of solutions to
Riemann problems. We then obtain a priori wave interaction estimates which are used
to produce estimates on approximate solutions constructed using a Glimm scheme in
Sect. 3. Section 4 contains the proof of our main theorem.

2. Relativistic Gas Dynamics

We consider a gas where the proper energy density ρ and pressure satisfy the relationship
(4) where causality restricts the sound speed cs = √

dp/dρ = a to be less than one.
Under assumption (4), the system (1) decouples so that we may solve for two variables
first, then solve for the third afterward. In this section, we will show in the domain
ρ > 0,−1 < v < 1, and S > 0, Riemann problems are globally solvable and their
general structure consists of two waves separated by a jump in entropy traveling with
the fluid.
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2.1. Riemann invariants. The Riemann invariants for the system (1) with p = a2ρ are
given by [9],

r = 1

2
ln

(
1 + v

1 − v

)
− a

1 + a2 ln(ρ) and s = 1

2
ln

(
1 + v

1 − v

)
+

a

1 + a2 ln(ρ).

The function r = r(ρ, v) is constant across 3-rarefaction waves and s = s(ρ, v) is
constant across 1-rarefaction waves. The entropy S is a third Riemann invariant con-
stant across 1 and 3-rarefaction waves. In our analysis we will view state space in the
coordinates of the Riemann invariants rather than the conserved variables. However,
using S is not sufficient because the shock curves in (r, s, S) space are, in general, not
translationally invariant. We will instead use � = ln[A(S)] as our third coordinate. It is
shown in Sect. 2.3 that in (r, s, �) space the shock-rarefaction curves are independent
of base point.

We now change our variables from the conserved quantities (U1, U2, U3) to (ρ, v, S).

Proposition 1. In the region, ρ > 0,−1 < v < 1, S > 0, the mapping (ρ, v, S) →
(U1, U2, U3) is one-to-one, and the Jacobian determinant of the map is both continuous
and non-zero.

Proof. The conserved quantities U2 and U3 depend only on v and ρ. It can be shown
that that the mapping (ρ, v) → (U2, U3) is one-to-one for ρ > 0 and −1 < v < 1 [9].

Now we show that the mapping (ρ, v, S)→ (U1, U2, U3) is one-to-one. If (ρ1, v1, S1)

and (ρ2, v2, S2) have the same image we must have ρ1 = ρ2 and v1 = v2, since
U2 and U3 only depend on ρ and v, and the mapping (ρ, v) → (U2, U3) is one-
to-one. Moreover, since n = n(ρ, S) the equality U1(ρ1, v1, S1) = U1(ρ2, v2, S2)

reduces to n(ρ, S1) = n(ρ, S2). Thus we are done if ∂n/∂S 	= 0. Using ρ = nε to
rewrite the second law of thermodynamics as ndρ = n2T d S + (a2 + 1)ρdn we conclude
∂n
∂S = − n2T

(a2+1)ρ
	= 0, and the mapping (ρ, v, S) → (U1, U2U3) is one-to-one.

Finally, the determinate of the Jacobian matrix of the map is det(J) = n2T (1−a2v2)

(1−v2)2 >

0, which is continuous for ρ > 0,−1 < v < 1 and S > 0. 
�

2.2. Jump conditions. For systems of conservation laws, the relations defining the
dynamics of shock waves are the Rankine-Hugoniot jump conditions,

s[[U ]] = [[F(U )]], (14)

where s is the speed of the shock and [[U ]] and [[F(U )]] the change of U and F(U )

respectively across the shock, [8].
Given a state UL the Rankine-Hugoniot relations, for each i = 1, . . . , n, define a

1−parameter family of states that can be connected on the right by a shock wave in the
i th characteristic family. Moreover, this curve has second order contact with the curve
defining all the states that connect to UL on the right by an i th rarefaction wave given by
the i th integral curve. Only half of these curves are physically relevant. For the first and
third genuinely non-linear characteristic field, with wave speeds λ1 = (v − a)/(1 − va)

and λ3 = (v+a)/(1+va), we take the portion of the integral curve extending from U that
satisfies λi (U ) < λi (U ′). On the other hand, take the portion of the shock curve Si that
satisfies the Lax entropy condition, λi (U ′) < s < λi (U ) [8]. The second characteristic
class is linearly degenerate with characteristic speed λ2 = v.

We now give two lemmas that describe the structure of the shock curves.
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Lemma 1 [7]. Let U = (ρ, v, n) and UL = (ρL , vL , nL) be two states separated by a
shock wave. Then with (4) the following relation holds:

n2

n2
L

= ρ2

ρ2
L

(
1 + a2 ρL

ρ

)
(

1 + a2 ρ
ρL

) . (15)

The global structure of the solutions of the shock relations (14) for the relativistic
Euler equations in the space of Riemann invariants was studied by Smoller and Temple
[9] for an equation of state of the form (4). We summarize their results in the following
lemma:

Lemma 2 [9]. Let p = a2ρ with 0 < a < 1. The projected shock curves i = 1, 3 onto
the plane of Riemann invariants (r, s) at any entropy level satisfy the following:

1. The shock speed s is monotone along the shock curve Si and for each state (ρL , vL) 	=
(ρR, vR) on Si the Lax entropy condition holds.

2. The shock curves when parameterized by Δ ln(ρ) are translationally invariant. Fur-
thermore the 1 and 3−shock curves based at a common point (r , s) have mirror
symmetry across the line r = s through the point (r , s).

3. The i−shock curves are convex and

0 ≤ ds

dr
≤

√
2K − 1

−√
2K − 1

< 1

for i = 1 and

0 ≤ dr

ds
≤

√
2K − 1

−√
2K − 1

< 1

for i = 3, where K = 2a2/(1 + a2)2.

In light of Lemma 2 we can globally define the shock curves in the rs−plane and
know that everywhere on this curve the Lax entropy conditions hold.

