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In this talk I introduce
General Relativity

and the Einstein equations,
and recall the

locally inertial formulation
of the equations

introduced by Jeff Groah and author
to analyze shock waves in

Standard Schwarzschild Coordinates
on spherically symmetric spacetimes.

SUMMARY



SUMMARY

I then discusss recent thesis work
of Zeke Vogler

introducing a new numerical method
for computing GR shock-waves
and a new family of initial data
on which he tested the method.

We call the method a
locally inertial Godunov method

with
dynamical time dilation

because clocks are dilated in each grid cell
to simulate effects of spacetime curvature.



The numerics confirm
shock-wave formation

in forward time,
and

black hole formation
(from a smooth solution)

in backward time
via collapse associated with

an incoming rarefaction wave.

SUMMARY



As far as we know,
there is not yet

a rigorous mathematical proof
of either shock wave formation

or black hole formation
for the Einstein-Euler equations,
starting from smooth initial data.
So we propose these new solutions

as a natural starting point
for rigorous proofs.

SUMMARY



COMMENTS

The forward time solutions 
can be interpreted as 

resolving the
 secondary reflected wave,
 (an incoming shock wave), 
in the Smoller-Temple exact 

shock-wave model
 for 

an explosion into a static, 
singular isothermal sphere.



Shock-Wave

Expanding Friedmann Spacetime 

ds
2 = −dt

2 + R(t)2
{

dr
2 + r

2
dΩ2

}

k=0

Static Singular Isothermal Spere

Explosion into a static, singular isothermal sphere

ds
2 = −B(r̄)dt̄

2 +
1
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dr̄
2 + r̄

2
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Tolman-Oppenheimer-Volkoff Spacetime

(p=σρ)

Smoller-Temple:    Phys. Rev. D, Vol. 51, No. 6, 1995.
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FRW

Secondary Wave is
Incoming Shock-Wave



Expanding 
Universe

Matter Filled 
Black HoleShock Wave

t < tcrit

Schwarzschild
Metric

We would like to simulate the secondary 
reflected wave in our Shock-Wave Cosmology... 

t = tcrit Shock emerges from White Hole

r̄ = 2M =
H

c

t = 0

Big Bang

Smoller-Temple:    PNAS, Vol. 100, no. 20, 2003, pp. 11216-11218.



COMMENTS

Shock wave simulation is 
complicated by the fact 

that the
Einstein curvature tensor

 is
 discontinuous at shock-

waves
 in

 SSC-coordinates



LESSON
“The gravitational metric tensor 

appears singular at shock waves in 
coordinates where the analysis and 

simulation appear feasible...”
Standard Schwarzschild Coordinates 

 
The metric g is only

 Lipschitz continuous at shock-waves
The curvature tensor G is

 discontinuous at shock-waves

  The Einstein equations,
 and

Compressible Euler equations,
 only hold weakly
 at shock waves.  



COMMENTS

  

We are interested to know
 whether a successful 

numerical simulation of a 
fluid dynamical shock 

wave has been 
demonstrated before in 
General Relativity.??



References:
•The locally inertial Formulation of the 

Einstein Equations, (Spherical  Symmetry, 
Standard Schwarzschild Coordinates...)  

Shock Wave Interactions in General Relativity: A Locally Inertial
Glimm Scheme for Spherically Symmetric Spacetimes,
with J. Groah and J. Smoller,
Springer Monographs in Mathematics, 2007.

A shock-wave formulation of the Einstein equations,
with J. Groah, Meth. and Appl. of Anal., 7,
No. 4,(2000), pp. 793-812.

Shock-wave solutions of the Einstein equations: Existence
and consistency by a locally inertial Glimm Scheme,
with J. Groah, Memoirs of the AMS, Vol. 172,
No. 813, November 2004.

The Numerical Simulation of General Relativistic
Shock Waves by a Locally Inertial Godunov Method
Featuring Dynamical Time Dilation, Zeke Vogler,
UC-Davis Dissertation, March 2010.



 
Shock Waves

 and 
General Relativity  



A blast-wave/shock-wave marks the leading 
edge of a classical explosion

Shock-wave   discontinuity in density and 
pressure between the explosion and the 
material beyond the explosion

≈

An explosion with a finite mass/energy 
behind it would generate such a blast-wave

Shock
p

ρ

u

ū

ρ̄

p̄



SN1987A
(NASA)





Joel Smoller and I wondered whether there could 
be a wave at the leading edge of the biggest of all 
explosions--the Big Bang...  

PNAS 2003 we gave a physically plausible model of 
a Shock-Wave that cuts off the total mass of the Big 
Bang at a finite value thereby placing our universe 
of galaxies inside a ``time-reversed Black Hole’’...  



