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Preface

Figure 1: Sir Isaac Newton, December 25, 1642–March 20, 1727 (Julian Calendar).

These notes are for a one-quarter course in differential equations. The approach is to tie the study of
differential equations to specific applications in physics with an emphasis on oscillatory systems. The
following two quotes by V. I. Arnold express the philosophy of these notes.

Mathematics is a part of physics. Physics is an experimental science, a part of natural
science. Mathematics is the part of physics where experiments are cheap.

In the middle of the twentieth century it was attempted to divide physics and mathematics.
The consequences turned out to be catastrophic. Whole generations of mathematicians
grew up without knowing half of their science and, of course, in total ignorance of any
other sciences. They first began teaching their ugly scholastic pseudo-mathematics to
their students, then to schoolchildren (forgetting Hardy’s warning that ugly mathematics
has no permanent place under the Sun).

Since scholastic mathematics that is cut off from physics is fit neither for teaching nor for
application in any other science, the result was the universal hate towards mathematicians—
both on the part of the poor schoolchildren (some of whom in the meantime became
ministers) and of the users.

V. I. Arnold, On Teaching Mathematics
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Newton’s fundamental discovery, the one which he considered necessary to keep secret
and published only in the form of an anagram, consists of the following: Data aequatione
quotcunque fluentes quantitae involvente fluxions invenire et vice versa. In contemporary
mathematical language, this means: “It is useful to solve differential equations”.

V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations.

I thank Eunghyun (Hyun) Lee for his help with these notes during the 2008–09 academic year.
Also thanks to Andrew Waldron for his comments on the notes.

Craig Tracy, Sonoma, California
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Notation

Symbol Definition of Symbol

R field of real numbers
Rn the n-dimensional vector space with each component a real number
C field of complex numbers
ẋ the derivative dx/dt, t is interpreted as time
ẍ the second derivative d2x/dt2, t is interpreted as time
:= equals by definition
Ψ = Ψ(x, t) wave function in quantum mechanics
ODE ordinary differential equation
PDE partial differential equation
KE kinetic energy
PE potential energy
det determinant
δij the Kronecker delta, equal to 1 if i = j and 0 otherwise
L the Laplace transform operator(
n
k

)
The binomial coefficient n choose k.

Maple is a registered trademark of Maplesoft.
Mathematica is a registered trademark of Wolfram Research.
MatLab is a registered trademark of the MathWorks, Inc.



Chapter 1

Introduction

Figure 1.1: Galileo Galilei, 1564–1642. From The Galileo Project : “Galileo’s discovery was that the
period of swing of a pendulum is independent of its amplitude–the arc of the swing–the isochronism of
the pendulum. Now this discovery had important implications for the measurement of time intervals.
In 1602 he explained the isochronism of long pendulums in a letter to a friend, and a year later
another friend, Santorio Santorio, a physician in Venice, began using a short pendulum, which he
called “pulsilogium,” to measure the pulse of his patients. The study of the pendulum, the first
harmonic oscillator, date from this period.”

See the You Tube video http://youtu.be/MpzaCCbX-z4.
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2 CHAPTER 1. INTRODUCTION

1.1 What is a differential equation?

From Birkhoff and Rota [3]

A differential equation is an equation between specified derivative on an unknown function,
its values, and known quantities and functions. Many physical laws are most simply and
naturally formulated as differential equations (or DEs, as we will write for short). For
this reason, DEs have been studied by the greatest mathematicians and mathematical
physicists since the time of Newton.

Ordinary differential equations are DEs whose unknowns are functions of a single variable;
they arise most commonly in the study of dynamical systems and electrical networks.
They are much easier to treat that partial differential equations, whose unknown functions
depend on two or more independent variables.

Ordinary DEs are classified according to their order. The order of a DE is defined as the
largest positive integer, n, for which an nth derivative occurs in the equation. Thus, an
equation of the form

φ(x, y, y′) = 0

is said to be of the first order.

From Wikipedia

A differential equation is a mathematical equation that relates some function of one or
more variables with its derivatives. Differential equations arise whenever a deterministic
relation involving some continuously varying quantities (modeled by functions) and their
rates of change in space and/or time (expressed as derivatives) is known or postulated.
Because such relations are extremely common, differential equations play a prominent role
in many disciplines including engineering, physics, economics, and biology.

Differential equations are mathematically studied from several different perspectives, mostly
concerned with their solutions the set of functions that satisfy the equation. Only the
simplest differential equations admit solutions given by explicit formulas; however, some
properties of solutions of a given differential equation may be determined without finding
their exact form. If a self-contained formula for the solution is not available, the solution
may be numerically approximated using computers. The theory of dynamical systems
puts emphasis on qualitative analysis of systems described by differential equations, while
many numerical methods have been developed to determine solutions with a given degree
of accuracy.

Many fundamental laws of physics and chemistry can be formulated as differential equa-
tions. In biology and economics, differential equations are used to model the behavior of
complex systems. The mathematical theory of differential equations first developed to-
gether with the sciences where the equations had originated and where the results found
application. However, diverse problems, sometimes originating in quite distinct scientific
fields, may give rise to identical differential equations. Whenever this happens, mathe-
matical theory behind the equations can be viewed as a unifying principle behind diverse
phenomena. As an example, consider propagation of light and sound in the atmosphere,
and of waves on the surface of a pond. All of them may be described by the same second-
order partial differential equation, the wave equation, which allows us to think of light
and sound as forms of waves, much like familiar waves in the water. Conduction of heat,
the theory of which was developed by Joseph Fourier, is governed by another second-order
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partial differential equation, the heat equation. It turns out that many diffusion processes,
while seemingly different, are described by the same equation; the Black–Scholes equation
in finance is, for instance, related to the heat equation.

1.1.1 Examples

1. A simple example of a differential equation (DE) is

dy

dx
= λy

where λ is a constant. The unknown is y and the independent variable is x. The equation
involves both the unknown y as well as the unknown dy/dx; and for this reason is called a
differential equation. We know from calculus that

y(x) = c eλx, c = constant,

satisfies this equation since

dy

dx
=

d

dx
c eλx = c λeλx = λy(x).

The constant c is uniquely specified once we give the initial condition which in this case would
be to give the value of y(x) at a particular point x0. For example, if we impose the initial
condition y(0) = 3, then the constant c is now determined, i.e. c = 3.

2. Consider the DE
dy

dx
= y2

subject to the initial condition y(0) = 1. This DE was solved in your calculus courses using the
method of separation of variables:

• First rewrite DE in differential form:

dy = y2dx

• Now separate variables (all x’s on one side and all y’s on the other side):

dy

y2
= dx

• Now integrate both sides

−1

y
= x+ c

where c is a constant to be determined.

• Solve for y = y(x)

y(x) = − 1

x+ c

• Now require y(0) = −1/c to equal the given initial condition:

−1

c
= 1

Solving this gives c = −1 and hence the solution we want is

y(x) = − 1

x− 1
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3. An example of a second order ODE is

F (x) = m
d2x

dt2
(1.1)

where F = F (x) is a given function of x and m is a positive constant. Now the unknown
is x and the independent variable is t. The problem is to find functions x = x(t) such that
when substituted into the above equation it becomes an identity. Here is an example; choose
F (x) = −kx where k > 0 is a positive number. Then (1.1) reads

−kx = m
d2x

dt2

We rewrite this ODE as
d2x

dt2
+
k

m
x = 0. (1.2)

You can check that

x(t) = sin

(√
k

m
t

)
satisfies (1.2). Can you find other functions that satisfy this same equation? One of the problems
in differential equations is to find all solutions x(t) to the given differential equation. We shall
soon prove that all solutions to (1.2) are of the form

x(t) = c1 sin

(√
k

m
t

)
+ c2 cos

(√
k

m
t

)
(1.3)

where c1 and c2 are arbitrary constants. Using differential calculus1 one can verify that (1.3)
when substituted into (1.2) satisfies the differential equation (show this!). It is another matter
to show that all solutions to (1.2) are of the form (1.3). This is a problem we will solve in this
class.

1.2 Differential equation for the pendulum

Newton’s principle of determinacy

The initial state of a mechanical system (the totality of positions and velocities of its points
at some moment of time) uniquely determines all of its motion.

It is hard to doubt this fact, since we learn it very early. One can imagine a world in which
to determine the future of a system one must also know the acceleration at the initial
moment, but experience shows us that our world is not like this.

V. I. Arnold, Mathematical Methods of Classical Mechanics [1]

Many interesting ordinary differential equations (ODEs) arise from applications. One reason for
understanding these applications in a mathematics class is that you can combine your physical intuition

1Recall the differentiation formulas

d

dt
sin(ωt) = ω cos(ωt),

d

dt
cos(ωt) = −ω sin(ωt)

where ω is a constant. In the above the constant ω =
√
k/m.
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with your mathematical intuition in the same problem. Usually the result is an improvement of both.
One such application is the motion of pendulum, i.e. a ball of mass m suspended from an ideal rigid
rod that is fixed at one end. The problem is to describe the motion of the mass point in a constant
gravitational field. Since this is a mathematics class we will not normally be interested in deriving the
ODE from physical principles; rather, we will simply write down various differential equations and
claim that they are “interesting.” However, to give you the flavor of such derivations (which you will
see repeatedly in your science and engineering courses), we will derive from Newton’s equations the
differential equation that describes the time evolution of the angle of deflection of the pendulum.

Let

� = length of the rod measured, say, in meters,

m = mass of the ball measured, say, in kilograms,

g = acceleration due to gravity = 9.8070m/s2.

The motion of the pendulum is confined to a plane (this is an assumption on how the rod is attached
to the pivot point), which we take to be the xy-plane (see Figure 1.2). We treat the ball as a “mass
point” and observe there are two forces acting on this ball: the force due to gravity, mg, which
acts vertically downward and the tension �T in the rod (acting in the direction indicated in figure).
Newton’s equations for the motion of a point �x in a plane are vector equations2

�F = m�a

where �F is the sum of the forces acting on the the point and �a is the acceleration of the point, i.e.

�a =
d2�x

dt2
.

Since acceleration is a second derivative with respect to time t of the position vector, �x, Newton’s
equation is a second-order ODE for the position �x. In x and y coordinates Newton’s equations become
two equations

Fx = m
d2x

dt2
, Fy = m

d2y

dt2
,

where Fx and Fy are the x and y components, respectively, of the force �F . From the figure (note

definition of the angle θ) we see, upon resolving �T into its x and y components, that

Fx = −T sin θ, Fy = T cos θ −mg.

(T is the magnitude of the vector �T .)

�

mass m

mg

T

θ

Figure 1.2: Simple pendulum

2In your applied courses vectors are usually denoted with arrows above them. We adopt this notation when discussing
certain applications; but in later chapters we will drop the arrows and state where the quantity lives, e.g. x ∈ R2.
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Substituting these expressions for the forces into Newton’s equations, we obtain the differential
equations

−T sin θ = m
d2x

dt2
, (1.4)

T cos θ −mg = m
d2y

dt2
. (1.5)

From the figure we see that
x = � sin θ, y = �− � cos θ. (1.6)

(The origin of the xy-plane is chosen so that at x = y = 0, the pendulum is at the bottom.) Differen-
tiating3 (1.6) with respect to t, and then again, gives

ẋ = � cos θ θ̇,

ẍ = � cos θ θ̈ − � sin θ (θ̇)2, (1.7)

ẏ = � sin θ θ̇,

ÿ = � sin θ θ̈ + � cos θ (θ̇)2. (1.8)

Substitute (1.7) in (1.4) and (1.8) in (1.5) to obtain

−T sin θ = m� cos θ θ̈ −m� sin θ (θ̇)2, (1.9)

T cos θ −mg = m� sin θ θ̈ +m� cos θ (θ̇)2. (1.10)

Now multiply (1.9) by cos θ, (1.10) by sin θ, and add the two resulting equations to obtain

−mg sin θ = m�θ̈,

or

θ̈ +
g

�
sin θ = 0. (1.11)

Remarks

• The ODE (1.11) is called a second-order equation because the highest derivative appearing in
the equation is a second derivative.

• The ODE is nonlinear because of the term sin θ (this is not a linear function of the unknown
quantity θ).

• A solution to this ODE is a function θ = θ(t) such that when it is substituted into the ODE,
the ODE is satisfied for all t.

• Observe that the mass m dropped out of the final equation. This says the motion will be
independent of the mass of the ball. If an experiment is performed, will we observe this to be
the case; namely, the motion is independent of the mass m? If not, perhaps in our model we
have left out some forces acting in the real world experiment. Can you think of any?

• The derivation was constructed so that the tension, �T , was eliminated from the equations.
We could do this because we started with two unknowns, T and θ, and two equations. We
manipulated the equations so that in the end we had one equation for the unknown θ = θ(t).

3We use the dot notation for time derivatives, e.g. ẋ = dx/dt, ẍ = d2x/dt2.
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• We have not discussed how the pendulum is initially started. This is very important and such
conditions are called the initial conditions.

We will return to this ODE later in the course.4 At this point we note that if we were interested in
only small deflections from the origin (this means we would have to start out near the origin), there
is an obvious approximation to make. Recall from calculus the Taylor expansion of sin θ

sin θ = θ − θ3

3!
+
θ5

5!
+ · · · .

For small θ this leads to the approximation sin θ ≈ θ . Using this small deflection approximation in
(1.11) leads to the ODE

θ̈ +
g

�
θ = 0. (1.12)

We will see that (1.12) is mathematically simpler than (1.11). The reason for this is that (1.12) is a
linear ODE. It is linear because the unknown quantity, θ, and its derivatives appear only to the first
or zeroth power. Compare (1.12) with (1.2).

1.3 Introduction to MatLab, Mathematica and Maple

In this class we may use the computer software packages MatLab, Mathematica or Maple to do
routine calculations. It is strongly recommended that you learn to use at least one of these software
packages. These software packages take the drudgery out of routine calculations in calculus and linear
algebra. Engineers will find that MatLab is used extenstively in their upper division classes. Both
MatLab and Maple are superior for symbolic computations (though MatLab can call Maple from
the MatLab interface).

1.3.1 MatLab

What isMatLab ? “MatLab is a powerful computing system for handling the calculations involved in
scientific and engineering problems.”5 MatLab can be used either interactively or as a programming
language. For most applications in Math 22B it suffices to use MatLab interactively. Typing matlab

at the command level is the command for most systems to start MatLab . Once it loads you are
presented with a prompt sign >>. For example if I enter

>> 2+22

and then press the enter key it responds with

4A more complicated example is the double pendulum which consists of one pendulum attached to a fixed pivot point
and the second pendulum attached to the end of the first pendulum. The motion of the bottom mass can be quite
complicated: See the discussion at www.math24.net/double-pendulum.html

5Brian D. Hahn, Essential MatLab for Scientists and Engineers.
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ans=24

Multiplication is denoted by * and division by / . Thus, for example, to compute

(139.8)(123.5− 44.5)

125

we enter

>> 139.8*(123.5-44.5)/125

gives

ans=88.3536

MatLab also has a Symbolic Math Toolbox which is quite useful for routine calculus computations.
For example, suppose you forgot the Taylor expansion of sinx that was used in the notes just before
(1.12). To use the Symbolic Math Toolbox you have to tell MatLab that x is a symbol (and not
assigned a numerical value). Thus in MatLab

>> syms x

>> taylor(sin(x))

gives

ans = x -1/6*x^3+1/120*x^5

Now why did taylor expand about the point x = 0 and keep only through x5? By default the
Taylor series about 0 up to terms of order 5 is produced. To learn more about taylor enter

>> help taylor

from which we learn if we had wanted terms up to order 10 we would have entered

>> taylor(sin(x),10)

If we want the Taylor expansion of sinx about the point x = π up to order 8 we enter

>> taylor(sin(x),8,pi)

A good reference for MatLab is MatLab Guide by Desmond Higham and Nicholas Higham.
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1.3.2 Mathematica

There are alternatives to the software packageMatLab. Two widely used packages areMathematica
and Maple. Here we restrict the discussion to Mathematica . Here are some typical commands in
Mathematica .