2.3. Equations of state. In this section we derive both the equations of state for an ultra-
relativistic γ -law gas and one dominated by thermal radiation subject to the Stefan-
Boltzmann law. We then show that the general class of equations of state (5) have the
property that as a function of wave strength, the change in a certain function of entropy
is independent of base point. Moreover, we will find that the change of this function
of entropy and its derivative are monotonically increasing. These facts are used in our
estimates on the entropy waves in Sect. 2.5.

We begin by assuming the ultra-relativistic limit (7) and (4) with a2 = γ − 1 for

1 < γ < 2. Finding the differential of ε = ρτ we get, dε =
(

1
γ−1

)
pdτ +

(
1

γ−1

)
τdp.

Plugging this into the second law, we get the two constraints on entropy function S(p, τ ),

∂S

∂τ
=

(
γ

γ − 1

)
p

T
and

∂S

∂p
=

(
1

γ − 1

)
τ

T
. (16)
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2.3.1. Ideal gas. We first consider a gas subject to the ideal gas law: pτ = RT . Using
the ideal gas law, rewrite (16) as,

∂S

∂τ
=

(
γ

γ − 1

)
R

τ
and

∂S

∂p
=

(
1

γ − 1

)
R

p
,

which has the solution,

S(p, τ ) =
(

γ

γ − 1

)
R ln(τ ) +

(
1

γ − 1

)
R ln(p) + C.

After dividing by R
γ−1 , exponentiating and rearranging, we get,

ρ(n, S) = Ce

(
R

γ−1

)
S
nγ ,

that returns the equation of state (5) with A(S) = Ce

(
R

γ−1

)
S
.

2.3.2. Stefan-Boltzmann. For the Stefan-Boltzmann equation of state, we now assume
that the pressure, and hence energy density by (4), depends only on the temperature T .
With this we equate the mixed partials of our constraint equations (16),

∂

∂p

[(
γ

γ − 1

)
p

T

] ∣∣∣∣
τ

= ∂

∂τ

[(
1

γ − 1

)
τ

T

] ∣∣∣∣
p
.

After differentiation and simplifying we get the differential equation for T ,

dT

dp
=

(
γ − 1

γ

)
T

p
, (17)

with solution, p(T ) = CT
γ

γ−1 . Equivalently by (4), ρ(T ) = bT
γ

γ−1 . (Note that when
γ = 4

3 , this reduces to the fourth power law, ρ = bT 4.)
Now we put this equation of state in the form (5). To proceed we first find the entropy

function S(n, ρ), then solve for ρ. From the first equation of (16) we find,

S(p, τ ) =
(

γ

γ − 1

)
pτ

T
+ f (p).

The second constraint gives us,

d f

dp
= − τ

T

[
1 −

(
γ

γ − 1

)
p

T

dT

dp

]
.

In light of (17) f ′(p) = 0, this gives,

S(p, τ ) =
(

γ

γ − 1

)
pτ

T
.

Now, replacing p, τ and T with their equivalent expressions in terms of ρ and n, we
obtain,

S(n, ρ) = γ b
γ−1
γ ρ1/γ n−1.

Solving for ρ results in ρ = b1−γ γ −γ Sγ nγ . Therefore, we have (5) with, A(S) =
b1−γ γ −γ Sγ ≈ Sγ .
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2.3.3. Shockwave entropy change. For an equation of state of the form, ε(n, S) =
A(S)nγ−1, with A(S) satisfying (6), the second law of thermodynamics says, p(n, S) =
n2 ∂ε

∂n = (γ − 1)A(S)nγ = (γ − 1)εn. In the ultra-relativistic limit this further reduces
to p(n, S) = (γ − 1)ρ, an equation of state of the form (4) with a2 = (γ − 1).

Choose � by

�(S) = ln [A(S)] . (18)

We show that across a shock wave the difference [� − �L ] is a function of the change
of the corresponding Riemann invariant alone. Then the difference [� − �L ] along the
shock curve is independent of base point. Finally, we show that the difference [� −�L ]
and its derivative, as a function of the change of Riemann invariants, are monotonically
increasing. Note that it is sufficient to show that the change [� − �L ] and its derivative
are monotonically increasing as viewed as a function of ln(ρ/ρL), because they satisfy
the relationship as parameters, Δr = 2a

a2+1
Δ ln(ρ). (For 3−Shocks replace Δr with Δs.)

Indeed,

d[S − SL ]
d(r − rL)

= d[S − SL ]
d ln(ρ/ρL)

·
∣∣∣∣d ln(ρ/ρL)

d(r − rL)

∣∣∣∣ = a2 + 1

2a
· d[S − SL ]

d ln(ρ/ρL)
.

Using (15), we have for σ = ln(ρ/ρL),

[� − �L ](σ ) = (1 − γ )σ +
γ

2
ln

(
1 + (γ − 1)eσ

1 + (γ − 1)e−σ

)
.

After differentiating, we have

d[� − �L ]
dσ

= (eσ − 1)2(2 − γ )(γ − 1)

2(1 + eσ (γ − 1))(eσ + (γ − 1))
,

which is non-negative in the domain 1 < γ < 2 and σ ≥ 0. Furthermore, the derivative
is zero only when σ = 0. Thus, [� − �L ](σ ) is a monotonically increasing function.
Differentiating a second time we find,

d2[� − �L ]
dσ 2 = γ 2(2 − γ )(γ − 1)(e3σ − eσ )

2(1 + eσ (γ − 1))2(eσ + (γ − 1))2 > 0,

showing d[� − �L ]/dσ is also monotonically increasing for 1 < γ < 2 and σ > 0.
Considering Lemma 2 we have proven:

Proposition 2. Consider the ultra-relativistic Euler equations with the equation of state
(5), 1 < γ < 2 and A satisfying (6). Then the change in � = ln[A(S)], when regarded as
a function of the change in the corresponding Riemann invariant, is independent of base
state. Geometrically, the shock curves, as viewed in (r, s, �)−space, are translationally
invariant.