Computer Visualization by Zeke Vogler... 
(webpage http://www.math.ucdavis.edu/~temple/) 



Zeke Volger and I set out to simulate the secondary 
expansion wave numerically to see if it might account for 
the anomalous acceleration of the galaxies...when Smoller 
joined us and we attempted to set up the simulation, we 
discovered a family of exact self-similar GR expansion 
waves defined independently of the Shock-Wave...

Recall:

p = −ρ

10−35s to 10−30s

Inflation= Pure
Cosmological Constant

Pure Radiation

10−30 to 3× 105 yrs

p = c2

3 ρ

Big

 Bang

Uncoupling of
Matter and Radiation

t ≈ 3× 105

p ≈ 0

(Neglect
Radiation
Pressure)

Stages of the Standard Model:

Time of CMB
379,000 yr

Expanding
Wave

Applies



Recall:
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3 ρ

Big

 Bang

Uncoupling of
Matter and Radiation

t ≈ 3× 105

p ≈ 0

(Neglect
Radiation
Pressure)

Stages of the Standard Model:

Time of CMB
379,000 yr

Expanding
Wave

Applies

PNAS 2009 we introduce a family of expanding 
wave solutions of the Einstein equations that exist 
during the radiation phase of the expansion...



Introduction 
to  

General Relativity  



Introduction to General Relativity 
GR is the modern theory of the gravitational field

In 1915,  Albert Einstein introduced the  
Einstein Gravitational Field Equations

G=κ T
Stress

Energy

Tensor
Universal

Constant

κ =
8πG
c4

Einstein

Curvature

Tensor

“Energy-momentum and their fluxes are 
the sole source of spacetime curvature’’

Especially pleasing because everything converts
 into energy via (roughly)              (1905)E = mc2



g gives you time changes along 
timelike curves and spatial 

lengths along spacelike curves

The unknown to be solved for is 
the gravitational metric tensor g

ds2 = gijdxidxj ≡
3�

i,j=0

gijdxidxj



Basic Principle of General Relativity: 

M ≡ Spacetime

Q2:  What are the constraints that 
determine the time evolution of g? 

Q1:  What can you measure from g?

“All properties of the gravitational field 
are determined by a 

signature (-1,1,1,1) metric g 
defined on the 

4-dimensional manifold  of events”



What you can measure: 
“Proper time change or aging time, as measured by an 
observer traversing a timelike curve through spacetime, 

will equal the arclength as measured by g”

(1)

x0 = ct

x1 = x

dx

dt
= c = 1

dx

dt
= −c = −1

γ(s)

∆s = c∆τ

ds2 = gijdxidxj ∆s =
�

ds ≡
� b

a
�γ̇(ξ)� dξ



What you can measure: 
(2) “Spatial lengths of objects correspond to g-lengths 

of the curves that define their shape”

dx

dt
= −c = −1

ds2 = gijdxidxj

x0 = ct

x1 = x

dx

dt
= c = 1

γ(s)
∆s =length

∆s =
�

ds ≡
� b

a
�γ̇(ξ)� dξ



What you can measure: 

“Freefall paths through the gravitational 
field are geodesics of the spacetime 

metric g”

(3)

Sun

Mercury



What you can measure: 
“Non-rotating vectors (gyroscopes) carried 

by an observor in freefall are parallel 
transported by the unique symmetric 

connection determined by g”

(4)

Sun

Mercury

X

Y
X

Y

X

Y

Fixed Stars



Geodesics and Parallel translation
 are determined by the 
Covariant Derivative: 

For example, if... γ̇(s) = Y ≡ Y j ∂

∂xj

Then...

Where the Christoffel symbols are given by...

∇YX = Y(X) + Γk
ijX

iY j ∂
∂xk

Ẋ =
d

ds
X(γ(s)) = Y j ∂

∂xj
XY(X)=

Γk
ij =

1
2
gkσ { − gij,σ + gσi,j + gjσ,i}



The main point:   

“The Covariant Derivative corrects 
differentiation of vectors to a 

tensor operation...” 

Not a
tensor

Not a
tensor

A tensor!!

The components of ∇YX transform like a vector
under change of coordinates...

Yi = Yα ∂xi

∂yα
Xi = Xα ∂xi

∂yα
(∇YX)i = (∇YX)α ∂xi

∂yα

∇YX = Y(X) + Γk
ijX

iY j ∂
∂xk



 Parallel Translation (the non-rotating frames carried by freefall)

Geodesics (freefall paths)

...but T is the tangent vector in spacetime...

∇T X = 0 ∇T Y = 0 X, Y parallel in direction T

∇T T = 0 T tangent to the geodesic

Covariant Derivative gives you Geodesics and Parallel Translation 

Sun

Mercury

X

Y
X

Y

X

Y

Fixed Stars



Sun

Mercury

X

Y X

Y

X

Y

Fixed Stars

...but T is the tangent vector in spacetime...