1. To define, say, the function f(x) = x2e−2x one writes in Mathematica

f[x_]:=x^2*Exp[-2*x]

2. One can now use f in other Mathematica commands. For example, suppose we want∫∞
0 f(x) dx where as above f(x) = x2e−2x. The Mathematica command is

Integrate[f[x],{x,0,Infinity}]

Mathematica returns the answer 1/4.

3. In Mathematica to find the Taylor series of sinx about the point x = 0 to fifth order you
would type

Series[Sin[x],{x,0,5}]

4. Suppose we want to create the 10× 10 matrix

M =

(
1

i+ j + 1

)
1≤i,j≤10

.

In Mathematica the command is

M=Table[1/(i+j+1),{i,1,10},{j,1,10}];

(The semicolon tells Mathematica not to write out the result.) Suppose we then want the determi-
nant of M . The command is

Det[M]

Mathematica returns the answer

1/273739709893086064093902013446617579389091964235284480000000000

If we want this number in scientific notation, we would use the command N[· ] (where the number
would be put in place of ·). The answer Mathematica returns is 3.65311× 10−63.

The (numerical) eigenvalues of M are obtained by the command

N[Eigenvalues[M]]
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Mathematica returns the list of 10 distinct eigenvalues. (Which we won’t reproduce here.) The
reason for the N[·] is that Mathematica cannot find an exact form for the eigenvalues, so we simply
ask for it to find approximate numerical values. To find the (numerical) eigenvectors of M , the
command is

N[Eigenvectors[M]]

5. Mathematica has nice graphics capabilities. Suppose we wish to graph the function f(x) =
3e−x/10 sin(x) in the interval 0 ≤ x ≤ 50. The command is

Plot[3*Exp[-x/10]*Sin[x],{x,0,50},PlotRange->All,

AxesLabel->{x},PlotLabel->3*Exp[-x/10]*Sin[x]]

The result is the graph shown in Figure 1.3.

10 20 30 40 50
x

�2

�1

1

2

3 ��x�10 sin�x�

Figure 1.3:
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1.4 Exercises

#1. MatLab and/or Mathematica Exercises

1. Use MatLab or Mathematica to get an estimate (in scientific notation) of 9999. Now use

>> help format

to learn how to get more decimal places. (All MatLab computations are done to a relative
precision of about 16 decimal places. MatLab defaults to printing out the first 5 digits.) Thus
entering

>> format long e

on a command line and then re-entering the above computation will give the 16 digit answer.

In Mathematica to get 16 digits accuracy the command is

N[99^(99),16]

Ans.: 3.697296376497268× 10197.

2. Use MatLab to compute
√
sin(π/7). (Note that MatLab has the special symbol pi; that is

pi ≈ π = 3.14159 . . . to 16 digits accuracy.)

In Mathematica the command is

N[Sqrt[Sin[Pi/7]],16]

3. Use MatLab or Mathematica to find the determinant, eigenvalues and eigenvectors of the
4× 4 matrix

A =


1 −1 2 0√
2 1 0 −2

0 1
√
2 −1

1 2 2 0


Hint: In MatLab you enter the matrix A by

>> A=[1 -1 2 0; sqrt(2) 1 0 -2;0 1 sqrt(2) -1; 1 2 2 0]

To find the determinant

>> det(A)

and to find the eigenvalues

>> eig(A)

If you also want the eigenvectors you enter

>> [V,D]=eig(A)
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In this case the columns of V are the eigenvectors of A and the diagonal elements of D are
the corresponding eigenvalues. Try this now to find the eigenvectors. For the determinant you
should get the result 16.9706. One may also calculate the determinant symbolically. First we
tell MatLab that A is to be treated as a symbol (we are assuming you have already entered A
as above):

>> A=sym(A)

and then re-enter the command for the determinant

det(A)

and this time MatLab returns

ans =

12*2^(1/2)

that is, 12
√
2 which is approximately equal to 16.9706.

4. Use MatLab or Mathematica to plot sin θ and compare this with the approximation sin θ ≈ θ.
For 0 ≤ θ ≤ π/2, plot both on the same graph.

#2. Inverted pendulum

This exercise derives the small angle approximation to (1.11) when the pendulum is nearly inverted,
i.e. θ ≈ π. Introduce

φ = θ − π

and derive a small φ-angle approximation to (1.11). How does the result differ from (1.12)?



Chapter 2

First Order Equations &
Conservative Systems

2.1 Linear first order equations

2.1.1 Introduction

The simplest differential equation is one you already know from calculus; namely,

dy

dx
= f(x). (2.1)

To find a solution to this equation means one finds a function y = y(x) such that its derivative, dy/dx,
is equal to f(x). The fundamental theorem of calculus tells us that all solutions to this equation are
of the form

y(x) = y0 +

∫ x

x0

f(s) ds. (2.2)

Remarks:

• y(x0) = y0 and y0 is arbitrary. That is, there is a one-parameter family of solutions; y = y(x; y0)
to (2.1). The solution is unique once we specify the initial condition y(x0) = y0. This is the
solution to the initial value problem. That is, we have found a function that satisfies both the
ODE and the initial value condition.

• Every calculus student knows that differentiation is easier than integration. Observe that solving
a differential equation is like integration—you must find a function such that when it and
its derivatives are substituted into the equation the equation is identically satisfied. Thus we
sometimes say we “integrate” a differential equation. In the above case it is exactly integration
as you understand it from calculus. This also suggests that solving differential equations can be
expected to be difficult.

• For the integral to exist in (2.2) we must place some restrictions on the function f appearing in
(2.1); here it is enough to assume f is continuous on the interval [a, b]. It was implicitly assumed
in (2.1) that x was given on some interval—say [a, b].

13
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A simple generalization of (2.1) is to replace the right-hand side by a function that depends upon
both x and y

dy

dx
= f(x, y).

Some examples are f(x, y) = xy2, f(x, y) = y, and the case (2.1). The simplest choice in terms of the
y dependence is for f(x, y) to depend linearly on y. Thus we are led to study

dy

dx
= g(x)− p(x)y,

where g(x) and p(x) are functions of x. We leave them unspecified. (We have put the minus sign into
our equation to conform with the standard notation.) The conventional way to write this equation is

dy

dx
+ p(x)y = g(x). (2.3)

It’s possible to give an algorithm to solve this ODE for more or less general choices of p(x) and g(x).
We say more or less since one has to put some restrictions on p and g—that they are continuous will
suffice. It should be stressed at the outset that this ability to find an explicit algorithm to solve an
ODE is the exception—most ODEs encountered will not be so easily solved.

But before we give the general solution to (2.3), let’s examine the special case p(x) = −1 and
g(x) = 0 with initial condition y(0) = 1. In this case the ODE becomes

dy

dx
= y (2.4)

and the solution we know from calculus

y(x) = ex.

In calculus one typically defines ex as the limit

ex := lim
n→∞

(
1 +

x

n

)n

or less frequently as the solution y = y(x) to the equation

x =

∫ y

1

dt

t
.

In calculus courses one then proves from either of these starting points that the derivative of ex equals
itself. One could also take the point of view that y(x) = ex is defined to be the (unique) solution to
(2.4) satisfying the initial condition y(0) = 1. Taking this last point of view, can you explain why the
Taylor expansion of ex,

ex =

∞∑
n=0

xn

n!
,

follows almost immediately?
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2.1.2 Method of integrating factors

If (2.3) were of the form (2.1), then we could immediately write down a solution in terms of integrals.
For (2.3) to be of the form (2.1) means the left-hand side is expressed as the derivative of our unknown
quantity. We have some freedom in making this happen—for instance, we can multiply (2.3) by a
function, call it µ(x), and ask whether the resulting equation can be put in form (2.1). Namely, is

µ(x)
dy

dx
+ µ(x)p(x)y =

d

dx
(µ(x)y) ? (2.5)

Taking derivatives we ask can µ be chosen so that

µ(x)
dy

dx
+ µ(x)p(x)y = µ(x)

dy

dx
+
dµ

dx
y

holds? This immediately simplifies to1

µ(x)p(x) =
dµ

dx
,

or
d

dx
logµ(x) = p(x).

Integrating this last equation gives

logµ(x) =

∫
p(s) ds+ c.

Taking the exponential of both sides (one can check later that there is no loss in generality if we set
c = 0) gives2

µ(x) = exp

(∫ x

p(s) ds

)
. (2.6)

Defining µ(x) by (2.6), the differential equation (2.5) is transformed to

d

dx
(µ(x)y) = µ(x)g(x).

This last equation is precisely of the form (2.1), so we can immediately conclude

µ(x)y(x) =

∫ x

µ(s)g(s) ds+ c,

and solving this for y gives our final formula

y(x) =
1

µ(x)

∫ x

µ(s)g(s) ds +
c

µ(x)
, (2.7)

where µ(x), called the integrating factor, is defined by (2.6). The constant c will be determined from
the initial condition y(x0) = y0.

1Notice y and its first derivative drop out. This is a good thing since we wouldn’t want to express µ in terms of the
unknown quantity y.

2By the symbol
∫ x f(s) ds we mean the indefinite integral of f in the variable x.
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An example

Suppose we are given the DE
dy

dx
+

1

x
y = x2, x > 0

with initial condition
y(1) = 2.

This is of form (2.3) with p(x) = 1/x and g(x) = x2. We apply formula (2.7):

• First calculate the integrating factor µ(x):

µ(x) = exp

(∫
p(x) dx

)
= exp

(∫
1

x
dx

)
= exp(log x) = x.

• Now substitute into (2.3)

y(x) =
1

x

∫
x · x2 dx+

c

x
=

1

x
· x

4

4
+
c

x
=
x3

4
+
c

x
.

• Impose the initial condition y(1) = 2:

1

4
+ c = 2, solve for c, c =

7

4
.

• Solution to DE is

y(x) =
x3

4
+

7

4x
.

2.1.3 Application to mortgage payments

Suppose an amount P , called the principal, is borrowed at an interest I (100I%) for a period of N
years. One is to make monthly payments in the amount D/12 (D equals the amount paid in one
year). The problem is to find D in terms of P , I and N . Let

y(t) = amount owed at time t (measured in years).

We have the initial condition

y(0) = P (at time 0 the amount owed is P ).

We are given the additional information that the loan is to be paid off at the end of N years,

y(N) = 0.

We want to derive an ODE satisfied by y. Let ∆t denote a small interval of time and ∆y the change
in the amount owed during the time interval ∆t. This change is determined by

• ∆y is increased by compounding at interest I; that is, ∆y is increased by the amount Iy(t)∆t.

• ∆y is decreased by the amount paid back in the time interval ∆t. If D denotes this constant
rate of payback, then D∆t is the amount paid back in the time interval ∆t.
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Thus we have
∆y = Iy∆t−D∆t,

or
∆y

∆t
= Iy −D.

Letting ∆t→ 0 we obtain the sought after ODE,

dy

dt
= Iy −D. (2.8)

This ODE is of form (2.3) with p = −I and g = −D. One immediately observes that this ODE is not
exactly what we assumed above, i.e. D is not known to us. Let us go ahead and solve this equation
for any constant D by the method of integrating factors. So we choose µ according to (2.6),

µ(t) := exp

(∫ t

p(s) ds

)
= exp

(
−
∫ t

I ds

)
= exp(−It).

Applying (2.7) gives

y(t) =
1

µ(t)

∫ t

µ(s)g(s) ds+
c

µ(t)

= eIt
∫ t

e−Is(−D) ds+ ceIt

= −DeIt
(
−1

I
e−It

)
+ ceIt

=
D

I
+ ceIt.

The constant c is fixed by requiring
y(0) = P,

that is
D

I
+ c = P.

Solving this for c gives c = P − D/I. Substituting this expression for c back into our solution y(t)
gives

y(t) =
D

I
−
(
D

I
− P

)
eIt.

First observe that y(t) grows if D/I < P . (This might be a good definition of loan sharking!) We
have not yet determined D. To do so we use the condition that the loan is to be paid off at the end
of N years, y(N) = 0. Substituting t = N into our solution y(t) and using this condition gives

0 =
D

I
−
(
D

I
− P

)
eNI .

Solving for D,

D = PI
eNI

eNI − 1
, (2.9)
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gives the sought after relation between D, P , I and N . For example, if P = $100, 000, I = 0.06
(6% interest) and the loan is for N = 30 years, then D = $7, 188.20 so the monthly payment is
D/12 = $599.02. Some years ago the mortgage rate was 12%. A quick calculation shows that the
monthly payment on the same loan at this interest would have been $1028.09.

We remark that this model is a continuous model—the rate of payback is at the continuous rate D.
In fact, normally one pays back only monthly. Banks, therefore, might want to take this into account
in their calculations. I’ve found from personal experience that the above model predicts the bank’s
calculations to within a few dollars.

Suppose we increase our monthly payments by, say, $50. (We assume no prepayment penalty.)
This $50 goes then to paying off the principal. The problem then is how long does it take to pay off
the loan? It is an exercise to show that the number of years is (D is the total payment in one year)

−1

I
log

(
1− PI

D

)
. (2.10)

Another questions asks on a loan of N years at interest I how long does it take to pay off one-half of
the principal? That is, we are asking for the time T when

y(T ) =
P

2
.

It is an exercise to show that

T =
1

I
log

(
1

2
(eNI + 1)

)
. (2.11)

For example, a 30 year loan at 9% is half paid off in the 23rd year. Notice that T does not depend
upon the principal P .

2.2 Conservative systems

2.2.1 Energy conservation

Consider the motion of a particle of mass m in one dimension, i.e. the motion is along a line. We
suppose that the force acting at a point x, F (x), is conservative. This means there exists a function
V (x), called the potential energy, such that

F (x) = −dV
dx

.