An interesting fact is that the change in � becomes nearly linear for strong shock
waves. We state this as a corollary.

Corollary 1. Under the assumptions of Proposition 2, the change in � becomes nearly
linear for large σ .

Proof.

lim
σ→∞

d[� − �L ]
dσ

= lim
σ→∞

(eσ − 1)2(2 − γ )(γ − 1)

2(1 + eσ (γ − 1))(eσ + (γ − 1))
= (2 − γ )

2
.


�
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Fig. 1. A solution to the Riemann Problem <UL , UR>. The states UM and U ′
M differ only in S

2.4. The Riemann problem. The Riemann problem is a particular class of Cauchy prob-
lems with initial data of the form,

U0(x) =
{

UL x < 0,

UR x > 0.

From the geometry of the shock-rarefaction curves in the coordinate system of Riemann
invariants, we can globally solve Riemann problem for any two initial states in the region
ρ > 0,−1 < v < 1 and S > 0.

Theorem 2. Consider left and right states UL = (ρL , vL , SL) and UR = (ρR, vR, SR),
such that ρL , ρR > 0,−1 < vL , vR < 1, and SL , SR > 0. With the equation of state
(5) satisfying 1 < γ < 2 and (6), there exists a weak solution to the Riemann prob-
lem <UL , UR> for system (1) in the ultra-relativistic limit. This solution is unique in
the class of solutions with constant states separated by centered rarefaction, shock and
contact waves.

We parameterize the 1 − (resp. 3)shock/rarefaction curve by the change in r(resp. s)
and define the strength of a shock or rarefaction wave as the difference in the values of
either r for a 1−shock-rarefaction wave, or s for a 3−shock-rarefaction wave. We choose
the orientation on our parametrization so that we have a positive parameter along the
rarefaction curve and negative parameter along the shock curve. Therefore, the solution
of the Riemann problem can be given as a sequence of coordinates, (ε1, ε2, ε3), where ε1
denotes the change in the Riemann invariant r from UL to UM , ε2 the change in S from
UM to U ′

M and ε3 the change in the Riemann invariant s from U ′
M to UR . In summary,

for i = 1, 3 we have a shock wave of strength εi when εi < 0 and a rarefaction wave of
strength εi when εi > 0 (Fig. 1).

We adopt the following notation:α, strength of 1−shock wave;β, strength of 3−shock
wave; μ, strength of 1−rarefaction wave; η, strength of 3−rarefaction wave; and δ,
strength of entropy wave. If (ε1, ε2, ε3) is the solution to the Riemann problem with
states UL , UR , we would have:

α =
{−ε1 ε1 ≤ 0

0 otherwise , β =
{−ε3 ε3 ≤ 0

0 otherwise ,

μ =
{

ε1 ε1 ≥ 0
0 otherwise , η =

{
ε3 ε3 ≥ 0
0 otherwise . (19)
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We define δ = �R − �L where � = ln[A(S)] and denote δω as the absolute change
of � across a shock wave of strength ω. More specifically, if two states are separated by
a shock of strength ω the absolute change in � across the shock would be δω for either
a 1 or 3−shock. Since we have shown that the change in � is independent on the base
state and dependent only on the strength of the wave, δω is well defined.

2.5. Interaction estimates. Consider the following three states: UL = (ρL , vL , �L),

UM = (ρM , vM , �M ), and UR = (ρR, vR, �R). We wish to estimate the difference in
the solutions of the three Riemann problems <UL , UM>,<UM , UR>, and <UL , UR>

with solutions denoted by a 1 subscript, 2 subscript and ′ respectively.

Proposition 3. Let � be a simply connected compact set in rs−space. Then there exists a
constant C0, 1/2 < C0 < 1, such that for any interaction <UL , UM>+<UM , UR> →
<UL , UR> in � at any value of �, one of the following holds:

1. A = −ξ ≤ 0, 0 ≤ B ≤ C0ξ ,
or
B = −ξ ≤ 0, 0 ≤ A ≤ C0ξ .

2. A ≤ 0, and B ≤ 0,

where A = α′ −α1 −α2 and B = β ′ −β1 −β2 are change in the strengths of the 1 and
3 shock waves in the solutions.

These estimates are proven by systematically looking at all possible wave interac-
tions for which we show several representative examples in the Appendix. Because the
interactions are independent of entropy level, we only consider interactions within the
first and third characteristic classes. The main consequence is that after an interaction,
there cannot be an overall increase in the strengths of the shock waves. This fact follows
since as the solution progresses forward in time, cancelations and merging of shock and
rarefaction waves of the same class lead to a decrease in shock strength. For example,
when a shock wave is weakened by a rarefaction wave, a reflected shock wave is created
in the opposite family. This interaction may increase the total strength of the shock waves
in the opposite family, but the total gain in shock strength is uniformly bounded by the
loss in the weakened or annihilated shock.

We choose the constant C0 to be the maximum slope of the largest shock curve
that lies within the compact set � or 1/2 in order to bound the constant below. More
specifically, let ω be the strongest shock wave possible in �. Then we take C0 to be

C0 = max

{
1

2
,

dr

ds

∣∣∣∣
ω

,
ds

dr

∣∣∣∣
ω

}
. (20)

By Lemma 2, the slopes of the shock wave curves in a compact set in the rs−plane are
strictly bounded away by 1. Therefore, we conclude C0 < 1.