Fixed Stars

SunMercury

Y

x1

ct

x2

X



...but T is the tangent vector in spacetime...

γ(s) = (x0(s), x1(s), x2(s))

In spacetime the trajectory (world line) of Mercury is...

T = γ̇(s) = (ẋ0(s), ẋ1(s), ẋ2(s))

so...

ds2 = gijdxidxj

ds = c dτ

dx0 = c dt

T≈ (1, 0, 0)

Fixed Stars

SunMercury

Y

x1

ct

x2

X

ẋ0 = d(ct)
ds = d(ct)

d(cτ) ≈ 1

ẋi = dxi

ds = dxi

d(cτ) ≈
1
c << 1



T≈ (1, 0, 0)

...so the correct picture is...

Fixed Stars
Sun

ct

Mercury

Y

x1

x2

T

Mercury

Y

x1

x2

Fixed Stars

X

X

The non-rotating frames parallel translated along T remain 
almost aligned with the fixed stars, with general relativistic 
corrections determined by how g differs from flat spacetime.



ds2 = −c2dt2 + dx2 + dy2 + dz2

Sun

ct

Y

Y

X

X

X

Y

In flat Minkowski space the geodesics 
are straight lines, and parallel translation 
is fixed with the coordinate axes

y

x



T≈ (1, 0, 0)

...so the correct picture is...

Fixed Stars
Sun

ct

Mercury

Y

x1

x2

T

Mercury

Y

x1

x2

Fixed Stars

X

X

“We are connected to the stars by an 
almost flat Minkowski spacetime 
with GR corrections order 1/c.”



Curved spacetime is locally Minkowskian 
in the sense that around every point 

there exist 
 Locally Inertial coordinates

Sun

ct

P0

Bδ(P0) y

x

+O(δ2)ds2 = −c2dt2 + dx2 + dy2 + dz2

Flat to within
Quadratic Errors



The covariant derivative reflects the 
locally inertial character of spacetime

Given path        in spacetime, cover it with locally inertial 
coordinate frames                    

γ(s)

Y

X

X

X
XX

Pn

Bδ(Pn)

Bδ(Pn)

Transport components as constant in each inertial frame

Parallel Translation by 
locally inertial frames:

Refine to squeeze out quadratic errors...



Clocks in different locally inertial frames 
“run at different rates” 

and cannot be synchronized by any 
global time coordinate...

Curvature leads to 
Time-Dilation:



• Conclude:  Parallel translation must agree with     in order that 
spacetime have (locally) the same inertial properties of flat 
Minkowski space

“In General Relativity:  Inertial coordinate 
systems are local properties of spacetime 

that change from point to point” 

•Reverse it:                gives a coordinate 
independent (covariant) description of 
Parallel Translation by locally inertial frames 

Conclude:  Parallel Translation must agree
 with              in order that spacetime have 
(locally) the same inertial properties as flat 
Minkowski Spacetime...

∇YX = 0

∇YX = 0



•A point of view:  “One can view the 
gravitational metric as a sort of book-
keeping device for keeping track of the 
locally inertial coordinate systems as they 
change from point to point in spacetime”

• A picture:  The earth moves “unaccelerated” 
through each local inertial frame, but these frames 
change from point to point, thus producing 
apparent accelerations in a global coordinate 
system in which metric components 

Fixed Stars

Sun

Earth Y

x1

ct

x2

X

�= (−1,1,1,1)



Even though the physics is most naturally 
expressed in a locally inertial coordinate 
system, the analysis of solutions can only 
be done in global coordinate systems 
that hide the locally inertial simplicity.

This motivates our  
“locally inertial Godunov method” 

for simulating 
GR-shock-waves 

in spherically symmetric 
spacetimes

Zeke Vogler Thesis,  UC-Davis March 2010



• There is no global inertial coordinate 
system in which planetary trajectories are 
all straight lines...

•This is an expression of the fact that 
gravitational fields produce non-zero 
spacetime curvature...

•Theorem:  You cannot in general remove 
the second derivatives of g at the center 
of a locally intertial coordinate system, and 
these measure SPACETIME CURVATURE

∂2g

∂xj∂xk
≡ gij,jk �= 0



Riemann 1854:

• Introduced the Riemann Curvature Tensor

Γk
ij =

1
2
gkσ {−gij,σ + gi,j + gjσ,i}

Ri
jkl = Γi

jk,l − Γi
jl,k +

�
Γσ

jlΓ
i
σk − Γσ

jkΓi
σl

�

Curl Commutator

(Not a tensor) (Not a tensor)

+
A Tensor!