(Tradition has it we put in a minus sign.) In one dimension this requires that F is only a function of
x and not ẋ (= dx/dt) which physically means there is no friction. In higher spatial dimensions the

requirement that �F is conservative is more stringent. The concept of conservation of energy is that

E = Kinetic energy + Potential energy

does not change with time as the particle’s position and velocity evolves according to Newton’s equa-
tions. We now prove this fundamental fact. We recall from elementary physics that the kinetic energy
(KE) is given by

KE =
1

2
mv2, v = velocity = ẋ.
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5 10 15 20 25 30
time in years

100 000

200 000

300 000

400 000

500 000

Amount owed

0.05 0.10 0.15
Interest rate

1000

2000

3000

4000

5000

6000

Monthly payment
Loan of $500,000 for 30 years

Figure 2.1: The top figure is the graph of the amount owned, y(t), as a function of time t for a 30-year
loan of $500,000 at interest rates 3%, 6%, 9% and 12%. The horizontal line in the top figure is the
line y = $250, 000; and hence, its intersection with the y(t)-curves gives the time when the loan is half
paid off. The lower the interest rate the lower the y(t)-curve. The bottom figure gives the monthly
payment on a 30-year loan of $500,000 as a function of the interest rate I.
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Thus the energy is

E = E(x, ẋ) =
1

2
m

(
dx

dt

)2

+ V (x).

To show that E = E(x, ẋ) does not change with t when x = x(t) satisfies Newton’s equations, we
differentiate E with respect to t and show the result is zero:

dE

dt
= m

dx

dt

d2x

dt2
+
dV

dx

dx

dt
(by the chain rule)

=
dx

dt

(
m
d2x

dt2
+
dV (x)

dx

)
=

dx

dt

(
m
d2x

dt2
− F (x)

)
.

Now not any function x = x(t) describes the motion of the particle—x(t) must satisfy

F = m
d2x

dt2
,

and we now get the desired result
dE

dt
= 0.

This implies that E is constant on solutions to Newton’s equations.

We now use energy conservation and what we know about separation of variables to solve the
problem of the motion of a point particle in a potential V (x). Now

E =
1

2
m

(
dx

dt

)2

+ V (x) (2.12)

is a nonlinear first order differential equation. (We know it is nonlinear since the first derivative is
squared.) We rewrite the above equation as(

dx

dt

)2

=
2

m
(E − V (x)) ,

or
dx

dt
= ±

√
2

m
(E − V (x)) .

(In what follows we take the + sign, but in specific applications one must keep in mind the possibility
that the − sign is the correct choice of the square root.) This last equation is of the form in which
we can separate variables. We do this to obtain

dx√
2
m (E − V (x))

= dt.

This can be integrated to

±
∫

1√
2
m (E − V (x))

dx = t− t0.
(2.13)
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2.2.2 Kinetic Energy

The kinetic energy of a particle of mass m moving at speed v was defined to be 1
2mv

2. Here we give
a more physical definition and show that it leads to this formula: The kinetic energy of a particle of
mass m is the work required to bring the mass from rest to speed v. Let x = x(t) denote the position
of the particle at time t and suppose that at time T the particle is at speed v. Of course, we assume
x(t) satisfies Newton’s equation F = ma. The work done is

Work =

∫
F dx

=

∫ T

0

F
dx

dt
dt

=

∫ T

0

ma
dx

dt
dt =

∫ T

0

m
d2x

dt2
dx

dt
dt (by definition of acceleration)

=
m

2

∫ T

0

d

dt

(
dx

dt

)2

dt (by chain rule)

=
m

2

{(
dx

dt

)2

(T )−
(
dx

dt

)2

(0)

}

=
1

2
mv2 (since

dx

dt
(T ) = v and

dx

dt
(0) = 0).

2.2.3 Hooke’s Law

Consider a particle of mass m subject to the force

F = −kx, k > 0, (Hooke’s Law). (2.14)

The minus sign (with k > 0) means the force is a restoring force—as in a spring. Indeed, to a good
approximation the force a spring exerts on a particle is given by Hooke’s Law. In this case x = x(t)
measures the displacement from the equilibrium position at time t; and the constant k is called the
spring constant. Larger values of k correspond to a stiffer spring. Newton’s equations are in this case

m
d2x

dt2
+ kx = 0. (2.15)

This is a second order linear differential equation, the subject of the next chapter. However, we can
use the energy conservation principle to derive an associated nonlinear first order equation as we
discussed above. To do this, we first determine the potential corresponding to Hooke’s force law.

One easily checks that the potential equals

V (x) =
1

2
k x2.

(This potential is called the harmonic potential.) Let’s substitute this particular V into (2.13):∫
1√

2E/m− kx2/m
dx = t− t0. (2.16)

Recall the indefinite integral ∫
dx√
a2 − x2

= arcsin

(
x

|a|
)
+ c.
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Figure 2.2: Robert Hooke, 1635–1703.

Using this in (2.16) we obtain∫
1√

2E/m− kx2/m
dx =

1√
k/m

∫
dx√

2E/k − x2

=
1√
k/m

arcsin

(
x√
2E/k

)
+ c.

Thus (2.16) becomes3

arcsin

(
x√
2E/k

)
=

√
k

m
t+ c.

Taking the sine of both sides of this equation gives

x√
2E/k

= sin

(√
k

m
t+ c

)
,

or

x(t) =

√
2E

k
sin

(√
k

m
t+ c

)
. (2.17)

Observe that there are two constants appearing in (2.17), E and c. Suppose one initial condition is

x(0) = x0.

3We use the same symbol c for yet another unknown constant.
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Figure 2.3: The mass-spring system: k is the spring constant in Hook’s Law, m is the mass of the
object and c represents a frictional force between the mass and floor. We neglect this frictional force.
(Later we’ll consider the effect of friction on the mass-spring system.)

Evaluating (2.17) at t = 0 gives

x0 =

√
2E

k
sin(c). (2.18)

Now use the sine addition formula,

sin(θ1 + θ2) = sin θ1 cos θ2 + sin θ2 cos θ1,

in (2.17):

x(t) =

√
2E

k

{
sin

(√
k

m
t

)
cos c+ cos

(√
k

m
t

)
sin c

}

=

√
2E

k
sin

(√
k

m
t

)
cos c+ x0 cos

(√
k

m
t

)
(2.19)

where we use (2.18) to get the last equality.

Now substitute t = 0 into the energy conservation equation,

E =
1

2
mv20 + V (x0) =

1

2
mv20 +

1

2
k x20.

(v0 equals the velocity of the particle at time t = 0.) Substituting (2.18) in the right hand side of this
equation gives

E =
1

2
mv20 +

1

2
k
2E

k
sin2 c

or

E(1 − sin2 c) =
1

2
mv20 .

Recalling the trig identity sin2 θ + cos2 θ = 1, this last equation can be written as

E cos2 c =
1

2
mv20 .
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Solve this for v0 to obtain the identity

v0 =

√
2E

m
cos c.

We now use this in (2.19)

x(t) = v0

√
m

k
sin

(√
k

m
t

)
+ x0 cos

(√
k

m
t

)
.

To summarize, we have eliminated the two constants E and c in favor of the constants x0 and v0. As
it must be, x(0) = x0 and ẋ(0) = v0. The last equation is more easily interpreted if we define

ω0 =

√
k

m
. (2.20)

Observe that ω0 has the units of 1/time, i.e. frequency. Thus our final expression for the position
x = x(t) of a particle of mass m subject to Hooke’s Law is

x(t) = x0 cos(ω0t) +
v0
ω0

sin(ω0t). (2.21)

Observe that this solution depends upon two arbitrary constants, x0 and v0.
4 In (2.7), the general

solution depended only upon one constant. It is a general fact that the number of independent
constants appearing in the general solution of a nth order5 ODE is n.

Period of mass-spring system satisfying Hooke’s Law

The sine and cosine are periodic functions of period 2π, i.e.

sin(θ + 2π) = sin θ, cos(θ + 2π) = cos θ.

This implies that our solution x = x(t) is periodic in time,

x(t+ T ) = x(t),

where the period T is

T =
2π

ω0
= 2π

√
m

k
. (2.23)

Observe that the period T , for the mass-spring system following Hooke’s law, depends on the mass m
and the spring constant k but not on the initial conditions .

4ω0 is a constant too, but it is a parameter appearing in the differential equation that is fixed by the mass m and
the spring constant k. Observe that we can rewrite (2.15) as

ẍ+ ω2
0x = 0. (2.22)

Dimensionally this equation is pleasing: ẍ has the dimensions of d/t2 (d is distance and t is time) and so does ω2
0 x since

ω0 is a frequency. It is instructive to substitute (2.21) into (2.22) and verify directly that it is a solution. Please do so!
5The order of a scalar differential equation is equal to the order of the highest derivative appearing in the equation.

Thus (2.3) is first order whereas (2.15) is second order.
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2.2.4 Period of the nonlinear pendulum

In this section we use the method of separation of variables to derive an exact formula for the period
of the pendulum. Recall that the ODE describing the time evolution of the angle of deflection, θ, is
(1.11). This ODE is a second order equation and so the method of separation of variables does not
apply to this equation. However, we will use energy conservation in a manner similar to the previous
section on Hooke’s Law.

To get some idea of what we should expect, first recall the approximation we derived for small
deflection angles, (1.12). Comparing this differential equation with (2.15), we see that under the
identification x → θ and k

m → g
� , the two equations are identical. Thus using the period derived in

the last section, (2.23), we get as an approximation to the period of the pendulum

T0 =
2π

ω0
= 2π

√
�

g
. (2.24)

An important feature of T0 is that it does not depend upon the amplitude of the oscillation.6 That
is, suppose we have the initial conditions7

θ(0) = θ0, θ̇(0) = 0, (2.25)

then T0 does not depend upon θ0. We now proceed to derive our formula for the period, T , of the
pendulum.

We claim that the energy of the pendulum is given by

E = E(θ, θ̇) =
1

2
m�2 θ̇2 +mg�(1− cos θ). (2.26)

Proof of (2.26)

We begin with

E = Kinetic energy + Potential energy

=
1

2
mv2 +mgy. (2.27)

(This last equality uses the fact that the potential at height h in a constant gravitational force field
is mgh. In the pendulum problem with our choice of coordinates h = y.) The x and y coordinates of
the pendulum ball are, in terms of the angle of deflection θ, given by

x = � sin θ, y = �(1− cos θ).

Differentiating with respect to t gives

ẋ = � cos θ θ̇, ẏ = � sin θ θ̇,

from which it follows that the velocity is given by

v2 = ẋ2 + ẏ2

= �2 θ̇2.
6Of course, its validity is only for small oscillations.
7For simplicity we assume the initial angular velocity is zero, θ̇(0) = 0. This is the usual initial condition for a

pendulum.
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Substituting these in (2.27) gives (2.26).

The energy conservation theorem states that for solutions θ(t) of (1.11), E(θ(t), θ̇(t)) is independent
of t. Thus we can evaluate E at t = 0 using the initial conditions (2.25) and know that for subsequent
t the value of E remains unchanged,

E =
1

2
m�2 θ̇(0)2 +mg� (1− cos θ(0))

= mg�(1− cos θ0).

Using this (2.26) becomes

mg�(1− cos θ0) =
1

2
m�2 θ̇2 +mg�(1− cos θ),

which can be rewritten as
1

2
m�2θ̇2 = mg�(cos θ − cos θ0).

Solving for θ̇,

θ̇ =

√
2g

�
(cos θ − cos θ0) ,

followed by separating variables gives

dθ√
2g
� (cos θ − cos θ0)

= dt. (2.28)

We now integrate (2.28). The next step is a bit tricky—to choose the limits of integration in such
a way that the integral on the right hand side of (2.28) is related to the period T . By the definition
of the period, T is the time elapsed from t = 0 when θ = θ0 to the time T when θ first returns to
the point θ0. By symmetry, T/2 is the time it takes the pendulum to go from θ0 to −θ0. Thus if we
integrate the left hand side of (2.28) from −θ0 to θ0 the time elapsed is T/2. That is,

1

2
T =

∫ θ0

−θ0

dθ√
2g
� (cos θ − cos θ0)

.

Since the integrand is an even function of θ,

T = 4

∫ θ0

0

dθ√
2g
� (cos θ − cos θ0)

. (2.29)

This is the sought after formula for the period of the pendulum. For small θ0 we expect that T , as
given by (2.29), should be approximately equal to T0 (see (2.24)). It is instructive to see this precisely.

We now assume |θ0| � 1 so that the approximation

cos θ ≈ 1− 1

2!
θ2 +

1

4!
θ4
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is accurate for |θ| < θ0. Using this approximation we see that

cos θ − cos θ0 ≈ 1

2!
(θ20 − θ2)− 1

4!
(θ40 − θ4)

=
1

2
(θ20 − θ2)

(
1− 1

12
(θ20 + θ2)

)
.

From Taylor’s formula8 we get the approximation, valid for |x| � 1,

1√
1− x

≈ 1 +
1

2
x.

Thus

1√
2g
� (cos θ − cos θ0)

≈
√
�

g

1√
θ20 − θ2

1√
1− 1

12 (θ
2
0 + θ2)

≈
√
�

g

1√
θ20 − θ2

(
1 +

1

24
(θ20 + θ2)

)
.

Now substitute this approximate expression for the integrand appearing in (2.29) to find

T

4
=

√
�

g

∫ θ0

0

1√
θ20 − θ2

(
1 +

1

24
(θ20 + θ2)

)
+ higher order corrections.

Make the change of variables θ = θ0x, then∫ θ0

0

dθ√
θ20 − θ2

=

∫ 1

0

dx√
1− x2

=
π

2
,∫ θ0

0

θ2 dθ√
θ20 − θ2

= θ20

∫ 1

0

x2 dx√
1− x2

= θ20
π

4
.

Using these definite integrals we obtain

T

4
=

√
�

g

(
π

2
+

1

24
(θ20

π

2
+ θ20

π

4
)

)

=

√
�

g

π

2

(
1 +

θ20
16

)
+ higher order terms.

Recalling (2.24), we conclude

T = T0

(
1 +

θ20
16

+ · · ·
)

(2.30)

where the · · · represent the higher order correction terms coming from higher order terms in the
expansion of the cosines. These higher order terms will involve higher powers of θ0. It now follows
from this last expression that

lim
θ0→0

T = T0.

8You should be able to do this without resorting to MatLab . But if you wanted higher order terms MatLabwould
be helpful. Recall to do this we would enter

>> syms x

>> taylor(1/sqrt(1-x))
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Observe that the first correction term to the linear result, T0, depends upon the initial amplitude of
oscillation θ0.

In Figure 2.4 shows the graph of the ratio T (θ0)/T0 as a function of the initial displacement angle
θ0.

Figure 2.4: Graph of the the exact period T (θ0) of the pendulum divided by the linear approximation

T0 = 2π
√

�
g as a function of the initial deflection angle θ0. It can be proved that as θ0 → π, the

period T (θ0) diverges to +∞. Even so, the linear approximation is quite good for moderate values of
θ0. For example at 45◦ (θ0 = π/4) the ratio is 1.03997. At 20◦ (θ0 = π/9) the ratio is 1.00767. The
approximation (2.30) predicts for θ0 = π/9 the ratio 1.007632.

Remark: To use MatLab to evaluate symbolically these definite integrals you enter (note the use of
’)

>> int(’1/sqrt(1-x^2)’,0,1)

and similarly for the second integral

>> int(’x^2/sqrt(1-x^2)’,0,1)
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Numerical example

Suppose we have a pendulum of length � = 1 meter. The linear theory says that the period of the
oscillation for such a pendulum is

T0 = 2π

√
�

g
= 2π

√
1

9.8
= 2.0071 sec.