For interactions in a compact set, the variation in � across a shock wave is uni-
formly bounded by a constant times the strength of the shock, but the variation in �

may increase after an interaction because of the creation of an entropy wave. Typically,
across these waves the pressure is invariant and there is a jump in density; however,
under the assumption (4), there must be no jump in energy density. Thus, we cannot use
ln (ρ/ρL) or the change in the Riemann invariants r or s as a measure of wave strength.
It should be noted that under certain interactions, such as an i−shock being weakened
by an incoming i−rarefaction wave, an entropy wave is created with strength such that



Global Solutions to the Ultra-Relativistic Euler Equations 841

�R − �L is equal to the loss in entropy change across the shock, plus the change in
the entropy across the new shock wave in the opposite family. We need a way to bound
the variation in the entropy waves and it turns out that this increase is bounded by a
corresponding decrease in the shock strengths.

Proposition 4. For every simply connected compact set � in rs−space, there exists a
constant M > 0 such that after every interaction in �, at any value � for the system (1)
with (5) in the ultra-relativistic limit, the following holds:

|δ′| − |δ1| − |δ2| + (δα1 + δα2 − δα′) + (δβ1 + δβ2 − δβ ′) ≤ −M(A + B).

Proof. Choose C0 so that Proposition 3 holds. Since � is a compact set, let

ω = sup {‖(r1, s1) − (r2, s2)‖ : (r1, s1), (r2, s2) ∈ �}
so that the strength of the largest shock wave in � is bounded above by ω. Furthermore,
let M = (1 − C0)

−1 M , where

M = 2
d[� − �L ]

dω
(ω), (21)

which is twice the largest rate of change of � for all shocks contained in �. Also, since
[� − �L ](ω) is positive and convex up, we have for strengths, ω′ ≥ ω1 + ω2, δω′ ≥
δω1 + δω2 .

The proof will be split into two cases, one for each of the two cases from Proposi-
tion 3. First let us assume that A ≤ 0 and B ≤ 0, i.e., α′ − α1 − α2 = −ξα ≤ 0 and
β ′ − β1 − β2 = −ξβ ≤ 0. We have α1 + α2 − ξα = α′ and hence, δ(α1+α2−ξα) = δα′ . It
follows that

δα1 + δα2 − 1

2
Mξα ≤ δα1+α2 − 1

2
Mξα ≤ δα′ ,

and

δα1 + δα2 − δα′ ≤ 1

2
Mξα ≤ −1

2
M A. (22)

Also, the change in entropy across the two Riemann problems before and the resulting
one are equal:

δα′ + δ′ − δβ ′ = δα1 + δ1 − δβ1 + δα2 + δ2 − δβ2 . (23)

Rearranging (23) and using (22), we find

(
δ′ − δ1 − δ2

)
+

(
δβ1 + δβ2 − δβ ′

) = (
δα1 + δα2 − δα′

) ≤ −1

2
M A. (24)

Adding the inequality (22) to (24),

(
δ′ − δ1 − δ2

)
+

(
δα1 + δα2 − δα′

)
+

(
δβ1 + δβ2 − δβ ′

) ≤ −1

2
M A − 1

2
M A = −M A.

By a similar argument we also have

− (
δ′ − δ1 − δ2

)
+

(
δα1 + δα2 − δα′

)
+

(
δβ1 + δβ2 − δβ ′

) ≤ −M B.
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Since 0 ≤ −M A and 0 ≤ −M B by assumption, and |δ′ − δ1 − δ2| ≥ |δ′| − |δ1| − |δ2|,
we deduce

|δ′| − |δ1| − |δ2| +
(
δα1 + δα2 − δα′

)
+

(
δβ1 + δβ2 − δβ ′

) ≤ −M(A + B),

which concludes the proof of the first case.
Now, without loss of generality assume A = −ξ ≤ 0 and 0 ≤ B ≤ C0ξ . The other

case when 0 ≤ A is similar. As before we find δα1 + δα2 − δα′ ≤ 1
2 Mξ and

(
δ′ − δ1 − δ2

)
+

(
δα1 + δα2 − δα′

)
+

(
δβ1 + δβ2 − δβ ′

) ≤ Mξ. (25)

Since β ′ ≥ β1 + β2, we have δβ1 + δβ2 − δβ ′ ≤ 0 and so by adding this inequality twice
to (23),

− (
δ′ − δ1 − δ2

)
+

(
δα1 + δα2 − δα′

)
+

(
δβ1 + δβ2 − δβ ′

) ≤ 0. (26)

Therefore, from (25) and |δ′ − δ1 − δ2| ≥ |δ′| − |δ1| − |δ2|,
|δ′| − |δ1| − |δ2| +

(
δα1 + δα2 − δα′

)
+

(
δβ1 + δβ2 − δβ ′

) ≤ Mξ.

But, Mξ = M(1−C0)ξ = M(ξ −C0ξ) ≤ M(−A− B) = −M(A + B), where we used
the fact −C0ξ ≤ −B following from the assumption that 0 ≤ B ≤ C0ξ and A = −ξ .


�

3. Glimm’s Difference Scheme

In 1965 Glimm [4] proved existence of solutions to general systems of strictly hyperbolic
conservation laws with genuinely non-linear or linearly degenerate characteristic fields.
Glimm’s method takes a piecewise constant approximate solution at one time step and
uses Riemann problems, defined at each point of discontinuity, to evolve the solution to
a later time. After the approximate solution is brought forward in time, the solution is
randomly sampled and a new piecewise constant approximate solution is obtained. In
this section we use a Glimm scheme to construct approximate solutions to (1).

3.1. Glimm difference scheme. Begin by partitioning space into intervals of length Δx
and time into intervals of length Δt . In order to keep neighboring Riemann problems
from colliding, we impose the following CFL condition: Δx

Δt > 1 > |λi |, i = 1, 2, 3.

For 1 < γ < 2 this condition is satisfied since the characteristic speeds are bounded
above and below by 1 and −1.