 “A tensorial measure of the 2nd derivatives         

that cannot be removed by coordinate 
transformation”

gij,kl



T

The Einstein equations give the 
constaints on g

Not every spacetime metric can 
be a gravitational field

G=κ T
Stress

Energy

Tensor
Universal

Constant

κ =
8πG
c4

Einstein

Curvature

Tensor

“Energy-momentum and their fluxes are 
the sole source of spacetime curvature’’



Said Differently:               gives the 
constraints under which locally inertial 
frames interact and evolve...

G = 8πT

             :  The Constraints 
on the evolution of g...
G=8πT

“∂2g = κ T (ρ, p, u)”



p = pressure

ρ = energy density=ρc2

u = 4-velocity=dx
ds

For a perfect fluid:

In a coordinate system x:

Einstein
Curvature

Tensor

Stress
Energy
Tensor

G =
8πG
c4

T

Fundamental
Constant

Gij ≡ Rσ
iσj −

1
2
Rστ

στgij

Tij = (ρ + p)uiuj + pgij



       gives the energy and momentum densities
 and their fluxes for a perfect fluid, the RHS of 

the Einstein Equations G=kT

Tij

Tij = (ρ + p)uiuj + pgij

Rk
i[jk,l]=0

 As a result:  Conservation of energy-momentum
 is identically satisfied on solutions:

But:  The Einstein equations are constructed so 
that                 follows as a consequence of the 

Bianchi identies:
Div G = 0

Div T = 0
 These reduce to the relativistic compressible 
Euler equations in each locally inertial frame...

“The Euler equations are a subsystem of the 
Einstein Equations!!!!...



Q: How smooth should the metric be at Shock Waves?

G = κ T

SHOCK Jump Discontinuity 
in fluid 

ρL, uL, pL

ρR, uR, pR

G = κ T Jump in 2nd derivative of g

C1,1 ≡ 1-derivative Lipschitz continuous

“∂2g = κ T (ρ, p, u)”

??g ∈ C1,1



Smoothness of Metric at Shocks

“∂2g = κ T (ρ, p, u)”

RHS discontinuous

LHS has one continuous derivative

g

g ∈ C1,1

g g

∇g ∈ C0,1 ∇2g ∈ C0,1

Jump Discont.



BUT:  The shock-wave solutions we 
construct are only       at shock-waves C0,1

Ref:  TE/GR Memoirs 2004:  They are true 
weak solutions of the Einstein equations

Thesis Problem-Moritz Rientes:  Can the metric be smoothed at 
points of shock-wave interaction?  (OPEN)

Conclude:  Solutions are one degree 
less smooth than the equations ask for!

Open question:  Is there a change of 
coordinates that smooths the metric 
components to  C1,1??

For single shock surfaces the answer is YES.  Ref. Israel/TeSm



Examples 
of 

Gravitational 
Metrics: 

Exact Solutions 
of the 

Einstein Equations



Examples:  

Schwarzschild Metric:(1)

(S)

G = Newton’s Constant
M = Mass of the Sun at r = 0

Planets follow geodesics of (S)

(Schwarzschild Radius=         )                            2GM

Birkoff ’s Theorem:   (S) is the only spherically 
symmetric gravitational field in empty space.  

ds2 = −
�

1− 2GM

r

�
dt2 +

1
(1− 2GM

r )
dr2 + r2dΩ2

(Gravitational field outside a star)



Tolman-Oppenheimer-Volkoff (TOV) Metric:(2)

(TOV)ds2 = −B(r)dt2 +
1

(1− 2GM(r)
r )

dr2 + r2dΩ2

M(r) = “Total mass inside radius r”

Gravitational field inside a star≈

Setting for:   Chandresekhar Stability Limit
Buchdahl Stability Limit

(Static fluid sphere)



Friedmann-Robertson-Walker (FRW) Metric:(3)

(FRW)ds2 = −dt2 + R(t)2
�

dr2

1− kr2
+ r2dΩ2

�

R(t)≡ Cosmological Scale Factor

0≤ R(t) ≤ 1 Present UniverseBig Bang

H =
Ṙ
R = Hubble Constant ≈ h0

100 km
s mps

Galaxies follow geodesics of (FRW)

k < 0
k = 0
k > 0

ΩM =
Q0

Qcrit
< 1

ΩM = 1

ΩM > 1

(Open)

(Critical)

(Closed)

(Standard Model of Cosmology)



All 3 are examples of
Spherically Symmetric Metrics

 of the general form

ds2 = −A(r, t)dt2 + B(r, t)dr2 + E(r, t)dtdr + C(r, t)dΩ2

ds2 = −A(r, t)dt2 + B(r, t)dr2 + r2dΩ2

Theorem:   Every Spherically Symmetric Spacetime  
can (generically) be transformed over to 

Standard Schwarzschild Coordinates (SSC) 
where the metric takes the simpler form

dΩ2 = dθ2 + sin2 (θ) dφ2 = “line element on unit sphere”



To do a numerical simulation of GR-shock waves we match the 
FRW metric to the TOV metric Lipschitz continuously on an initial 
surface, and numerically simulate the evolution in SSC coordinates

This requires  MAPPING  FRW over to SSC coordinates.

r̄ = r̄0

r̄ = R(t)r



Einstein Equations 
in 

Standard 
Schwarzchild 
Coordinates



The Simplest Setting
for 

Shock-Waves





Consequences



The Einstein equations require a constraint on 
the initial data to even get started with a 
simulation...