If the amplitude of oscillation of the of the pendulum is θ0 ≈ 0.2 (this corresponds to roughly a 20
cm deflection for the one meter pendulum), then (2.30) gives

T = T0

(
1 +

1

16
(.2)2

)
= 2.0121076 sec.

One might think that these are so close that the correction is not needed. This might well be true if we
were interested in only a few oscillations. What would be the difference in one week (1 week=604,800
sec)?

One might well ask how good an approximation is (2.30) to the exact result (2.29)? To answer this
we have to evaluate numerically the integral appearing in (2.29). Evaluating (2.29) numerically (using
say Mathematica’s NIntegrate) is a bit tricky because the endpoint θ0 is singular—an integrable
singularity but it causes numerical integration routines some difficulty. Here’s how you get around
this problem. One isolates where the problem occurs—near θ0—and takes care of this analytically.
For ε > 0 and ε� 1 we decompose the integral into two integrals: one over the interval (0, θ0−ε) and
the other one over the interval (θ0 − ε, θ0). It’s the integral over this second interval that we estimate
analytically. Expanding the cosine function about the point θ0, Taylor’s formula gives

cos θ = cos θ0 − sin θ0 (θ − θ0)− cos θ0
2

(θ − θ0)
2 + · · · .

Thus

cos θ − cos θ0 = sin θ0 (θ − θ0)

(
1− 1

2
cot θ0 (θ − θ0)

)
+ · · · .

So

1√
cos θ − cos θ0

=
1√

sin θ0 (θ − θ0)

1√
1− 1

2 cot θ0(θ0 − θ)
+ · · ·

=
1√

sin θ0 (θ0 − θ)

(
1 +

1

4
cot θ0 (θ0 − θ)

)
+ · · ·

Thus∫ θ0

θ0−ε

dθ√
cos θ − cos θ0

=

∫ θ0

θ0−ε

dθ√
sin θ0 (θ0 − θ)

(
1 +

1

4
cot θ0 (θ − θ0)

)
dθ + · · ·

=
1√
sin θ0

(∫ ε

0

u−1/2 du+
1

4
cot θ0

∫ ε

0

u1/2 du+ · · ·
)

(u := θ0 − θ)

=
1√
sin θ0

(
2ε1/2 +

1

6
cot θ0 ε

3/2

)
+ · · · .

Choosing ε = 10−2, the error we make in using the above expression is of order ε5/2 = 10−5. Substi-
tuting θ0 = 0.2 and ε = 10−2 into the above expression, we get the approximation∫ θ0

θ0−ε

dθ√
cos θ − cos θ0

≈ 0.4506
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where we estimate the error lies in fifth decimal place. Now the numerical integration routine in
MatLab quickly evaluates this integral:∫ θ0−ε

0

dθ√
cos θ − cos θ0

≈ 1.7764

for θ0 = 0.2 and ε = 10−2. Specifically, one enters

>> quad(’1./sqrt(cos(x)-cos(0.2))’,0,0.2-1/100)

Hence for θ0 = 0.2 we have∫ θ0

0

dθ√
cos θ − cos θ0

≈ 0.4506 + 1.77664 = 2.2270

This implies
T ≈ 2.0121.

Thus the first order approximation (2.30) is accurate to some four decimal places when θ0 ≤ 0.2. (The
reason for such good accuracy is that the correction term to (2.30) is of order θ40.)

Remark: If you use MatLab to do the integral from 0 to θ0 directly, i.e.

>> quad(’1./sqrt(cos(x)-cos(0.2))’,0,0.2)

what happens? This is an excellent example of what may go wrong if one uses software packages
without thinking first ! Use help quad to find out more about numerical integration in MatLab .

The attentive reader may have wondered how we produced the graph in Figure 2.4. It turns out
that the integral (2.29) can be expressed in terms of a special function called “elliptic integral of the
first kind”. The software Mathematica has this special function and hence graphing it is easy to do:
Just enter

Integrate[1/Sqrt[Cos[x]-Cos[x0]],{x,0,x0},Assumptions->{0<x0<Pi}]

to get the integral in terms of this special function. You can now askMathematica to plot the result.

2.3 Level curves of the energy

For the mass-spring system (Hooke’s Law) the energy is

E =
1

2
mv2 +

1

2
kx2 (2.31)

which we can rewrite as (x
a

)2

+
(v
b

)2

= 1

where a =
√
2E/k and b =

√
2E/m. We recognize this last equation as the equation of an ellipse.

Assuming k and m are fixed, we see that for various values of the energy E we get different ellipses
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in the (x, v)-plane. Thus the values of x = x(t) and v = v(t) are fixed to lie on various ellipses. The
ellipse is fixed once we specify the energy E of the mass-spring system.

For the pendulum the energy is

E =
1

2
m�2ω2 +mg�(1− cos θ) (2.32)

where ω = dθ/dt. What do the contour curves of (2.32) look like? That is we want the curves in the
(θ, ω)-plane that obey (2.32).

To make things simpler, we set 1
2 m�

2 = 1 and mg� = 1 so that (2.32) becomes

E = ω2 + (1− cos θ) (2.33)

We now use Mathematica to plot the contour lines of (2.33) in the (θ, ω)-plane (see Figure 2.5).
For small E the contour lines look roughly like ellipses but as E gets larger the ellipses become more
deformed. At E = 2 there is a curve that separates the deformed elliptical curves from curves that
are completely different (those contour lines corresponding to E > 2). In terms of the pendulum what
do you think happens when E > 2?

Figure 2.5: Contour lines for (2.33) for various values of the energy E.
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2.4 Exercises for Chapter 2

#1. Radioactive decay

Figure 2.6: From Wikipedia: “Carbon–14 goes through radioactive beta decay: By emitting an
electron and an electron antineutrino, one of the neutrons in the carbon–14 atom decays to a proton
and the carbon-14 (half-life 5700±30 years) decays into the stable (non-radioactive) isotope nitrogen-
14.”

Carbon 14 is an unstable (radioactive) isotope of stable Carbon 12. If Q(t) represents the amount
of C14 at time t, then Q is known to satisfy the ODE

dQ

dt
= −λQ

where λ is a constant. If T1/2 denotes the half-life of C14 show that

T1/2 =
log 2

λ
.

Recall that the half-life T1/2 is the time T1/2 such that Q(T1/2) = Q(0)/2. It is known for C14 that
T1/2 ≈ 5730 years. In Carbon 14 dating9 it becomes difficult to measure the levels of C14 in a
substance when it is of order 0.1% of that found in currently living material. How many years must
have passed for a sample of C14 to have decayed to 0.1% of its original value? The technique of
Carbon 14 dating is not so useful after this number of years.

9From Wikipedia: The Earth’s atmosphere contains various isotopes of carbon, roughly in constant proportions.
These include the main stable isotope C12 and an unstable isotope C14. Through photosynthesis, plants absorb both
forms from carbon dioxide in the atmosphere. When an organism dies, it contains the standard ratio of C14 to C12, but
as the C14 decays with no possibility of replenishment, the proportion of carbon 14 decreases at a known constant rate.
The time taken for it to reduce by half is known as the half-life of C14. The measurement of the remaining proportion
of C14 in organic matter thus gives an estimate of its age (a raw radiocarbon age). However, over time there are small
fluctuations in the ratio of C14 to C12 in the atmosphere, fluctuations that have been noted in natural records of the
past, such as sequences of tree rings and cave deposits. These records allow fine-tuning, or “calibration”, of the raw
radiocarbon age, to give a more accurate estimate of the calendar date of the material. One of the most frequent uses
of radiocarbon dating is to estimate the age of organic remains from archaeological sites. The concentration of C14 in
the atmosphere might be expected to reduce over thousands of years. However, C14 is constantly being produced in
the lower stratosphere and upper troposphere by cosmic rays, which generate neutrons that in turn create C14 when
they strike nitrogen–14 atoms. Once produced, the C14 quickly combines with the oxygen in the atmosphere to form
carbon dioxide. Carbon dioxide produced in this way diffuses in the atmosphere, is dissolved in the ocean, and is taken
up by plants via photosynthesis. Animals eat the plants, and ultimately the radiocarbon is distributed throughout the
biosphere.
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#2: Mortgage payment problem

In the problem dealing with mortgage rates, prove (2.10) and (2.11). Using either a hand calculator
or some computer software, create a table of monthly payments on a loan of $200,000 for 30 years for
interest rates from 1% to 15% in increments of 1%.

#3: Discontinuous forcing term

Solve

y′ + 2y = g(t), y(0) = 0,

where

g(t) =

{
1, 0 ≤ t ≤ 1
0, t > 1

We make the additional assumption that the solution y = y(t) should be a continuous function of t.
Hint: First solve the differential equation on the interval [0, 1] and then on the interval [1,∞). You
are given the initial value at t = 0 and after you solve the equation on [0, 1] you will then know y(1).10

Plot the solution y = y(t) for 0 ≤ t ≤ 4. (You can use any computer algebra program or just graph
the y(t) by hand.)

#4. Application to population dynamics

In biological applications the population P of certain organisms at time t is sometimes assumed to
obey the equation

dP

dt
= aP

(
1− P

E

)
(2.34)

where a and E are positive constants. This model is sometimes called the logistic growth model.

1. Find the equilibrium solutions. (That is solutions that don’t change with t.)

2. From (2.34) determine the regions of P where P is increasing (decreasing) as a function of t.
Again using (2.34) find an expression for d2P/dt2 in terms of P and the constants a and E.
From this expression find the regions of P where P is convex (d2P/dt2 > 0) and the regions
where P is concave (d2P/dt2 < 0).

3. Using the method of separation of variables solve (2.34) for P = P (t) assuming that at t = 0,
P = P0 > 0. Find

lim
t→∞P (t)

Hint: To do the integration first use the identity

1

P (1− P/E)
=

1

P
+

1

E − P

4. Sketch P as a function of t for 0 < P0 < E and for E < P0 <∞.

10 This is problem #32, pg. 74 (7th edition) of the Boyce & DiPrima [4].
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#5: Mass-spring system with friction

We reconsider the mass-spring system but now assume there is a frictional force present and this
frictional force is proportional to the velocity of the particle. Thus the force acting on the particle
comes from two terms: one due to the force exerted by the spring and the other due to the frictional
force. Thus Newton’s equations become

−kx− βẋ = mẍ (2.35)

where as before x = x(t) is the displacement from the equilibrium position at time t. β and k are
positive constants. Introduce the energy function

E = E(x, ẋ) =
1

2
mẋ2 +

1

2
kx2, (2.36)

and show that if x = x(t) satisfies (2.35), then

dE

dt
< 0.

What is the physical meaning of this last inequality?

#6: Nonlinear mass-spring system

Consider a mass-spring system where x = x(t) denotes the displacement of the mass m from its
equilibrium position at time t. The linear spring (Hooke’s Law) assumes the force exerted by the
spring on the mass is given by (2.14). Suppose instead that the force F is given by

F = F (x) = −kx− ε x3 (2.37)

where ε is a small positive number.11 The second term represents a nonlinear correction to Hooke’s
Law. Why is it reasonable to assume that the first correction term to Hooke’s Law is of order x3 and
not x2? (Hint: Why is it reasonable to assume F (x) is an odd function of x?) Using the solution
for the period of the pendulum as a guide, find an exact integral expression for the period T of this
nonlinear mass-spring system assuming the initial conditions

x(0) = x0,
dx

dt
(0) = 0.

Define

z =
εx20
2k

.

Show that z is dimensionless and that your expression for the period T can be written as

T =
4

ω0

∫ 1

0

1√
1− u2 + z − zu4

du (2.38)

where ω0 =
√
k/m. We now assume that z � 1. (This is the precise meaning of the parameter ε

being small.) Taylor expand the function

1√
1− u2 + z − zu4

11One could also consider ε < 0. The case ε > 0 is a called a hard spring and ε < 0 a soft spring.
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in the variable z to first order. You should find

1√
1− u2 + z − zu4

=
1√

1− u2
− 1 + u2

2
√
1− u2

z +O(z2).

Now use this approximate expression in the integrand of (2.38), evaluate the definite integrals that
arise, and show that the period T has the Taylor expansion

T =
2π

ω0

(
1− 3

4
z +O(z2)

)
.

#7: Motion in a central field

A (three-dimensional) force �F is called a central force12 if the direction of �F lies along the the direction
of the position vector �r. This problem asks you to show that the motion of a particle in a central
force, satisfying

�F = m
d2�r

dt2
, (2.39)

lies in a plane.

1. Show that
�M := �r × �p with �p := m�v (2.40)

is constant in t for �r = �r(t) satisfying (2.39). (Here �v = d�r/dt is the velocity vector and �p is
the momentum vector. In words, the momentum vector is mass times the velocity vector.) The
× in (2.40) is the vector cross product. Recall (and you may assume this result) from vector
calculus that

d

dt
(�a×�b) = d�a

dt
×�b+ �a× d�b

dt
.

The vector �M is called the angular momentum vector.

2. From the fact that �M is a constant vector, show that the vector �r(t) lies in a plane perpendicular

to �M . Hint: Look at �r · �M . Also you may find helpful the vector identity

�a · (�b × �c) = �b · (�c× �a) = �c · (�a×�b).

#8: Motion in a central field (cont)

From the preceding problem we learned that the position vector �r(t) for a particle moving in a central
force lies in a plane. In this plane, let (r, θ) be the polar coordinates of the point �r, i.e.

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t) (2.41)

1. In components, Newton’s equations can be written (why?)

Fx = f(r)
x

r
= mẍ, Fy = f(r)

y

r
= mÿ (2.42)

12For an in depth treatment of motion in a central field, see [1], Chapter 2, §8.
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where f(r) is the magnitude of the force �F . By twice differentiating (2.41) with respect to t,
derive formulas for ẍ and ÿ in terms of r, θ and their derivatives. Use these formulas in (2.42)
to show that Newton’s equations in polar coordinates (and for a central force) become

1

m
f(r) cos θ = r̈ cos θ − 2ṙθ̇ sin θ − rθ̇2 cos θ − rθ̈ sin θ, (2.43)

1

m
f(r) sin θ = r̈ sin θ + 2ṙθ̇ cos θ − rθ̇2 sin θ + rθ̈ cos θ. (2.44)

Multiply (2.43) by cos θ, (2.44) by sin θ, and add the resulting two equations to show that

r̈ − rθ̇2 =
1

m
f(r). (2.45)

Now multiply (2.43) by sin θ, (2.44) by cos θ, and substract the resulting two equations to show
that

2ṙθ̇ + rθ̈ = 0. (2.46)

Observe that the left hand side of (2.46) is equal to

1

r

d

dt
(r2θ̇).