We inductively define our approximate solution. To begin suppose that we have an
approximate solution at time t = nΔt, U (x, nΔt), which is constant on the intervals,
(kΔx, (k + 2)Δx), where k + n is odd. At each point x = kΔx a Riemann problem is
defined. Solve each Riemann problem for time t = Δt . This evolves our approximate
solution forward in time from t = nΔt to t = (n + 1)Δt . To finish, we must construct
a new piecewise constant function at time t = (n + 1)Δt . Choose a ∈ [−1, 1] and
define, U (x, (n + 1)Δt) = U ((k + 1 + a)Δx, (n + 1)Δt−) for x ∈ (kΔx, (k + 2)Δx) and
k + n + 1 odd. Here Δt− denotes the lower limit. To begin this process at t = 0, obtain a
piecewise constant function from the initial data U0(x) by again choosing a ∈ [−1, 1]
and defining, U (x, 0) = U0((k + a)Δx) for k odd.
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Consider, θ ∈ ∏∞
i=0 [−1, 1]. We call Uθ,Δx (x, t) the approximate solution given

by a mesh size of Δx with sampling points at the nth time step given by θn . In order
to estimate the change in the variation of our approximate solutions, we define piece-
wise linear, space-like curves, called I-curves, which connect sample points at different
time levels. If an I-curve J passes through the sampling point ((k + θn)Δx, nΔt), then
J is only allowed to connect to ((k + 1 + θn±1)Δx, (n ± 1)Δt) on the right and to
((k − 1 + θn±1)Δx, (n ± 1)Δt) on the left.

We consider two functionals defined on I−curves. Define for an I−curve J :

F(J ) =
∑

J

αi +
∑

J

βi + V (27)

and

L(J ) =
∑

J

(
αi − M0δαi

)
+

∑
J

(
βi − M0δβi

) − M0

∑
j

|δ| + V, (28)

where the sums are taken over all waves that cross J . The constant M0 will be chosen
later and V = V ar {U0(·)} is the variation of the initial data.

The main problem in our analysis is to show that the variation in the entropy waves
stays bounded for all time. To do this we need to bound the possible change in � across
shock waves. This is accomplished by first showing that the variation in r and s stays
finite for all time. This implies that all the interactions, as projected onto the rs−plane,
occur in a compact set. Thus, there is a largest possible shock strength in this compact set.
Using the fact that the derivative of the entropy change as a function of wave strength is
monotonically increasing, there is a constant such that the entropy change is bounded by
a constant times the wave strength. Moreover, we can then use Proposition 4 to estimate
the increase in the variation in entropy in our approximate solutions.

3.2. Estimates on approximate solutions. For initial data U0(x) and the corresponding
approximate solution Uθ,Δx (x, t), define U 0(x) and U θ,Δx (x, t) as the initial data and
approximate solutions viewed as functions of r and s only. The first estimate will show
that the variation in the Riemann invariants across an I-curve J is bounded above by the
functional F on J .

Proposition 5. Let U 0(·) be of finite variation, J an I-curve and suppose that the approx-
imate solution U θ,Δx (x, t) is defined on J . Then, V arrs(J ) ≤ 4F(J ).

Proof. Let V ar−
r (J ) and V ar−

r (J ) denote the variation across J given by a decrease
and increase in r respectively. The only waves that contribute to the decrease in r are 1
and 3−shocks and increase 1−rarefactions. Therefore,

V ar−
r (J ) ≤

∑
J

αi +
∑

J

βi and V ar+
r (J ) =

∑
J

μi , (29)

where the sum is over all waves of the particular type crossing J . Following this line of
reasoning for s, we also have

V ar−
s (J ) ≤

∑
J

αi +
∑

J

βi and V ar+
s (J ) =

∑
J

ηi . (30)
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The initial data U 0 may be written as a function of the Riemann invariants r and
s, U 0(x) = (r0(x), s0(x)). Since U 0(·) is of finite variation, the limits limx→±∞ r0(x) =
r± and limx→±∞ s0(x) = s± exist. For any I-curve J , the end states at ±∞ are given
by (r±, s±). From this we obtain, |V ar+

r (J ) − V ar−
r (J )| = |r+ − r−| ≤ V , and hence

V ar+
r (J ) ≤ V ar−

r (J ) + V . Using (29) and similarly from (30),
∑

J μi ≤ ∑
J αi +∑

J βi + V and
∑

J ηi ≤ ∑
J αi +

∑
J βi + V . Combining these together we have∑

J μi +
∑

J ηi ≤ 2
(∑

J αi +
∑

J βi + V
)
. Thus,

V arrs(J ) ≤ 2

(∑
J

αi +
∑

J

βi

)
+

∑
J

μi +
∑

J

ηi ,

≤ 4

(∑
J

αi +
∑

J

βi

)
+ 2V ≤ 4F(J ).


�
We now show that the functional F on the I-curves is non-increasing. We define a

partial ordering on the I-curves by saying that J ≺ J ′ if the curve J ′ never lies below
the curve J . Furthermore, we say that J ′ is an immediate successor to J if J ≺ J ′ and
J and J ′ share all the same sample points except for one. It is clear that for any pair of
I-curves such that J ≺ J ′, there is a sequence of immediate successors that begins at J
and ends at J ′. The next proposition shows that if our approximate solution is defined
on an I-curve, it can be defined for all following I-curves.

Proposition 6. Let J and J ′ be I−curves, J ≺ J ′, and suppose that J is in the domain
of definition of U θ,Δx . If F(J ) < ∞, then J ′ is in the domain of definition of UΔx,θ , and
F(J ′) ≤ F(J ). Moreover, if V arrs {U0(·)} < ∞ then U θ,Δx can be defined for t ≥ 0.

Proof. We proceed by induction. Suppose first that J ′ is an immediate successor to J .
Then the difference F(J ′)− F(J ) is given by the change in shock wave strengths across
the diamond enclosed by J ′ and J . This is a consequence of the fact that the waves
that head into the diamond from the left and right solve the same Riemann problem as
the outgoing waves in the new single Riemann problem. If we denote J ′

0 and J0 as the
diamond portion of J ′ and J , we have by Proposition 3,

F(J ′) − F(J ) =
∑

J ′
αi +

∑
J ′

βi + V −
(∑

J

αi +
∑

J

βi + V

)
,

=
∑

J ′
0

αi +
∑

J ′
0

βi −
∑

J0

αi −
∑

J0

βi ,

= (
α′ − α1 − α2

)
+

(
β ′ − β1 − β2

) ≤ A + B ≤ 0.