Vogler starts with two solutions FRW and TOV 
that automatically statisfy constraints. 

Matching Lipschitz continuously is sufficient to 
(weakly) meet the constraints on the initial data 
and start the simulation.

To match them continuously we put initial data 
into  common SSC coordinates.  

The  Locally Inertial Godunov Method works in 
SSC.

 



r̄ = r̄0

r̄ = R(t)r



A Locally Inertial Method 
for

Computing Shocks



Einstein Equations-Standard Schwarzschild Coordinates

ds2 = −A(t, r)dt2 + B(t, r)dr2 + r2dΩ2



Einstein Equations-Standard Schwarzschild Coordinates

B(t, r) =
1

1− 2GM(t,r)
r

For Example:

=Newton’s Gravitational ConstantG

M(t, r)=Mass inside radius r at time t

2GM(t, r) = 1 Black Hole

ds2 = −A(t, r)dt2 + B(t, r)dr2 + r2dΩ2



G = 8πT

Einstein Equations-Standard Schwarzschild Coordinates

ds2 = −A(t, r)dt2 + B(t, r)dr2 + r2dΩ2



G = 8πT

Φ = −

BAtBt

2AB
−

B

2

(

Bt

B

)2

−

A′

r
+

AB′

rB

+
A

2

(

A′

A

)2

+
A

2

A′

A

B′

B
.

A

r2B

{

r
B′

B
+ B − 1

}

= κA2T 00 (1)

−
Bt

rB
= κABT 01 (2)

1

r2

{

r
A′

A
− (B − 1)

}

= κB2T 11 (3)

−
1

rAB2
{Btt − A′′ + Φ} =

2κr

B
T 22, (4)

Einstein Equations-Standard Schwarzschild Coordinates

(MAPLE)

ds2 = −A(t, r)dt2 + B(t, r)dr2 + r2dΩ2



G = 8πT

Φ = −

BAtBt

2AB
−

B

2

(

Bt

B

)2

−

A′

r
+

AB′

rB

+
A

2

(

A′

A

)2

+
A

2

A′

A

B′

B
.

A

r2B

{

r
B′

B
+ B − 1

}

= κA2T 00 (1)

−
Bt

rB
= κABT 01 (2)

1

r2

{

r
A′

A
− (B − 1)

}

= κB2T 11 (3)

−
1

rAB2
{Btt − A′′ + Φ} =

2κr

B
T 22, (4)

(1)+(2)+(3)+(4) (1)+(3)+div T=0
(weakly)

Einstein Equations-Standard Schwarzschild Coordinates

(Te-Groah Memoirs 2004) 

ds2 = −A(t, r)dt2 + B(t, r)dr2 + r2dΩ2



Remarkable Change of  Variables

T
Equations close under change to 

Local Minkowski variables:
TM ≡ u



Remarkable Change of  Variables

T
Equations close under change to 

Local Minkowski variables:

I.e., Div T=0 reads:

TM ≡ u



Remarkable Change of  Variables

0 = T
00

,0 + T
01

,1 +
1

2

(

2At

A
+

Bt

B

)

T
00

+
1

2

(

3A′

A
+

B′

B
+

4

r

)

+
Bt

2A
T

11

0 = T
01

,0 + T
11

,1 +
1

2

(

At

A
+

3Bt

B

)

T
01

+
1

2

(

A′

A
+

2B′

B
+

4

r

)

T
11

+
A′

2B
T

00
− 2

r

B
T

22

T
Equations close under change to 

Local Minkowski variables:

I.e., Div T=0 reads:

TM ≡ u



Remarkable Change of  Variables

0 = T
00

,0 + T
01

,1 +
1

2

(

2At

A
+

Bt

B

)

T
00

+
1

2

(

3A′

A
+

B′

B
+

4

r

)

+
Bt

2A
T

11

0 = T
01

,0 + T
11

,1 +
1

2

(

At

A
+

3Bt

B

)

T
01

+
1

2

(

A′

A
+

2B′

B
+

4

r

)

T
11

+
A′

2B
T

00
− 2

r

B
T

22

T
Equations close under change to 

Local Minkowski variables:

I.e., Div T=0 reads:

Time derivatives At and Bt cancel out under change T → u

TM ≡ u



Remarkable Change of  Variables

0 = T
00

,0 + T
01

,1 +
1

2

(

2At

A
+

Bt

B

)

T
00

+
1

2

(

3A′

A
+

B′

B
+

4

r

)

+
Bt

2A
T

11

0 = T
01

,0 + T
11

,1 +
1

2

(

At

A
+

3Bt

B

)

T
01

+
1

2

(

A′

A
+

2B′

B
+

4

r

)

T
11

+
A′

2B
T

00
− 2

r

B
T

22

T
Equations close under change to 

Local Minkowski variables:

A

r2B

{

r
B′

B
+ B − 1

}

= κA2T 00 (1)

−
Bt
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Good choice because o.w.
there is no At equation
to close Div T = 0!

I.e., Div T=0 reads:

Time derivatives At and Bt cancel out under change T → u

TM ≡ u
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Theorem:  On single smooth shock surfaces the metric can be 
smoothed one degree to        but it remains unknown whether 
this can be done at points of shock wave interaction
-----Topic of Moritz Rientes Thesis.
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Note:   Equations (3) and (4) imply that A and B will be no 
smoother than Lipschitz continuous at shocks,  so               can 
only hold weakly at shocks in SSC.

G = 8πT

Note: In GR it is usually assumed that metrics are at least           , 
and for example, this is assumed in Hawking-Penrose Theorems
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The Locally Inertial Equations

Theorem:  On single smooth shock surfaces the metric can be 
smoothed one degree to        but it remains unknown whether 
this can be done at points of shock wave interaction
-----Topic of Moritz Rientes Thesis.
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The Locally Inertial Equations

Theorem:  (Groah-Te Memoirs 2004) If for  

(1)                                     ,

(2)            ,           are Lipshitz continuous solutions of (3), (4) 
 
Then there exists a weak solution of (1)-(4) on          ,

ln ρ(r)TV {ln ρ(r)} < V0 TV

�
c− v

c + v

�
< V0

A0(r) B0(r)

r ≥ r0 > 0

r ≥ r0 0 < t ≤ T

Any Lipshitz cont. metric that meets constraints (2), (3) suffices

Conclude:  The Einstein equations are consistent at the level of 
arbitrary numbers of interacting shock waves of arbitrary strength



Locally inertial Godunov Method 
with

 Dynamic Time-Dilation
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Locally Inertial Godunov Method

Aij = const. Locally Flat in each Grid Cell
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Locally Inertial Godunov Method

Stagger fluid discontinuities with metric discontinuities 
and solve Riemann Problem for 1/2 time-step

Aij = const. Locally Flat in each Grid Cell

ut + f(Aij ,u)x = 0
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uij
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x > xi

u
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ij

ut + f(A,u)x = g(A,u, x)

A
′ = h(A,u, x)
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Take Godunov Averages
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ut + f(A,u)x = g(A,u, x)

A
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and solve Riemann Problem for 1/2 time-step
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Take Godunov Averages

ūijūi−1,j

Solve Source-ODE for 1/2 time-step (operator splitting)
ut = g(Aij ,u, x) −∇Af · A

′

u(0) = ūij

ut + f(A,u)x = g(A,u, x)

A
′ = h(A,u, x)
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Take Godunov Averages

ūijūi−1,j

Solve Source-ODE for 1/2 time-step (operator splitting)

Update the metric:  A(r0, tj+1) = A0(tj+1)
A

′ = h(A,u, x)

ut + f(A,u)x = g(A,u, x)

A
′ = h(A,u, x)



Fractional Step 
Method: 

 Solve   RP  for 1/2 timestep
  Solve ODE for 1/2 time step  A(r0, tj+1) = A0(tj+1)
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Method: 
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ut + f(A,u)x = g(A,u, x)

A
′ = h(A,u, x)

=⇒ Nishida System Global Exact Soln of RP,  [Smol,Te] =⇒p =
c
2

3
ρ



Grid Rectangle

Solve ODE for 1
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ut = g(Aij ,u, x) −∇Af · A
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Staggering the metric A and solution u
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ūijūij



Solve ODE for 1

2
-timestep

ut = g(Aij ,u, x) −∇Af · A
′

Run the Godunov Average under the 
ODE step for half a time-step

Godunov Average
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(Operator Splitting)



A
′ = h(A,u, x)

A(r0, tj+1) = A0(tj+1)

Update A by solving ODE
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For the Riemann Problem we employ 
the special structure when 

p = σρ

Relativistic Nishida System:  Sm-Te 1994

Exact Formulas for Shock and Rarefaction Curves

Global Solution of RP--No Vacuum

Extreme Relativistic Limit of Free Particles 
Pure Radiation:

p =
c2

3
ρ



The shock curves are rigid translates of one another in 
the plane of Riemann Invariants (r,s)

(Sm-Te 1993)



The value                     in each grid cell 
determines the 

“local time dilation”

Aij = (Aij , Bij)

ds2 = −Bdt2 +
1
A

dr2 + r2dΩ2

ds = 0, dΩ = 0 −Bdt2 +
1
A

dr2 = 0

Metric:  

Light Ray:  

Speed of Light:  c =
dr

dt
=
√

AB



∆t = ∆t1 ≡ ∆tmin

∆t∗j=fraction of the Riemann problem that evolves by time ∆t.