Using this observation we then conclude (why?)

r2θ̇ = H (2.47)

for some constant H . Use (2.47) to solve for θ̇, eliminate θ̇ in (2.45) to conclude that the polar
coordinate function r = r(t) satisfies

r̈ =
1

m
f(r) +

H2

r3
. (2.48)

2. Equation (2.48) is of the form that a second derivative of the unknown r is equal to some function
of r. We can thus apply our general energy method to this equation. Let Φ be a function of r
satisfying

1

m
f(r) = −dΦ

dr
,

and find an effective potential V = V (r) such that (2.48) can be written as

r̈ = −dV
dr

(2.49)

(Ans: V (r) = Φ(r) + H2

2r2 ). Remark: The most famous choice for f(r) is the inverse square law

f(r) = −mMG0

r2

which describes the gravitational attraction of two particles of masses m and M . (G0 is the
universal gravitational constant.) In your physics courses, this case will be analyzed in great
detail. The starting point is what we have done here.

3. With the choice

f(r) = −mMG0

r2
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the equation (2.48) gives a DE that is satisfied by r as a function of t:

r̈ = −G

r2
+
H2

r3
(2.50)

where G = MG0. We now use (2.50) to obtain a DE that is satisfied by r as a function of θ.
This is the quantity of interest if one wants the orbit of the planet. Assume that H �= 0, r �= 0,
and set r = r(θ). First, show that by chain rule

r̈ = r′′θ̇2 + r′θ̈. (2.51)

(Here, ′ implies the differentiation with respect to θ, and as usual, the dot refers to differentiation
with respect to time.) Then use (2.47) and (2.51) to obtain

r̈ = r′′
H2

r4
− (r′)2

2H2

r5
(2.52)

Now, obtain a second order DE of r as a function of θ from (2.50) and (2.52). Finally, by letting
u(θ) = 1/r(θ), obtain a simple linear constant coefficient DE

u′′ + u =
G

H2
(2.53)

which is known as Binet’s equation.13

#9: Euler’s equations for a rigid body with no torque

In mechanics one studies the motion of a rigid body14 around a stationary point in the absence
of outside forces. Euler’s equations are differential equations for the angular velocity vector Ω =
(Ω1,Ω2,Ω3). If Ii denotes the moment of inertia of the body with respect to the ith principal axis,
then Euler’s equations are

I1
dΩ1

dt
= (I2 − I3)Ω2Ω3

I2
dΩ2

dt
= (I3 − I1)Ω3Ω1

I3
dΩ3

dt
= (I1 − I2)Ω1Ω2

Prove that

M = I21Ω
2
1 + I22Ω

2
2 + I23Ω

2
3

and

E =
1

2
I1Ω

2
1 +

1

2
I2Ω

2
2 +

1

2
I3Ω

2
3

are both first integrals of the motion. (That is, if the Ωj evolve according to Euler’s equations, then
M and E are independent of t.)

13For further discussion of Binet’s equation see [8].
14For an in-depth discussion of rigid body motion see Chapter 6 of [1].
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#10. Exponential function

In calculus one defines the exponential function et by

et := lim
n→∞(1 +

t

n
)n , t ∈ R.

Suppose one took the point of view of differential equations and defined et to be the (unique) solution
to the ODE

dE

dt
= E (2.54)

that satisfies the initial condition E(0) = 1.15 Prove that the addition formula

et+s = etes

follows from the ODE definition. [Hint: Define

φ(t) := E(t+ s)− E(t)E(s)

where E(t) is the above unique solution to the ODE satisfying E(0) = 1. Show that φ satisfies the
ODE

dφ

dt
= φ(t)

From this conclude that necessarily φ(t) = 0 for all t.]

Using the above ODE definition of E(t) show that∫ t

0

E(s) ds = E(t)− 1.

Let E0(t) = 1 and define En(t), n ≥ 1 by

En+1(t) = 1 +

∫ t

0

En(s) ds, n = 0, 1, 2, . . . . (2.55)

Show that

En(t) = 1 + t+
t2

2!
+ · · ·+ tn

n!
.

By the ratio test this sequence of partial sums converges as n→ ∞. Assuming one can take the limit
n→ ∞ inside the integral (2.55),16conclude that

et = E(t) =

∞∑
n=0

tn

n!

15That is, we are taking the point of view that we define et to be the solution E(t). Here is a proof that given a
solution to (2.54) satisfying the initial condition E(0) = 1, that such a solution is unique. Suppose we have found two
such solutions: E1(t) and E2(t). Let y(t) = E1(t)/E2(t), then

dy

dt
=

1

E2

dE1

dt
− E1

E2
2

dE2

dt
=
E1

E2
− E1

E2
2

E2 = 0

Thus y(t) = constant. But we know that y(0) = E1(0)/E2(0) = 1. Thus y(t) = 1, or E1(t) = E2(t).
16The series

∑
n≥0 s

n/n! converges uniformly on the closed interval [0, t]. From this fact it follows that one is allowed
to interchange the sum and integration. These convergence topics are normally discussed in an advanced calculus course.
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#11. Addition formula for the tangent function

Suppose we wish to find a real-valued, differentiable function F (x) that satisfies the functional equation

F (x+ y) =
F (x) + F (y)

1− F (x)F (y)
(2.56)

1. Show that such an F necessarily satisfies F (0) = 0. Hint: Use (2.56) to get an expression for
F (0 + 0) and then use fact that we seek F to be real-valued.

2. Set α = F ′(0). Show that F must satisfy the differential equation

dF

dx
= α(1 + F (x)2) (2.57)

Hint: Differentiate (2.56) with respect to y and then set y = 0.

3. Use the method of separation of variables to solve (2.57) and show that

F (x) = tan(αx).

#12. Euler numbers

Define the sequence of integers En, n = 0, 1, 2, . . . by E0 = 1, E1 = 1, and

2En+1 =

n∑
j=0

(
n

j

)
EjEn−j , n = 1, 2, . . . (2.58)

where
(

n
j

)
is the binomial coefficient.17 Thus, for example the first few Euler numbers are E0 = 1,

E1 = 1, E2 = 1, E3 = 2, E4 = 5, E5 = 16, . . .. Define the function

F (x) =

∞∑
n=0

En

n!
xn (2.59)

1. Show that F (x) satisfies the differential equation

2
∂F

dx
= 1 + F (x)2 (2.60)

2. Solve (2.60) subject to the initial condition F (0) = E0 = 1. Show that the solution is

F (x) = sec(x) + tan(x)

Because of this result, E2n+1, n = 0, 1, 2, . . ., are sometimes called tangent numbers and E2n are
called secant numbers since by Taylor’s theorem we have

tan(x) =

∞∑
n=0

E2n+1

(2n+ 1)!
x2n+1 and sec(x) =

∞∑
n=0

E2n

(2n)!
x2n.

17Recall (
n

j

)
=

n!

j!(n− j)!

and n! is the factorial function, i.e. n! = 1 · 2 · 3 · · ·n with the convention that 0! = 1.
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Hints:

1. Multiply (2.58) by xn/n! and sum the resulting equation over n = 1, 2, . . .. Recall that if

A(x) =

∞∑
n=0

anx
n and B(x) =

∞∑
n=0

bnx
n

then

C(x) := A(x)B(x) =

∞∑
n=0

cnx
n

where

cn =

n∑
k=0

akbn−k

Also recall that if A(x) is as above, then

dA

dx
=

∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n

2. Solve (2.60) by the method of separation of variables. This should lead to a solution of the form

F (x) = tan(
x

2
+ c)

Use the initial condition to show that c = π/4.

3. Use trig identities to show that

tan(
x

2
+
π

4
) = sec(x) + tan(x)
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Second Order Linear Equations

Figure 3.1: eix = cos+i sinx, Leonhard Euler, Introductio in Analysin Infinitorum, 1748
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3.1 Theory of second order equations

3.1.1 Vector space of solutions

First order linear differential equations are of the form

dy

dx
+ p(x)y = f(x). (3.1)

Second order linear differential equations are linear differential equations whose highest derivative is
second order:

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = f(x). (3.2)

If f(x) = 0,
d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0, (3.3)

the equation is called homogeneous. For the discussion here, we assume p and q are continuous
functions on a closed interval [a, b]. There are many important examples where this condition fails
and the points at which either p or q fail to be continuous are called singular points. An introduction
to singular points in ordinary differential equations can be found in Boyce & DiPrima [4]. Here are
some important examples where the continuity condition fails.

Legendre’s equation

p(x) = − 2x

1− x2
, q(x) =

n(n+ 1)

1− x2
.

At the points x = ±1 both p and q fail to be continuous.

Bessel’s equation

p(x) =
1

x
, q(x) = 1− ν2

x2
.

At the point x = 0 both p and q fail to be continuous.

We saw that a solution to (3.1) was uniquely specified once we gave one initial condition,

y(x0) = y0.

In the case of second order equations we must give two initial conditions to specify uniquely a solution:

y(x0) = y0 and y′(x0) = y1. (3.4)

This is a basic theorem of the subject. It says that if p and q are continuous on some interval (a, b)
and a < x0 < b, then there exists an unique solution to (3.3) satisfying the initial conditions (3.4).1

We will not prove this theorem in this class. As an example of the appearance to two constants in the
general solution, recall that the solution of the harmonic oscillator

ẍ+ ω2
0x = 0

contained x0 and v0.

1See Theorem 3.2.1 in the [4], pg. 131 or chapter 6 of [3]. These theorems dealing with the existence and uniqueness
of the initial value problem are covered in an advanced course in differential equations.
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Let V denote the set of all solutions to (3.3). The most important feature of V is that it is a
two-dimensional vector space. That it is a vector space follows from the linearity of (3.3). (If y1 and
y2 are solutions to (3.3), then so is c1y1+c2y2 for all constants c1 and c2.) To prove that the dimension
of V is two, we first introduce two special solutions. Let Y1 and Y2 be the unique solutions to (3.3)
that satisfy the initial conditions

Y1(0) = 1, Y ′
1(0) = 0, and Y2(0) = 0, Y ′

2(0) = 1,

respectively.

We claim that {Y1, Y2} forms a basis for V . To see this let y(x) be any solution to (3.3).2 Let
c1 := y(0), c2 := y′(0) and

∆(x) := y(x)− c1 Y1(x)− c2 Y2(x).

Since y, Y1 and Y2 are solutions to (3.3), so too is ∆. (V is a vector space.) Observe

∆(0) = 0 and ∆′(0) = 0. (3.5)

Now the function y0(x) :≡ 0 satisfies (3.3) and the initial conditions (3.5). Since solutions are unique,
it follows that ∆(x) ≡ y0 ≡ 0. That is,

y = c1 Y1 + c2 Y2.

To summarize, we’ve shown every solution to (3.3) is a linear combination of Y1 and Y2. That Y1 and
Y2 are linearly independent follows from their initial values: Suppose

c1Y1(x) + c2Y2(x) = 0.

Evaluate this at x = 0, use the initial conditions to see that c1 = 0. Take the derivative of this
equation, evaluate the resulting equation at x = 0 to see that c2 = 0. Thus, Y1 and Y2 are linearly
independent. We conclude, therefore, that {Y1, Y2} is a basis and dimV = 2.

3.1.2 Wronskians

Given two solutions y1 and y2 of (3.3) it is useful to find a simple condition that tests whether they
form a basis of V . Let ϕ be the solution of (3.3) satisfying ϕ(x0) = ϕ0 and ϕ′(x0) = ϕ1. We ask are
there constants c1 and c2 such that

ϕ(x) = c1y1(x) + c2y2(x)

for all x? A necessary and sufficient condition that such constants exist at x = x0 is that the equations

ϕ0 = c1 y1(x0) + c2 y2(x0),

ϕ1 = c1 y
′(x0) + c2 y

′
2(x0),

have a unique solution {c1, c2}. From linear algebra we know this holds if and only if the determinant∣∣∣∣ y1(x0) y2(x0)
y′1(x0) y′2(x0)

∣∣∣∣ �= 0.

We define the Wronskian of two solutions y1 and y2 of (3.3) to be

W (y1, y2;x) :=

∣∣∣∣ y1(x) y2(x)
y′1(x) y′2(x).

∣∣∣∣ = y1(x)y
′
2(x)− y′1(x)y2(x). (3.6)

2We assume for convenience that x = 0 lies in the interval (a, b).
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From what we have said so far one would have to check that W (y1, y2;x) �= 0 for all x to conclude
{y1, y2} forms a basis.

We now derive a formula for the Wronskian that will make the check necessary at only one point.
Since y1 and y2 are solutions of (3.3), we have

y′′1 + p(x)y′1 + q(x)y1 = 0, (3.7)

y′′2 + p(x)y′2 + q(x)y2 = 0. (3.8)

Now multiply (3.7) by y2 and multiply (3.8) by y1. Subtract the resulting two equations to obtain

y1y
′′
2 − y′′1y2 + p(x) (y1y

′
2 − y′1y2) = 0. (3.9)

Recall the definition (3.6) and observe that

dW

dx
= y1y

′′
2 − y′′1y2.

Hence (3.9) is the equation
dW

dx
+ p(x)W (x) = 0, (3.10)

whose solution is

W (y1, y2;x) = c exp

(
−
∫ x

p(s) dx

)
. (3.11)

Since the exponential is never zero we see from (3.11) that either W (y1, y2;x) ≡ 0 or W (y1, y2;x) is
never zero.

To summarize, to determine if {y1, y2} forms a basis for V , one needs to check at only one point
whether the Wronskian is zero or not.

Applications of Wronskians

1. Claim: Suppose {y1, y2} form a basis of V , then they cannot have a common point of inflection
in a < x < b unless p(x) and q(x) simultaneously vanish there. To prove this, suppose x0 is a
common point of inflection of y1 and y2. That is,

y′′1 (x0) = 0 and y′′2 (x0) = 0.

Evaluating the differential equation (3.3) satisfied by both y1 and y2 at x = x0 gives

p(x0)y
′
1(x0) + q(x0)y1(x0) = 0,

p(x0)y
′
2(x0) + q(x0)y2(x0) = 0.

Assuming that p(x0) and q(x0) are not both zero at x0, the above equations are a set of ho-
mogeneous equations for p(x0) and q(x0). The only way these equations can have a nontrivial
solution is for the determinant ∣∣∣∣ y′1(x0) y1(x0)

y′2(x0) y2(x0)

∣∣∣∣ = 0.

That is, W (y1, y2;x0) = 0. But this contradicts that {y1, y2} forms a basis. Thus there can exist
no such common inflection point.
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2. Claim: Suppose {y1, y2} form a basis of V and that y1 has consecutive zeros at x = x1 and
x = x2. Then y2 has one and only one zero between x1 and x2. To prove this we first evaluate
the Wronskian at x = x1,

W (y1, y2;x1) = y1(x1)y
′
2(x1)− y′1(x1)y2(x1) = −y′1(x1)y2(x1)

since y1(x1) = 0. Evaluating the Wronskian at x = x2 gives

W (y1, y2;x2) = −y′1(x2)y2(x2).
Now W (y1, y2;x1) is either positive or negative. (It can’t be zero.) Let’s assume it is positive.
(The case when the Wronskian is negative is handled similarly. We leave this case to the reader.)
Since the Wronskian is always of the same sign, W (y1, y2;x2) is also positive. Since x1 and x2
are consecutive zeros, the signs of y′1(x1) and y

′
1(x2) are opposite of each other. But this implies

(from knowing that the two Wronskian expressions are both positive), that y2(x1) and y2(x2)
have opposite signs. Thus there exists at least one zero of y2 at x = x3, x1 < x3 < x2. If there
exist two or more such zeros, then between any two of these zeros apply the above argument
(with the roles of y1 and y2 reversed) to conclude that y1 has a zero between x1 and x2. But x1
and x2 were assumed to be consecutive zeros. Thus y2 has one and only one zero between x1
and x2.