Thus, F(J ′) ≤ F(J ) for immediate successors. For any a general J and J ′ such that
J ≺ J ′, we produce a sequence of immediate successors that take J to J ′. At each step
the functional F is non-increasing, thus F(J ′) ≤ F(J ) continues to hold.

By Proposition 5, V arrs(J ′) ≤ 4F(J ′) ≤ 4F(J ), so, J ′ is in the domain of defini-
tion of U θ,Δx . Moreover, if V arrs

{
U 0(·)

}
< ∞, then V arrs(0) < ∞ for the unique

I−curve 0 that lies along the line t = 0. In order to show that UΔx,θ can be defined for
t ≥ 0, we must show that V arrs

{
U θ,Δx (·, t)

}
< ∞ for all time. But, this condition is

equivalent to showing the variation across any I−curve J is always finite. Since for any
I−curve J, V arrs(J ) ≤ 4F(J ) ≤ 4F(0) ≤ 8V arrs {U0(·)}, the result follows. 
�
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Again, Proposition 6 shows that the variation of our approximate solution in the vari-
ables r and s is finite. Thus, there exists a compact set in the rs−plane that contains all
the interactions in our approximate solution.

Corollary 2. Suppose that V arrs {U0(·)} < ∞. Then there exists a simply connected
compact set � in the rs−plane such that all possible interactions are contained in �.

Proof. From Proposition 5 and Proposition 6 we know that for any I-curve J ,

V arrs(J ) < 4F(J ) < 4F(0) < 8V arrs {U0(·)} = N < ∞.

Thus, the distance between any two states occurring anywhere in our approximate solu-
tion is bounded by N . Consider the left limit state of U 0(·), (r−, s−). Therefore, all
states must be contained within the ball of radius 2N centered around (r−, s−). 
�

Now, we show that the variation of our approximate solution, including the variation
in �, is bounded above by the functional L(·).
Proposition 7. Suppose V ar {U0(·)} < ∞ and J is an I−curve that is in the domain
of definition of Uθ,Δx . Then there exists constants M0 > 0 and K > 0, independent of
Δx and θ , such that V ar(J ) ≤ K · L(J ).

Proof. The variation across the I−curve J is bounded by

V ar(J ) ≤ V ar(Shock Waves) + V ar(Rarefaction Waves)

+V ar(�-Waves) + V ar(�across Shocks).

Since V arrs
{
U 0(·)

} ≤ V ar {U0(·)} < ∞, we have from Corollary 2 that all the interac-
tions projected into the rs−plane occur in a compact set �. Therefore there exists a con-
stant M > 0 such that for a shock wave of strength ω, δω ≤ Mω. Let M = (1−C0)

−1 M
as in Proposition 4. Since, M < M we have for a shock wave of strength ω, δω < Mω.

From the proof of Proposition 5, we can bound the variation from the shock waves
and rarefaction waves by the shock waves crossing J and the initial variation V . Thus,

V ar(J ) ≤ 2

(∑
J

αi +
∑

J

βi

)
+

∑
J

μi +
∑

J

ηi +
∑

J

|δ| +
∑

J

δαi +
∑

J

δβi ,

≤ 4

(∑
J

αi +
∑

J

βi + V

)
+

∑
J

|δ| + M

(∑
J

αi +
∑

J

βi

)
,

≤ (4 + M)

(∑
J

αi +
∑

J

βi + V

)
+

∑
J

|δ|.

Let M0 ≤ 1/2M . Then, M0δω ≤ 1
2M δω ≤ 1

2M (Mω) ≤ 1
2ω. Thus, for a shock wave of

strength ω,ω ≤ 2(ω − M0δω). Using this we find,

V ar(J ) ≤ 2(4 + M)

(∑
J

(
αi − M0δβi

)
+

∑
J

(
βi − M0δβi

)
+ V

)
+

∑
J

|δ|.
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Finally, since M0 · 2(4 + M) ≥ 2M M0 ≥ 1, we move the sum of the strengths of the
entropy waves inside,

V ar(J ) ≤ 2(4 + M)

(∑
J

(
αi − M0δβi

)
+

∑
J

(
βi − M0δβi

)
+ M0

∑
J

|δ| + V

)
.

Therefore, V ar(J ) ≤ K · L(J ), with K = 2(4 + M). 
�

Proposition 8. Suppose that V ar {U0(·)} < ∞ and J, J ′ are I-curves such that J ≺ J ′
and L(J ) < ∞. Then J ′ is in the domain of definition of Uθ,Δx (x, t), L(J ′) ≤ L(J )

and UΔx,θ (x, t) is defined for t ≥ 0.

Proof. Since V arrs
{
U 0(·)

}
< V ar {U0(·)} < ∞ there exists a compact set � that

contains all possible interactions. Define M as in Proposition 4 and take M0 ≤ 1/2M .
As Proposition 6, we prove the result by induction on the I curves. First let J ′ be an
immediate successor to J . Let J ′

0 and J0 be the parts of J ′ and J that bound the diamond
formed by J and J ′. Using this and the definition of L(J ),

L(J ′) − L(J ) ≤
⎡
⎣∑

J ′
0

(
αi − M0δαi

)
+

∑
J ′

0

(
βi − M0δβi

)
+ M0

∑
J ′

0

|δ|
⎤
⎦

−
⎡
⎣∑

J0

(
αi − M0δαi

)
+

∑
J0

(
βi − M0δβi

)
+ M0

∑
J0

|δ|
⎤
⎦ ,

= (
α′ − α1 − α2

)
+

(
β ′ − β1 − β2

)
+ M0

(
δα1 + δα2 − δα′

)
+M0

(
δβ1 + δβ2 − δβ ′

)
+ M0

(|δ′| − |δ1| − |δ2|
)
.