∆tj=Riemann problem time for light ray to hit grid boundary.

Local Time Dilation

∆t∗j =
√

AjBj√
A1b1

∆tj

√
AB determines the Time-Dilation factor in each grid

(Vogler 2010)



Vogler verifies (1) and (2) Numerically...

(1) Total Variation Bound  

L1(2)         - Convergence
Weak Solution of
Einstein Equations

Theorem:

Convergence (Vogler)



Numerical Simulation 
of 

GR Shock-Waves

Zeke Vogler
UC-Davis

2010
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Intertaction region between FRW and TOV



TOV metric
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Problem:  We need to express FRW in SSC coordinates



(Sm-Te 2009)

Theorem: Assume p = c2

3 ρ, k = 0. Then the FRW
metric

ds2 = −dt2 + R(t)2dr2 + r̄2dΩ2,

under the mapping

r̄ = R(t)r,

t̄ =

�
1 +

�
R(t)r

2t

�2
�

t,

goes over to the SSC-metric

ds2 = − dt̄2

1− v(ξ)2 +
dr̄2

1− v(ξ)2 + r̄2dΩ2,

where

ξ ≡ r̄

t̄
=

2v

1 + v2



ξ =
r̄

t̄

FRW in Self-Similar SSC Form

ds2 = −dt2 + R(t)2
�
dr2 + r2dΩ2

�

FRW in comoving coordinates

FRW in SSC coordinates

r̄ = R(t)r

ds2 = −B(ξ)dt̄2 +
1

A(ξ)
dr2 + r̄2dΩ2

EXACT FRW Solution when p =
c2

3
ρ



For TOV we take 
Static Isothermal Sphere

Assume TOV 

(Special case when A and B are time independent)

 TOV Solves the Oppenheimer-Volkoff Equations (1936):

dM

dr̄
= 4πr̄2ρ

dp̄

dr̄
= −GMρ

r̄2

�
1 +

p

ρ

� �
1 +

4πr̄3p

M

� �
1− 2GM

r̄

�−1

 Exact TOV Solution when p = σρ

ρ =
γ

r2 M = 4πγr̄A = 1− 8πGγ B = r̄
4σ

1+σ

γ =
1

2πG

�
σ

1 + 6σ + σ2

�



Vogler’s Simulation
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Start with exact FRW and TOV solutions in SSC coordinates 

For initial data it suffices to match FRW to TOV Lipschitz 
continuously at t=const

There is a one parameter family of such initial data generating 
qualitatively different solutions

Take 

Models a GR explosion into a static isothermal sphere 

This poses discontinuous density and velocity jumps at a 
Lipshitz matching of the metric 

Einstein
Constraint 
Equations



Match the metrics Lipshitz continuously 
along the initial data 
with discontinuities 

in density and velocity ---- Shock waves!

ds2 = −B(ξ)dt̄2 +
1

A(ξ)
dr2 + r̄2dΩ2

ds2 = −B(r)dt̄2 +
1

1− 2GM(r̄)
r̄

+ r̄2dΩ2

(FRW)

(TOV)



Matching the FRW and TOV metric leads to initial 

Matching FRW to TOV leads to one parameter family of initial 
data that meets the constraints of the Einstein equations

Vogler’s One parameter family of intial data depending on r0



To start--Vogler wrote a 
Riemann Solver for 

Relativistic 
Compressible Euler

p =
c2

3
ρ



Solution of the Riemann problem in Special relativity

p =
c2

3
ρ



Numerical Simulation 
of the 

Matched FRW-TOV Spacetimes



   
 Lipschitz matching of the metric components

The Initial Profile:

Note discontinuity in fluid variables



End Time of Simulation:



Note: Discontinuities in density and velocity



Note:
   

 Metric no better than Lipschitz continuous



Note: Interaction region inside the cone of sound



Note:   Convergence to Exact solutions on either side



   Run Time---Simulation 1 Day ---Convergence: 2-3 Days



Time Evolution of the simulated shock waves...
Note interaction creates a region of higher density



To test convergence Vogler uses successive mesh refinement...

Error:  measures the     -difference between the current mesh 
refinement and the previous...

L1

The Rate is the log base 2 of the ratio of successive errors 
(current divided by previous)...