In the case of the harmonic oscillator, y1(x) = cosω0x and y2(x) = sinω0x, and the fact that
the zeros of the sine function interlace those of the cosine function is well known.

Here is a second example: Consider the Airy differential equation

d2y

dx2
− xy = 0 (3.12)

Two linearly independent solutions to the Airy DE are plotted in Figure 3.2. We denote these
particular linearly independent solutions by y1(x) := Ai(x) and y2(x) := Bi(x). The function
Ai(x) is the solution approaching zero as x → +∞ in Figure 3.2. Note the interlacing of the
zeros.

Figure 3.2: The Airy functions Ai(x) and Bi(x) are plotted. Note that the between any two zeros of
one solutions lies a zero of the other solution.
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3.2 Reduction of order

Suppose y1 is a solution of (3.3). Let
y(x) = v(x)y1(x).

Then
y′ = v′y1 + vy′1 and y′′ = v′′y1 + 2v′y′1 + vy′′1 .

Substitute these expressions for y and its first and second derivatives into (3.3) and make use of the
fact that y1 is a solution of (3.3). One obtains the following differential equation for v:

v′′ +
(
p+ 2

y′1
y1

)
v′ = 0,

or upon setting u = v′,

u′ +
(
p+ 2

y′1
y1

)
u = 0.

This last equation is a first order linear equation. Its solution is

u(x) = c exp

(
−
∫ (

p+ 2
y′1
y1

)
dx

)
=

c

y21(x)
exp

(
−
∫
p(x) dx

)
.

This implies

v(x) =

∫
u(x) dx,

so that

y(x) = cy1(x)

∫
u(x) dx.

The point is, we have shown that if one solution to (3.3) is known, then a second solution can be
found—expressed as an integral.

3.3 Constant coefficients

We assume that p(x) and q(x) are constants independent of x. We write (3.3) in this case as3

ay′′ + by′ + cy = 0. (3.13)

We “guess” a solution of the form
y(x) = eλx.

Substituting this into (3.13) gives

aλ2eλx + bλeλx + ceλx = 0.

Since eλx is never zero, the only way the above equation can be satisfied is if

aλ2 + bλ+ c = 0. (3.14)

Let λ± denote the roots of this quadratic equation, i.e.

λ± =
−b±√

b2 − 4ac

2a
.

We consider three cases.
3This corresponds to p(x) = b/a and q(x) = c/a. For applications it is convenient to introduce the constant a.
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1. Assume b2−4ac > 0 so that the roots λ± are both real numbers. Then exp(λ+ x) and exp(λ− x)
are two linearly independent solutions to (3.14). That they are solutions follows from their
construction. They are linearly independent since

W (eλ+ x, eλ− x;x) = (λ− − λ+)e
λ+ xeλ− x �= 0

Thus in this case, every solution of (3.13) is of the form

c1 exp(λ+ x) + c2 exp(λ− x)

for some constants c1 and c2.

2. Assume b2 − 4ac = 0. In this case λ+ = λ−. Let λ denote their common value. Thus we
have one solution y1(x) = eλx. We could use the method of reduction of order to show that
a second linearly independent solution is y2(x) = xeλx. However, we choose to present a more
intuitive way of seeing this is a second linearly independent solution. (One can always make it
rigorous at the end by verifying that that it is indeed a solution.) Suppose we are in the distinct
root case but that the two roots are very close in value: λ+ = λ + ε and λ− = λ. Choosing
c1 = −c2 = 1/ε, we know that

c1y1 + c2y2 =
1

ε
e(λ+ε)x − 1

ε
eλx

= eλx
eεx − 1

ε

is also a solution. Letting ε→ 0 one easily checks that

eεx − 1

ε
→ x,

so that the above solution tends to
xeλx,

our second solution. That {eλx, xeλx} is a basis is a simple Wronskian calculation.

3. We assume b2− 4ac < 0. In this case the roots λ± are complex. At this point we review the the
exponential of a complex number.

Complex exponentials

Let z = x + iy (x, y real numbers, i2 = −1) be a complex number. Recall that x is called the
real part of z, �z, and y is called the imaginary part of z, �z. Just as we picture real numbers
as points lying in a line, called the real line R; we picture complex numbers as points lying in
the plane, called the complex plane C. The coordinates of z in the complex plane are (x, y).

The absolute value of z, denoted |z|, is equal to √
x2 + y2. The complex conjugate of z, denoted

z, is equal to x− iy. Note the useful relation

z z = |z|2 .
In calculus, or certainly an advanced calculus class, one considers (simple) functions of a complex
variable. For example the function

f(z) = z2

takes a complex number, z, and returns it square, again a complex number. (Can you show
that �f = x2 − y2 and �f = 2xy?). Using complex addition and multiplication, one can define
polynomials of a complex variable

anz
n + an−1z

n−1 + · · ·+ a1z + a0.
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The next (big) step is to study power series

∞∑
n=0

anz
n.

With power series come issues of convergence. We defer these to your advanced calculus class.

With this as a background we are (almost) ready to define the exponential of a complex number
z. First, we recall that the exponential of a real number x has the power series expansion

ex = exp(x) =

∞∑
n=0

xn

n!
(0! := 1).

In calculus classes, one normally defines the exponential in a different way4 and then proves ex

has this Taylor expansion. However, one could define the exponential function by the above
formula and then prove the various properties of ex follow from this definition. This is the
approach we take for defining the exponential of a complex number except now we use a power
series in a complex variable:5

ez = exp(z) :=

∞∑
n=0

zn

n!
, z ∈ C (3.15)

We now derive some properties of exp(z) based upon this definition.

• Let θ ∈ R, then

exp(iθ) =

∞∑
n=0

(iθ)n

n!

=

∞∑
n=0

(iθ)2n

(2n)!
+

∞∑
n=0

(iθ)2n+1

(2n+ 1)!

=

∞∑
n=0

(−1)n
θ2n

(2n)!
+ i

∞∑
n=0

(−1)n
θ2n+1

(2n+ 1)!

= cos θ + i sin θ.

This last formula is called Euler’s Formula. See Figure 3.3. Two immediate consequences
of Euler’s formula (and the facts cos(−θ) = cos θ and sin(θ) = − sin θ) are

exp(−iθ) = cos θ − i sin θ

exp(iθ) = exp(−iθ)

Hence

|exp(iθ)|2 = exp(iθ) exp(−iθ) = cos2 θ + sin2 θ = 1

That is, the values of exp(iθ) lie on the unit circle. The coordinates of the point eiθ are
(cos θ, sin θ).
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Figure 3.3: Euler’s formula.

• We claim the addition formula for the exponential function, well-known for real values, also
holds for complex values

exp(z + w) = exp(z) exp(w), z, w ∈ C. (3.16)

We are to show

exp(z + w) =
∞∑

n=0

1

n!
(z + w)n

=

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
zkwn−k (binomial theorem)

is equal to

exp(z) exp(w) =
∞∑
k=0

1

k!
zk

∞∑
m=0

1

m!
wm

=

∞∑
k,m=0

1

k!m!
zkwm

=

∞∑
n=0

n∑
k=0

1

k!(n− k)!
zkwn−k n := k +m

=

∞∑
n=0

1

n!

n∑
k=0

n!

k!(n− k)!
zkwn−k .

4A common definition is ex = limn→∞(1 + x/n)n.
5It can be proved that this infinite series converges for all complex values z.
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Since (
n

k

)
=

n!

k!(n− k)!
,

we see the two expressions are equal as claimed.

• We can now use these two properties to understand better exp(z). Let z = x+ iy, then

exp(z) = exp(x+ iy) = exp(x) exp(iy) = ex (cos y + i sin y) .

Observe the right hand side consists of functions from calculus. Thus with a calculator you
could find the exponential of any complex number using this formula.6

A form of the complex exponential we frequently use is if λ = σ + iµ and x ∈ R, then

exp(λx) = exp ((σ + iµ)x)) = eσx (cos(µx) + i sin(µx)) .

Returning to (3.13) in case b2 − 4ac < 0 and assuming a, b and c are all real, we see that the
roots λ± are of the form7

λ+ = σ + iµ and λ− = σ − iµ.

Thus eλ+x and eλ−x are linear combinations of

eσx cos(µx) and eσx sin(µx).

That they are linear independent follows from a Wronskian calculuation. To summarize, we
have shown that every solution of (3.13) in the case b2 − 4ac < 0 is of the form

c1e
σx cos(µx) + c2e

σx sin(µx)

for some constants c1 and c2.

Remarks: The MatLab function exp handles complex numbers. For example,

>> exp(i*pi)

ans =

-1.0000 + 0.0000i

The imaginary unit i is i in MatLab . You can also use sqrt(-1) in place of i. This is sometimes
useful when i is being used for other purposes. There are also the functions

abs, angle, conj, imag real

For example,

>> w=1+2*i

w =

1.0000 + 2.0000i

>> abs(w)

ans =

2.2361

6Of course, this assumes your calculator doesn’t overflow or underflow in computing ex.
7σ = −b/2a and µ =

√
4ac− b2/2a.
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>> conj(w)

ans =

1.0000 - 2.0000i

>> real(w)

ans =

1

>> imag(w)

ans =

2

>> angle(w)

ans =

1.1071

3.4 Forced oscillations of the mass-spring system

The forced mass-spring system is described by the differential equation

m
d2x

dt2
+ γ

dx

dt
+ k x = F (t) (3.17)

where x = x(t) is the displacement from equilibrium at time t, m is the mass, k is the constant in
Hooke’s Law, γ > 0 is the coefficient of friction, and F (t) is the forcing term. In these notes we
examine the solution when the forcing term is periodic with period 2π/ω. (ω is the frequency of the
forcing term.) The simplest choice for a periodic function is either sine or cosine. Here we examine
the choice

F (t) = F0 cosωt

where F0 is the amplitude of the forcing term. All solutions to (3.17) are of the form

x(t) = xp(t) + c1x1(t) + c2x2(t) (3.18)

where xp is a particular solution of (3.17) and {x1, x2} is a basis for the solution space of the homo-
geneous equation.

The homogeneous solutions have been discussed earlier. We know that both x1 and x2 will contain
a factor

e−(γ/2m)t

times factors involving sine and cosine. Since for all a > 0, e−at → 0 as t → ∞, the homogeneous part
of (3.18) will tend to zero. That is, for all initial conditions we have for large t to good approximation

x(t) ≈ xp(t).

Thus we concentrate on finding a particular solution xp.

With the right-hand side of (3.17) having a cosine term, it is natural to guess that the particular
solution will also involve cosωt. If one guesses

A cosωt

one quickly sees that due to the presence of the frictional term, this cannot be a correct since sine
terms also appear. Thus we guess

xp(t) = A cosωt+B sinωt (3.19)
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We calculate the first and second dervatives of (3.19) and substitute the results together with (3.19)
into (3.17). One obtains the equation[−Aω2m+Bωγ + kA

]
cosωt+

[−Bω2m−Aωγ + kB
]
sinωt = F0 cosωt

This equation must hold for all t and this can happen only if[−Aω2m+Bωγ + kA
]
= F0 and

[−Bω2m−Aωγ + kB
]
= 0

These last two equations are a pair of linear equations for the unknown coefficients A and B. We now
solve these linear equations. First we rewrite these equations to make subsequent steps clearer:(

k − ω2m
)
A + ωγ B = F0,

−ωγ A +
(
k − ω2m

)
B = 0.

Using Cramer’s Rule we find (check this!)

A =
k −mω2

(k −mω2)2 + γ2ω2
F0

B =
γω

(k −mω2)2 + γ2ω2
F0

We can make these results notationally simpler if we recall that the natural frequency of a (frictionless)
oscillator is

ω2
0 =

k

m

and define

∆(ω) =
√
m2(ω2 − ω2

0)
2 + γ2ω2 (3.20)

so that

A =
m(ω2

0 − ω2)

∆(ω)2
F0 and B =

γω

∆(ω)2
F0

Using these expressions for A and B we can substitute into (3.19) to find our particular solution
xp. The form (3.19) is not the best form in which to understand the properties of the solution. (It is
convenient for performing the above calculations.) For example, it is not obvious from (3.19) what is
the amplitude of oscillation. To answer this and other questions we introduce polar coordinates for A
and B:

A = R cos δ and B = R sin δ.

Then

xp(t) = A cosωt+B sinωt

= R cos δ cosωt + R sin δ sinωt

= R cos(ωt− δ)

where in the last step we used the cosine addition formula. Observe that R is the amplitude of
oscillation. The quantity δ is called the phase angle. It measures how much the oscillation lags (if
δ > 0) the forcing term. (For example, at t = 0 the amplitude of the forcing term is a maximum, but
the maximum oscillation is delayed until time t = δ/ω.)

Clearly,
A2 +B2 = R2 cos2 δ + R2 sin2 δ = R2
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omega

�1/Delta

Figure 3.4: 1/∆(ω) as a function of ω.

and

tan δ =
B

A
Substituting the expressions for A and B into the above equations give

R2 =
m2(ω2

0 − ω2)

∆4
F 2
0 +

γ2ω2

∆4
F 2
0

=
∆2

∆4
F 2
0

=
F 2
0

∆2

Thus

R =
F0

∆
(3.21)

where we recall ∆ is defined in (3.20). Taking the ratio of A and B we see that

tan δ =
γω

m(ω2
0 − ω2)

3.4.1 Resonance

We now examine the behavior of the amplitude of oscillation, R = R(ω), as a function of the frequency
ω of the driving term.

Low frequencies: When ω → 0, ∆(ω) → mω2
0 = k. Thus for low frequencies the amplitude of

oscillation approaches F0/k. This result could have been anticipated since when ω → 0, the
forcing term tends to F0, a constant. A particular solution in this case is itself a constant and
a quick calculation shows this constant is eqaul to F0/k.
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High frequencies: When ω → ∞, ∆(ω) ∼ mω2 and hence the amplitude of oscillation R → 0.
Intuitively, if you shake the mass-spring system too quickly, it does not have time to respond
before being subjected to a force in the opposite direction; thus, the overall effect is no motion.
Observe that greater the mass (inertia) the smaller R is for large frequencies.

Maximum Oscillation: The amplitude R is a maximum (as a function of ω) when ∆(ω) is a min-
imum. ∆ is a minimum when ∆2 is a minimum. Thus to find the frequency corresponding to
maximum amplitude of oscillation we must minimize

m2
(
ω2 − ω2

0

)2
+ γ2ω2.

To find the minimum we take the derivative of this expression with respect to ω and set it equal
to zero:

2m2(ω2 − ω2
0)(2ω) + 2γ2ω = 0.