Now we refer to Proposition 3 and 4. We see that the first two terms are equal to (A + B)

and the others are bounded above by −M(A + B). Putting this together,

L(J ′) − L(J ) ≤ (A + B) − M M0(A + B) ≤ 1

2
(A + B) ≤ 0.

For immediate successors, we have L(J ′) ≤ L(J ). Moreover, by Proposition 7 we have
that the variation along J ′ is bounded by L(J ′) and hence L(J ). Thus, J ′ is in the domain
of definition of UΔx,θ .

For general J and J ′ such that J ≺ J ′, the same conclusion holds by constructing
a sequence of immediate successors to move from J to J ′. Along each step, the results
above continue to hold. Finally, if V ar {U0(·)} < ∞, we have L(0) < ∞ and for any
I−curve J, L(J ) ≤ L(0). Thus we can conclude that

V ar(J ) ≤ 2(4 + M)L(J ) ≤ 2(4 + M)L(0) < ∞,

so our approximate solution can be defined for t ≥ 0. 
�
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4. Existence of Weak Solutions

We use Glimm’s Theorem [4] to prove existence of solutions to (1) in the ultra-rel-
ativistic limit with an equation of state of the form (5). For θ fixed and xn = 1/2n ,
the set of approximate solutions

{
Uθ,Δxn (x, t)

}∞
n=1 has uniformly bounded variation

by Proposition 7. Furthermore, since the variation is bounded and each approximate
solution has the same limits at infinity, the sup norm is also uniformly bounded and are
L1 Lipschitz in time. At this point Helly’s Theorem [1] provides a convergent subse-
quence, Uθ,Δxni

(x, t), that converges to a function U (x, t) with finite variation for each
fixed time. However, there is no justification that this limit is actually a weak solution.
Glimm’s Theorem guarantees that there exists a subsequence that converges to a weak
solution.

Theorem 3 [4]. Assume that the approximate solution Uθ,Δxi satisfies,

V ar
{
Uθ,Δxi (·, t)

}
< N < ∞ (31)

for xi = 1/2i , θ ∈ � = ∏∞
i=0[−1, 1], and all t ≥ 0. Then there exists a subsequence

of mesh lengths Δxik such that Uθ,Δxik
→ U in L1

Loc, where U (x, t) satisfies

V ar {U (·, t)} < N .

Furthermore, there exists a set of measure zero � ⊂ � such that if θ ∈ � − � then
U (x, t) is a weak solution to (1).

We now prove Theorem 1 by showing that our approximate solutions meet the
assumptions of Glimm’s Theorem.

Proof. Assume the initial data satisfies, (8), (9), and (10). We show that for all Δxi and
sample points θ, V ar

{
UΔx,θ (·, t)

}
< N < ∞, whereUθ,Δx (ρ(x, t), v(x, t), S(x, t)) =

(U1, U2, U3)θ,Δx . First we show that the variation in ρ, v, and S is bounded for all time
in the approximate solutions.

From Proposition 5 and Proposition 6 we have that the variation of our approximate
solution in r and s is uniformly bounded for all time. More specifically,

V arrs
{
U θ,Δx (·, t)

}
< 4F(0) < 4

[∑
0

αi +
∑

0

βi + V arrs{U0}
]

< 8 · V arrs{U0(·)}.
From this the variation of ln (ρ) and ln

(
1+v
1−v

)
are also bounded for all time. Using

ln
(

1+v
1−v

)
= 1

2 (r + s) we have

V ar

{
ln

(
1 + v(·, t)

1 − v(·, t)

)}
= 1

2
sup

N

N∑
i=1

|(r(xi+1, t) + s(xi+1, t)) − (r(xi , t) + s(xi , t))|,

≤ 1

2
V arrs

{
UΔx,θ (·, t)

}
+

1

2
V arrs

{
UΔx,θ (·, t)

}
,

≤ 8 · V ar {U0(·)} .

Similarly, using ln(ρ) = 1+a2

a (s−r)we find, V ar {ln(ρ(·, t))} ≤ 16
(

1+a2

a

)
V ar {U0(·)}.
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The variation in � is also bounded for all time in approximate solutions. This is
clear from Proposition 7 and Proposition 8 because there exists a constant M so that
V ar

{
�θ,Δx (·, t)

} ≤ 2(4 + M)L(0).
We can now show that the variation in ρ, v and S is bounded for all time. Since

V ar {ln(ρ(·, t))} < ∞ for all t > 0 there exists a constant b > 0 such that ρ(x, t) < b.
Let c = max {1, b}, then V ar {ρ(·, t)} ≤ c · V ar {ln(ρ(·, t))}.

For v we have,

V ar {v(·, t)} = sup
N

N∑
i=1

|v(xi+1, t) − v(xi , t)| ,

≤ sup
N

N∑
i=1

∣∣∣∣ln
(

1 + v(xi+1, t)

1 − v(xi+1, t)

)
− ln

(
1 + v(xi , t)

1 − v(xi , t)

)∣∣∣∣ ,

≤ V ar

{
ln

(
1 + v(·, t)

1 − v(·, t)

)}
.

For S we need to find a constant C such that |S(x, t)−S(y, t)|≤C |�(x, t)−�(y, t)|.
Since � is of finite variation for all time, there exists a largest and smallest value of S,
say Smax and Smin with 0 < Smin ≤ Smax . Define C by

C = max
S∈[Smin ,Smax ]

(
d�

d S

)−1

= max
S∈[Smin ,Smax ]

A(S)

A′(S)
.

It follows that V ar {S(·, t)} ≤ C · V ar {�(·, t)}.
Finally, from Proposition 1 the determinant of the Jacobian is bounded away from zero

for all approximate solutions. Thus, the variation in conserved variables, (U1, U2, U3),
are bounded for all t ≥ 0, θ and Δxi .