Numerical Convergence: (First order method) 



To test convergence he uses successive mesh refinement...

Error:  measures the     -difference between the current mesh 
refinement and the previous.

L1

The Rate is the log base 2 of the ratio of successive errors 
(current divided by previous)...

Ideally, First order method should half the error as you double 
the number of grid points, so a rate of 1 is ideal...
Less than one implies convergence slower than expected...
Greater than one means faster than expected...
Vogler gets numbers .43 up to 1.9

Numerical Convergence:  



Conclusions:

Fluid variables start out converging slower than 
expected, but head toward one under mesh refinement.

A stays around one. 

B does a high-low swing, but on average has a rate of 
one.  (We think it has to do with the integration of B 
across the whole simulation space).



The one parameter family of initial data is 
explored and produces qualitatively different 
solutions, but always results in two shock-waves

Simulation determines uniquely the time-rescaling 
function of the TOV spacetime---implies 
continuity of B comes out of the method

The simulation is tested with a different SSC 
representation of the FRW metric and confirms 
convergence to the same solution.

Numerical convergence to FRW and TOV on 
outside of the interaction region

Shock-waves converge to the cone of sound.

Vogler’s Conclusions:  



Black Hole 
Formation From 
Smooth Initial 

Data 



(The only difference is the negative velocity...)

Initial Data for the Time-Reversed Problem leading to Black Hole 
formation by two compressive rarefaction waves (smooth data)



End time simulation of the time-reversed evolution 
far from a Black Hole...two rarefaction waves

(Not EXACT rarefaction waves because of curvature...)



We believe Black Hole will form under continuation of the 
time, and this is explored.



Note the discontinuities in fluid variables and derivative of 
the metric are gone, so we have strong solution of the 
Einstein equations...



Convergence is slow near the black hole due to time dilation...

You can’t simulate all the way into the Black hole in SSC 
coordinates because of infinite time -dilation...



Vogler argues for Blak Hole formation by demonstrating 
solutions evolve inside 9/8 Schwarzschild Radius, the 
Buchdahl Stability Limit beyond which no static configuation 
has sufficient pressure to hold the solution up...



Note: interaction creates a region of Lower Denisty 
approx like interaction of two rarefaction waves.

Time evolution in the Black Hole simulation: (To time t=1)



Convergence under successive mesh refinement...

   -convergence tending (slowly) to one.L1

Convergence rate slower due to time-dilation near Black Hole...

Numerical Convergence:  

No High-Low swings in B convergence rate...



The one parameter family of initial data is 
explored and produces qualitatively different 
solutions, but always results in two rarefaction-
waves

Simulation determines uniquely the time-rescaling 
function of the TOV spacetime---implies 
continuity of B comes out of the method

Numerical convergence to FRW and TOV on 
outside of the interaction region

Rarefaction-waves converge to the cone of sound.

Vogler’s Conclusions (Same as before):  



Continuing
 Simulation  Time  

into 
Black Hole 

(Simulation time 1-week)



Density rises by a factor of about 15...

Continuing the Evolution Into Black Hole...
(To time t=3.98)



r ≈ 2.38

Black Hole Number
2M
r ≈ .911 > .888 = Buchdahl Limit at r = 2.38



Time-dilation factor          rises to 11,000 implying 
extreme relativistic effects...

√
AB

Time
Dilation
Factor



Time step tends to zero as you approach the  
Black Hole, making it difficult to continue simulation...

∆t ∝ 1
11, 000

Time
Dilation
Factor



Zeroing in on the Black Hole,  Vogler gets the 
Black Hole number up to .922...



Note the Hump in the Black Hole Number where 
localized formation is occuring...
(Black Hole developing over an interval simultaneously??)



Pushing Simulation to 
Black Hole Number 

2GM

r
≈ .922



Black Hole Number .922 at radius r=4.5  (1-week simulation)

Zooming in on the Black Hole by chopping off the RHS



Region where the solution beats the Buchdahl limit spreads out 
over larger and larger radii, ranging from roughly r=2 to r=7...



Time-dilation factor         goes from 1 to 29,272
√

AB

Looks like exponential growth in dilation factor        
√

AB



The solutions get dimensions upon setting 
the scale of the mass

Solar Scale

Galactic Scale



Explore other phenomenon from other initial 
data?

Continue Black Hole formation beyond 
Schwarzschild radius in Edington-Finkelstein/
Kruskal coordinates?  

PROVE Black Hole formation for perfect fluid?

PROVE Shock-Wave formation from smooth initial 
data?

Future Directions:  

Can you smooth the metric at points of shock 
wave interaction (Moritz Rientes)?

Multi-dimensional version of a locally inertial 
method?

Simulate secondary wave in shock wave 
cosmology model where 2GM/r>1?



END