Factoring the left hand side gives

ω
[
γ2 + 2m2(ω2 − ω2

0)
]
= 0.

Since we are assuming ω �= 0, the only way this equation can equal zero is for the expression in
the square brackets to equal zero. Setting this to zero and solving for ω2 gives the frequency at
which the amplitude is a maximum. We call this ωmax:

ω2
max = ω2

0 −
γ2

2m2
= ω2

0

(
1− γ2

2km

)
.

Taking the square root gives

ωmax = ω0

√
1− γ2

2km
.

Assuming γ � 1 (the case of very small friction), we can expand the square root to get the
approximate result

ωmax = ω0

(
1− γ2

4km
+O(γ4)

)
.

That is, when ω is very close to the natural frequency ω0 we will have maximum oscillation.
This phenomenon is called resonance. A graph of 1/∆ as a function of ω is shown in Fig. 3.4.
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3.5 Exercises

#1. Euler’s formula

Using Euler’s formula prove the trig identity

cos(4θ) = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ.

Again using Euler’s formula find a formula for cos(2nθ) where n = 1, 2, . . .. In this way one can also
get identities for cos(2n+ 1)θ as well as sinnθ.

#2. Roots of unity

Show that the n (distinct) solutions to the polynomial equation

xn − 1 = 0

are e2πik/n for k = 1, 2, . . . , n. For n = 6 draw a picture illustrating where these roots lie in the
complex plane.

#3. Constant coefficient ODEs

In each case find the unique solution y = y(x) that satisfies the ODE with stated initial conditions:

1. y′′ − 3y′ + 2y = 0, y(0) = 1, y′(0) = 0.

2. y′′ + 9y = 0, y(0) = 1, y′(0) = −1.

3. y′′ − 4y′ + 4y = 0, y(0) = 2, y′(0) = 0.

#4. Higher order equations

The third order homogeneous differential equation with constant coefficients is

a3y
′′′ + a2y

′′ + a1y
′ + a0y = 0 (3.22)

where ai are constants. Assume a solution of the form

y(x) = eλx

and derive an equation that λ must satisfy in order that y is a solution. (You should get a cubic
polynomial.) What is the form of the general solution to (3.22)?

#5. Euler’s equation

A differential equation of the form

t2y′′ + aty′ + by = 0, t > 0 (3.23)

where a, b are real constants, is called Euler’s equation.8 This equation can be transformed into an
equation with constant coefficients by letting x = ln t. Solve

t2y′′ + 4ty′ + 2y = 0 (3.24)
8There is perhaps no other mathematician whose name is associated to so many functions, identities, equations,

numbers, . . . as Euler.
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#6 Forced undamped system

Consider a forced undamped system described by

ÿ + y = 3 cos(ωt)

with initial conditions y(0) = 1 and ẏ(0) = 1. Find the solution for ω �= 1.

#7. Driven damped oscillator

Let
ÿ + 3ẏ + 2y = 0

be the equation of a damped oscillator. If a forcing term is F (t) = 10 cos t and the oscillator is initially
at rest at the origin, what is the solution of the equation for this driven damped oscillator? What is
the phase angle?

#8. Damped oscillator

A particle is moving according to
ÿ + 10ẏ + 16y = 0

with the initial condition y(0) = 1 and ẏ(0) = 4. Is this oscillatory ? What is the maximum value of
y?

#9. Wronskian

Consider (3.3) with p(x) and q(x) continuous on the interval [a, b]. Prove that if two solutions y1 and
y2 have a maximum or minimum at the same point in [a, b], they cannot form a basis of V .

#10. Euler’s equation (revisited) from physics

In Exercise 2.3.9 we obtained a set of three first-order differential equations for Ω1,Ω2 and Ω3, which
are called the Euler equations when there is no torque. Let us assume that I1 = I2 �= I3. (The body
with these moments of inertia is called a free symmetric top.) In this case we have

I1Ω̇1 = (I2 − I3)Ω2Ω3 (3.25)

I2Ω̇2 = (I3 − I1)Ω3Ω1 (3.26)

I3Ω̇3 = 0 (3.27)

Notice that Ω3 is a constant from (3.27). Show that Ω1 and Ω2 have the form of

Ω1(t) = A sin(ωt+ θ0);

Ω2(t) = A cos(ωt+ θ0)

where A and θ0 are some constants. Here Ω1,Ω2 and Ω3 are three components of the angular velocity
vector �Ω. Show that it follows that the magnitude (length) of �Ω is a constant. Find an explicit
expression for ω in terms of Ii and the constant Ω3.
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Difference Equations

Figure 4.1: Leonardo Fibonacci, c. 1170–c. 1250.

Science is what we understand well enough to explain to a computer. Art is everything
else we do.

D.E. Knuth in the preface of A=B by H. Wilf & D. Zeilberger
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4.1 Introduction

We have learned that the general inhomogeneous second order linear differential equation is of the
form

a(x)
d2y

dx2
+ b(x)

dy

dx
+ c(x)y = f(x).

The independent variable, x, takes values inR. (We say x is a continuous variable.) Many applications
lead to problems where the independent variable is discrete; that is, it takes values in the integers.
Instead of y(x) we now have yn, n an integer. The discrete version of the above equation, called an
inhomogeneous second order linear difference equation, is

an yn+2 + bn yn+1 + cn yn = fn (4.1)

where we assume the sequences {an}, {bn}, {cn} and {fn} are known. For example,

(n2 + 5)yn+2 + 2yn+1 +
3

n+ 1
yn = en, n = 0, 1, 2, 3, . . .

is such a difference equation. Usually we are given y0 and y1 (the initial values), and the problem is
to solve the difference equation for yn.

In this chapter we consider the special case of constant coefficient difference equations:

a yn+2 + b yn+1 + c yn = fn

where a, b, and c are constants independent of n. If fn = 0 we say the difference equation is
homogeneous. An example of a homogeneous second order constant coefficient difference equation is

6yn+2 +
1

3
yn+1 + 2yn = 0.

4.2 Constant coefficient difference equations

4.2.1 Solution of constant coefficient difference equations

In this section we give an algorithm to solve all second order homogeneous constant coefficient differ-
ence equations

a yn+2 + b yn+1 + c yn = 0. (4.2)

The method is the discrete version of the method we used to solve contant coefficient differential
equations. We first guess a solution of the form

yn = λn, λ �= 0.

(For differential equations we guessed y(x) = eλx.) We now substitute this into (4.2) and require the
result equal zero,

0 = aλn+2 + bλn+1 + cλn

= λn
(
aλ2 + bλ+ c

)
.

This last equation is satisfied if and only if

aλ2 + bλ+ c = 0. (4.3)
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Let λ1 and λ2 denote the roots of this quadratic equation. (For the moment we consider only the case
when the roots are distinct.) Then

λn1 and λn2

are both solutions to (4.2). Just as in our study of second order ODEs, the linear combination

c1λ
n
1 + c2λ

n
2

is also a solution and every solution of (4.2) is of this form. The constants c1 and c2 are determined
once we are given the initial values y0 and y1:

y0 = c1 + c2,

y1 = c1λ1 + c2λ2,

are two equation that can be solved for c1 and c2.

4.2.2 Fibonacci numbers

Consider the sequence of numbers

0 1 1 2 3 5 8 13 21 34 55 89 144 233 · · ·

that is, each number is the sum of the preceding two numbers starting with

0 1

as initial values. These integers are called Fibonacci numbers and the nth Fibonacci number is denoted
by Fn. The numbers grow very fast, for example,

F100 = 354 224 848 179 261 915 075.

From their definition, Fn satisfies the difference equation

Fn+1 = Fn + Fn−1 for n ≥ 1 (4.4)

with

F0 = 0, F1 = 1.

The quadratic equation we must solve is

λ2 = λ+ 1,

whose roots are

λ1,2 =
1±√

5

2
.

Setting

Fn = c1λ
n
1 + c2λ

n
2 ,

we see that at n = 0 and 1 we require

0 = c1 + c2,

1 = c1λ1 + c2λ2.
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Solving these we find

c1 =
1√
5
, c2 = − 1√

5
,

and hence

Fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−√

5

2

)n

.

Since λ1 > 1 and |λ2| < 1, λn1 grows with increasing n whereas λn2 → 0 as n→ ∞. Thus for large n

Fn ∼ 1√
5
λn1 ,

and

lim
n→∞

Fn−1

Fn
=

1

λ1
:= ω.

The number

ω =

√
5− 1

2
= 0.61803398 . . . . . .

is called the golden mean.1

4.3 Inhomogeneous difference equations

In a completely analogous way to the ODE case, one proves that every solution to the inhomogeneous
linear difference equation (4.1) is of the form

(yn)homo + (yn)part

where (yn)homo is a solution to the homogeneous equation (4.1) with fn = 0 and (yn)part is a particular
solution to the inhomogeneous equation (4.1).

1More often the number

φ = 1/ω =
1 +

√
5

2
= 1.6180339887 . . .

is called the golden mean or golden ratio. Two quantities a and b are said to be in the golden ratio φ if

a + b

a
=
a

b
= φ.

In words, a + b is to a as a is to b. A golden rectangle is a rectangle whose ratio of the longer side to the shorter side
is the golden mean φ. Since the ratio of Fibonacci numbers Fn/Fn−1 converges to φ as n → ∞, rectangles whose long
side is of length Fn and whose short side is of length Fn−1 are approximate golden rectangles. For example, here are
some approximate golden rectangles: 1×1, 1×2, 2×3, 3×5, 5×8, 8×13, and so on. The higher we go in this sequence
the closer we come to the golden rectangle.
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4.4 Exercises

#1. Degenerate roots

Consider the constant coefficient difference equation (4.2) but now assume the two roots λ1,2 are equal.
Show that

nλn1

is a second linearly independent solution to (4.2).

#2. Rational approximations to
√
2

Solve the difference equation

xn+1 = 2xn + xn−1, n ≥ 1

with initial conditions x0 = 0 and x1 = 1 that corresponds to the sequence 0, 1, 2, 5, 12, 29,. . . . Show
that

lim
n→∞

xn+1 − xn
xn

=
√
2.

The rational numbers
xn+1 − xn

xn

provide us with very good rational approximations to the square root of two.2

#3. Catalan numbers

Many times nonlinear recurrence relations arise. For example, Catalan numbers Tn satisfy the non-
linear recurrence relation

Tn =

n−1∑
k=0

TkTn−1−k, n = 1, 2, . . .

2The square root of two is irrational. Here is a proof that
√
2 is irrational. Suppose not; that is, we suppose that

√
2

is a rational number. All rational numbers can be written as a ratio of two integers. Thus we assume there are integers
p and q such that

√
2 = p/q. By canceling out common factors in p and q we can assume that the fraction is reduced.

By definition of the square root,

2 =
p2

q2

which implies p2 = 2q2. Thus p2 is an even integer since it is two times q2. If p2 is even then it follows that p is
even. (The square of an odd integer is an odd integer.) Since p is even it can be written as p = 2n for some integer n.
Substituting this into p2 = 2q2 and canceling the common factor of two, we obtain

q2 = 2p2

But this last equation means q2; and hence q, is an even integer. Thus both p and q have a common factor of two.
But we assumed that all common factors were cancelled. Thus we arrive at a contradiction to the assertion that

√
2 is

rational.
FromWikipedia: Pythagoreans discovered that the diagonal of a square is incommensurable with its side, or in modern

language, that the square root of two is irrational. Little is known with certainty about the time or circumstances of this
discovery, but the name of Hippasus of Metapontum is often mentioned. For a while, the Pythagoreans treated as an
official secret the discovery that the square root of two is irrational, and, according to legend, Hippasus was murdered
for divulging it. The square root of two is occasionally called “Pythagoras’ number” or “Pythagoras’ Constant.”



62 CHAPTER 4. DIFFERENCE EQUATIONS

where T0 := 1. Define

T (z) =

∞∑
n=0

Tnz
n.

Show that

T (z) =
1−√

1− 4z

2z
.

From this prove that

Tn =
1

n+ 1

(
2n

n

)
where

(
n
k

)
is the binomial coefficient. Catalan numbers arise in a variety of combinatorial problems.

Here is one example:

Suppose 2n points are placed in fixed positions, evenly distributed on the circumference of
a circle. Then there are Tn ways to join n pairs of the points so that the resulting chords
do not intersect.

Figure 4.2: The Catalan numbers T1 = 1, T2 = 2, T3 = 5 and T4 = 14 are illustrated in the above
counting problem of ways to join n pairs so that the chords do not intersect. Here n = 1, 2, 3, 4. A
more pictorial presentation is suppose there are 8 people at a table, then ask how many ways can they
shake hands with one other person and so that no arms are crossed? The answer is T4 = 14.

One can easily make a table of values of Tn using, say, the Mathematica command (this gives T1
through T10).

Table[{n, Binomial[2*n, n]/(n + 1)}, {n, 1, 10}]
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#4. Properties of Fibonacci numbers

1. Consider the set of sequences of 1s and 2s whose sum of elements equals (n− 1). For example,
here are all such sequences that sum to 4:

(2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1),

and here are all the sequences that sum to 5:

(2, 2, 1), (2, 1, 2), (1, 2, 2), (2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2), (1, 1, 1, 1, 1).

Observe that the number of such sequences is F5 = 5 for sum to 4 and F6 = 8 for sum to 5.
Show that the number of such sequences that sum to (n− 1) is the Fibonacci number Fn.

Hint: Consider the set of all such sequences that sum to (n − 3) and then append a 2 to the
end of each sequence. Similarly, consider the set of all such sequences that sum to (n− 2) and
then append a 1 to the end of each sequence. What sequences have you generated? Now use
the defining recursive property of the Fibonacci numbers (4.4).

2. Show that
n∑

i=1

Fi = Fn+2 − 1

In words, the sum of the first n (nonzero) Fibonacci numbers is the Fibonacci number Fn+2

minus one.

Hint: Define

Sn :=

n∑
i=1

Fi and Tn := Fn+2 − 1

and show that they satisfy the same recursion relation with the same initial conditions; and
hence are equal. As a further hint, Tn satisfies the recursion relation

Tn + Tn−1 = Tn+1 − 1.

Of course, you must show that this is the case.

#5. A generalization of the Fibonacci numbers

One possible generalization of the Fibonacci numbers is to the tribonacci numbers Tn (not to be
confused with the previous problem) that satisfy

T0 = 0, T1 = 0, T2 = 1, Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3.

Here are the first few numbers in this sequence

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, . . .

1. For Fibonacci numbers we proved

lim
n→∞

Fn

Fn−1
= φ =

1 +
√
5

2
= 1.618 033 988 · · ·
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where φ is the largest root (in absolute value) of

λ2 = λ+ 1.

Show that

lim
n→∞

Tn
Tn−1

= τ

where τ is the largest root (in absolute value) of

λ3 = λ2 + λ+ 1.

(You need not get an explicit value for τ .) However, Mathematica solves this cubic equation
from which it follows that

τ =
1

3

[
1 + (19− 3

√
33)1/3 + (19 + 3

√
33)1/3

]
= 1.839 286 755 · · ·

The number τ is called the tribonacci constant.
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Matrix Differential Equations

Figure 5.1: Vladimir Arnold, 1937–2010.