Therefore, Theorem 3 provides existence of a set measure zero � ⊂ � such that if
we choose θ ∈ � − � there exists a subsequence of mesh refinements, Δxik → 0 such
that Uθ,Δxik

converges pointwise almost everywhere in L1
loc to a weak solution, U (x, t)

of (1). Moreover, this solution satisfies (11), (12) and (13) for some N > 0, all t > 0
and is L1 Lipschitz in time. 
�
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5. Appendix: Interaction Estimates

In this section we discuss four cases of the interaction estimates needed to prove Prop-
osition 3. In total there are sixteen possible incoming wave profiles, corresponding to
whether each of the four incoming waves are a shock or rarefaction wave, and between
one and four outgoing wave configurations. The main consequence of our estimates is
that after an interaction there can be an increase in strengths of the shock waves in one
class, but it is accompanied by a corresponding decrease in overall shock strength in the
other class. We assume that all the interactions occur in a simply connected compact set
� ⊂ R

2 and, as in (20), we define C0 as the max of 1/2 and the maximum slope of the
largest shockwave contained in �.
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Fig. 2. The change in Riemann invariants along shock curves satisfy y/z < C0

For these estimates we repeatedly utilize that the shock curves in the space of Rie-
mann invariants are traslationally invariant, convex and whose derivatives are bounded
above by C0. Since our definition of wave strength is determined by the change in Rie-
mann invariant r for 1-waves and s for 3-waves, we use the following two facts: one,
the change in s, (r) along a 1, (3)-shock is uniformly bounded by the change in r, (s);
and two, if two shock waves of the same family begin at two distinct states U1 and U2
and meet at a common third state U3, then the ratio of the distances along the r and s
axes from U1 to U2 are bounded above by C0. These two facts are shown geometrically
in Fig. 2. We also note that interaction estimates are often similar for cases where the
shock and rarefaction waves are permuted in either the incoming or outgoing waves. For
example, one can show the estimates hold in a similar manner for the four permutations
of three incoming shock waves and one rarefaction wave.

We begin by noticing that after an interaction, the strengths of the shock waves in both
families cannot increase. Suppose that B > 0. If the outgoing 1−wave is a rarefaction
wave, we are done since A = −α1 − α2 ≤ 0. Suppose now that the outgoing 1−wave
is a shock. Since the starting and ending states, UL and UR , are fixed before and after
an interaction, the total change in Riemann invariants is the same. Equating the change
in r we find,

−α′ − Δrβ ′ = −α1 − α2 + μ1 + μ2 − Δrβ1 − Δrβ2 ,

where Δrβ is the change in r of the β shock. Rearranging terms we get,

α′ − α1 − α2 = −μ1 − μ2 + Δrβ1 + Δrβ2 − Δrβ ′ .

By strict concavity of the shock curves and β ′ > β1+β2, we have Δrβ1 +Δrβ2 −Δrβ ′ < 0
and thus A = α′ − α1 − α2 ≤ 0. Proposition 3 refines this result further. It states that
the increase in B is strictly bounded above by the decrease in A.

For our first wave interaction estimate consider the case with four incoming shock
waves, (α1, β1)+ (α2, β2) for which there are three possible outgoing wave profiles: two
shock waves, (α′, β ′), or one rarefaction wave and one shock wave, (μ′, β ′) or (α′, η).
Consider the interaction (α1, β1) + (α2, β2) → (α′, β ′) and suppose that A ≥ 0. (The
case with B ≥ 0 is similar.) See Fig. 3. We have B = β ′ − β1 − β2 = −z1 − z2 = −ξ

and A = α′ − α1 − α2 = y1 + y2 < C0(z1 + z2) = −C0ξ . Now consider the same
interaction, but with outgoing waves, (α′, η′). In this case, B = −β1 − β2 = −z and
A = α′ − α1 − α2 = y < C0z.

The interaction (α1, β1) + (α2, η2) has two possible outgoing profiles, (α′, β ′) or
(α′, η′). See Fig. 4. For the first case, B = β ′ − β1 = −z and α′ = α1 + α2 + y. Hence,
A = y < C0z. For the outgoing waves, (α′, η′), B = −z and A = y < C0z.

Now consider the incoming waves, (α1, η1) and (μ2, β2). If two rarefaction waves
are produced, A, B ≤ 0 and we are done. For one or two outgoing shocks we look
at outgoing cases (α′, η′) and (α′, β ′). See Fig. 5. With one shock, either A, B ≤ 0
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(a) (b)

Fig. 3. Interaction (α1, β1) + (α2, β2), with result, (a), (α′, η′) and (b), (α′, β ′)

(a) (b)

Fig. 4. Interaction (α1, β1) + (α2, η2), with result, (a), (α′, η′) and (b), (α′, β ′)

(a) (b)

Fig. 5. Interaction (α1, η1) + (μ2, β2), with result, (a), (α′, η′) and (b), (α′, β ′)

or B = −β2 = −z and A = y − μ2 ≤ y < C0z. For two outgoing shocks with
A ≥ 0, B = −z and A = y < C0z.

Lastly, we consider the interaction of three rarefaction waves and a shock wave,
(α1, η1) + (μ2, η2), Fig. 6. The cases with outgoing waves, (μ′, η′) and (α′, η′) have
A, B ≤ 0. For (α1, ν1) + (μ2, η2) → (μ′, β ′), we have A = −α1 = −z and B =
β ′ ≤ y < C0z and for (α1, η1) + (μ2, ν2) → (α′, β ′) we have A = α′ − α1 = −z and
B = β ′ ≤ y < C0z.
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(a) (b)

Fig. 6. Interaction (α1, η1) + (μ2, η2), with result, (a), (μ′, β ′) and (b), (α′, β ′)
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