Linear systems are almost the only large class of differential equations for which there
exists a definitive theory. This theory is essentially a branch of linear algebra, and allows
us to solve all autonomous linear equations.

V. I. Arnold, Ordinary Differential Equations [2]
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5.1 The matrix exponential

Let A be a n×nmatrix with constant entries. In this chapter we study the matrix differential equation

dx

dt
= Ax where x ∈ Rn. (5.1)

We will present an algorithm that reduces solving (5.1) to problems in linear algebra.

The exponential of the matrix tA, t ∈ R, is defined by the infinite series1

etA = exp(tA) := I + tA+
t2

2!
A2 +

t3

3!
A3 + · · · . (5.2)

Remark: In an advanced course you will prove that this infinite series of matrices converges to a n×n
matrix.

It is important to note that for matrices A and B, in general,

exp(tA) exp(tB) �= exp(tA+ tB).

If A and B commute (AB = BA) then it is the case that

exp(tA) exp(tB) = exp(tA+ tB).

This last fact can be proved by examining the series expansion of both sides—on the left hand side
one has to multiply two infinite series. You will find that by making use of AB = BA the result
follows precisely as in the case of complex exponentials.

Here are some examples:

1.

A = D = diagonal matrix = diag (λ1, λ2, . . . , λn) .

Observe that

Dk = diag
(
λk1 , λ

k
2 , . . . , λ

k
n

)
.

Thus
∞∑
k=0

tk

k!
Dk = diag

(
etλ1 , etλ2 , . . . , etλn

)
.

1We put the scalar factor t directly into the definition of the matrix exponential since it is in this form we will use
the matrix exponential.
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2. Suppose that A is a diagonalizable matrix; that is, there exist matrices U andD with U invertible
and D diagonal such that

A = UDU−1 .

Observe
A2 = (UDU−1)(UDU−1) = UD2U−1 ,

and more generally,
Ak = UDkU−1 .

Thus

exp(tA) =

∞∑
k=0

tk

k!
Ak

=

∞∑
k=0

tk

k!
UDkU−1

= U

∞∑
k=0

tk

k!
DkU−1

= U exp(tD)U−1 . (5.3)

In the next to the last equality, we used the fact that U and U−1 do not depend upon the
summation index k and can therefore be brought outside of the sum. The last equality makes
use of the previous example where we computed the exponential of a diagonal matrix. This
example shows that if one can find such U and D, then the computation of the exp(tA) is
reduced to matrix multiplications. This last result, (5.3), is quite suitable for using MatLab or
Mathematica.

3. Let

A =

(
0 −1
1 0

)
.

Matrix multiplication shows
A2 = −I,

and thus
A2k =

(
A2

)k
= (−I)k = (−1)kI,

A2k+1 = A2kA = (−1)kA.

Hence

exp(tA) =

∞∑
k=0

tk

k!
Ak (5.4)

=

∞∑
k=0

t2k

(2k)!
A2k +

∞∑
k=0

t2k+1

(2k + 1)!
A2k+1

=

∞∑
k=0

t2k

(2k)!
(−1)kI +

∞∑
k=0

t2k+1

(2k + 1)!
(−1)kA

= cos t I + sin t A

=

(
cos t 0
0 cos t

)
+

(
0 − sin t

sin t 0

)
=

(
cos t − sin t
sin t cos t

)
. (5.5)
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Remark: You can also compute

exp

(
t

(
0 −1
1 0

))
by the method of Example #2. Try it!

5.2 Application of etA to differential equations

5.2.1 Derivative of etA with respect to t

The following is the basic property of the exponential that we apply to differential equations. As
before, A denotes a n× n matrix with constant coefficients.

d

dt
exp(tA) = A exp(tA) = exp(tA)A. (5.6)

Here is the proof: Differentiate

etA = I + tA+
t2

2!
A2 +

t3

3!
A3 + · · ·

term-by-term2 with the result

d

dt
etA = A+ tA2 +

t2

2!
A3 + · · ·

= A

(
I + tA+

t2

2!
A2 + · · ·

)
= AetA

= etAA.

The last equality follows by factoring A out on the right instead of the left.

5.2.2 Solution to matrix ODE with constant coefficients

We now use (5.6) to prove

Theorem: Let
dx

dt
= Ax (5.7)

where x ∈ Rn and A is a n× n matrix with constant coefficients. Then every solution of (5.7) is of
the form

x(t) = exp(tA)x0 (5.8)

2In a complex analysis course you will prove that convergent complex power series can be differentiated term-by-term
and the resulting series has the same radius of convergence. Note there really is something to prove here since there is
an interchange of two limits.



5.2. APPLICATION OF MATRIX EXPONENTIAL TO DES 69

for some constant vector x0 ∈ Rn.

Proof : (i) First we show that x(t) = etAx0 is a solution:

dx

dt
=

d

dt

(
etAx0

)
=

(
d

dt
etA

)
x0

= AetAx0

= Ax(t).

(ii) We now show that every solution of (5.7) is of the form (5.8). Let y(t) be any solution to (5.7).
Let

∆(t) := e−tAy(t).

If we can show that ∆(t) is independent of t—that it is a constant vector which we call x0, then we
are done since multiplying both sides by etA shows

etAx0 = etA∆(t) = etAe−tAy(t) = y(t).

(We used the fact that tA and −tA commute so that the addition formula for the matrix exponential
is valid.) To show that ∆(t) is independent of t we show its derivative with respect to t is zero:

d∆

dt
=

d

dt

{
e−tAy(t)

}
=

(
d

dt
e−tA

)
y(t) + e−tA dy

dt
(product rule)

=
(−e−tAA

)
y(t) + e−tA (Ay(t)) (y(t) satisfies ODE)

= 0.

The next theorem relates the solution x(t) of (5.7) to the eigenvalues and eigenvectors of the matrix
A (in the case A is diagonalizable).

Theorem: Let A be a diagonalizable matrix. Any solution to (5.7) can be written as

x(t) = c1e
tλ1ψ1 + c2e

tλ2ψ2 + · · ·+ cne
tλnψn (5.9)

where λ1, . . . , λn are the eigenvalues of A with associated eigenvectors ψ1, . . . , ψn, and c1, . . . , cn are
constants.

Proof : All solutions of (5.7) are of the form (5.8). Since A is diagonalizable, the eigenvectors of
A can be used to form a basis: {ψ1, . . . , ψn}. Since this is a basis there exist constants c1, . . . , cn such
that

x0 = c1ψ1 + c2ψ2 + · · ·+ cnψn.

(x0 is the constant vector appearing in (5.8).)

For any eigenvector ψ of A with eigenvalue λ we have

etAψ = etλψ.

(This can be proved by applying the infinite series (5.2) to the eigenvector ψ and noting Akψ = λkψ
for all positive integers k.) Thus

etAx0 = c1e
tAψ1 + · · · cnetAψn

= c1e
tλ1ψ1 + · · ·+ cne

tλnψn.

Here are two immediate corollaries of this theorem:
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1. If A is diagonalizable and has only real eigenvalues, then any solution x(t) of (5.1) will have no
oscillations.

2. If A is diagonalizable and the real part of every eigenvalue is negative, then

x(t) → 0 (zero vector), as t→ +∞

To see this recall that if λ = σ + iµ (σ and µ both real), then

eλt = eσteiµt.

If σ < 0, eσt → 0 as t→ +∞. Now apply preceding theorem.

Example: Here is an example using MatLab or Mathematica to solve a system of equations.
Consider

dx

dt
= Ax where A =

 1 −1 2
2 2 0
3 1 2

 .

The solution x(t) to this DE that satisfies the initial condition x(0) = x0 is

x(t) = etAx0

so we must compute the 3× 3 matrix etA. Here is a step-by-step approach:

Step 1: Find the eigenvalues of A

p(λ) = det (A− λI) =

∣∣∣∣∣∣
1− λ −1 2
2 2− λ 0
3 1 2− λ

∣∣∣∣∣∣ = −λ3 + 5λ2 − 4λ = −λ(λ− 1)(λ− 4)

Thus the eigenvalues of A are

λ1 = 4;λ2 = 1, λ3 = 0.

Since the matrix is 3×3 and there are three distinct eigenvalues, we know that A is diagonalizable.

Step 2: Find the eigenvectors of A. That is we must solve the linear equations

Aψ1 = λ1ψ1, Aψ2 = λ2ψ2, Aψ3 = λ3ψ3

where eigenvalues are given in Step 1. Note that the solutions will be determined only up to an
overall constant, e.g. if Aψ = λψ, then cψ is also an eigenvector where c is a constant. Solving
the above equations one finds

ψ1 =

 1
1
2

 , ψ2 =

 −1
2
1

 , ψ3 =

 −1
1
1

 .

Step 3: Form matrices U and D and compute U−1. D is the diagonal matrix

D =

 λ1 0 0
0 λ2 0
0 0 λ3

 =

 4 0 0
0 1 0
0 0 0


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and U is the matrix formed from the eigenvectors:

U =

 ↑ ↑ ↑
ψ1 ψ2 ψ3

↓ ↓ ↓

 =

 1 −1 −1
1 2 1
2 1 1

 .

We now compute the inverse of U :

U−1 =

 1/3 0 1/3
1/3 1 −2/3
−1 −1 1


Thus we have

A = UDU−1

Step 4: Compute etA from formula

etA = UetDU−1 =

 1 −1 −1
1 2 1
2 1 1

 ·
 e4t 0 0

0 et 0
0 0 1

 ·
 1/3 0 1/3

1/3 1 −2/3
−1 −1 1



=

 1− et

3
+ e4t

3
1− et −1 + 2et

3
+ e4t

3

−1 + 2et

3
+ e4t

3
−1 + 2et 1− 4et

3
+ e4t

3

−1 + et

3
+ 2e4t

3
−1 + et 1− 2et

3
+ 2e4t

3


Step 5: If the initial condition is vector

x0 =

 c1
c2
c3


then the solution to the differential equation dx/dt = Ax with initial condition x(0) = x0 is

x(t) = etAx0 =

 1− et

3 + e4t

3 1− et −1 + 2et

3 + e4t

3

−1 + 2et

3 + e4t

3 −1 + 2et 1− 4et

3 + e4t

3

−1 + et

3 + 2e4t

3 −1 + et 1− 2et

3 + 2e4t

3

 ·
 c1

c2
c3



=


(
1− et

3 + e4t

3

)
c1 + (1− et) c2 +

(
−1 + 2et

3 + e4t

3

)
c3(

−1 + 2et

3 + e4t

3

)
c1 + (−1 + 2et) c2 +

(
1− 4et

3 + e4t

3

)
c3(

−1 + et

3 + 2e4t

3

)
c1 + (−1 + et) c2 +

(
1− 2et

3 + 2e4t

3

)
c3


Step 6: An alternative to Step 5 is to simply say the general solution is of the form

x(t) = c1e
4tψ1 + c2e

tψ2 + c3ψ3

where c1, c2 and c3 are arbitrary constants (not the constants cj appearing in Step 5!) and ψj

are the eigenvectors found above.

5.3 Relation to earlier methods of solving constant coefficient
DEs

Earlier we showed how to solve
aÿ + bẏ + cy = 0
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where a, b and c are constants. Indeed, we proved that the general solution is of the form

y(t) = c1e
tλ1 + c2e

tλ2

where λ1 and λ2 are the roots to
aλ2 + bλ+ c = 0.

(We consider here only the case of distinct roots.)

Let’s analyze this familiar result using matrix methods. The x ∈ R2 is

x(t) =

(
x1
x2

)
=

(
y

dy/dt

)
Therefore,

dx

dt
=

(
dy/dt
d2y/dt2

)
=

(
x2

− b
ax2 − c

ax1

)
=

(
0 1
− c

a − b
a

)(
x1
x2

)
.

This last equality defines the 2× 2 matrix A. The characteristic polynomial of A is

p(λ) = det (A− λI) =

∣∣∣∣ −λ 1
− c

a − b
a − λ

∣∣∣∣ = λ2 +
b

a
λ+

c

a
.

Thus the eigenvalues of A are the same quantities λ1 and λ2 appearing above. Since

x(t) = etAx0 = S

(
etλ1 0
0 etλ2

)
S−1x0,

x1(t) is a linear combination of eλ1t and eλ2t.

5.4 Problem from Markov processes

In the theory of continuous time Markov processes (see, e.g., Chapter 2 in [7]), one has a set of states
and one asks for the transition probability from state i to state j in time t. Here is an example3

Suppose we have three states that we label 1, 2 and 3. We are given that the rates of transition
from i −→ j are known numbers qij . In this example suppose

q12 = 1, q13 = 1, q21 = 1, q23 = 0, q31 = 2, q32 = 1.

The theory of Markov processes tells us that we form a Q-matrix whose off-diagonal elements are qij ,
i �= j, and whose row sums equal zero. In this example

Q =

 −2 1 1
1 −1 0
2 1 −3

 (5.10)

3This example is taken from [7], Chapter 2.
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Denote by pij(t) the transition probability from state i to state j in time t. Form the matrix

P (t) = (pij(t)) ,

then the theory of Markov processes tells us that P (t) satisfies the matrix DE

dP

dt
= QP (5.11)

where P (0) = I. We know that the solution to this DE is

P (t) = exp(tQ). (5.12)

So we must compute exp(tQ) where Q is given by (5.10).

5.4.1 Computing exp(tQ)

Step 1. We first compute the eigenvalues of Q. To do this we compute the characteristic polynomial

p(λ) = det(Q− λI) =

∣∣∣∣∣∣
−2− λ 1 1

1 −1− λ 0
2 1 −3− λ

∣∣∣∣∣∣ = −8λ− 6λ2 − λ3 = −λ(λ+ 2)(λ+ 4)

Thus the eigenvalues are 0, −2 and −4. Since there are three distinct eigenvalues and the matrix
is 3× 3, we know that Q is a diagonalizable matrix, see (5.3).4

Step 2. We next compute the eigenvectors corresponding to the eigenvalues. That is, we must solve
the linear equations

QΨk = λkΨk, k = 1, 2, 3

where λ1 = 0, λ2 = −2, λ3 = −4. Linear algebra computations show5

Ψ1 =

 1
1
1

 , Ψ2 =

 1
−1
1

 , Ψ3 =

 −3
1
5

 . (5.13)

Step 3. Form matrices U and U−1. We know that U is formed from the eigenvectors Ψk:

U =

 ↑ ↑ ↑
Ψ1 Ψ2 Ψ3

↓ ↓ ↓

 =

 1 1 −3
1 −1 1
1 1 5


We now compute U−1. A linear algebra computation gives6

U−1 =


3
8

1
2

1
8

1
4 − 1

2
1
4

− 1
8 0 1

8


4If one first defines the matrix Q, then the command Det[Q-λ*IdentityMatrix[3]] in Mathematica finds the char-

acteristic polynomial.
5Using a computer software package makes this step easier. For example, the command Eigenvectors[Q] in Math-

ematica gives the eigenvectors of the matrix Q.
6After defining the matrix U , the command Inverse[U] in Mathematica computes the inverse matrix U−1.
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Step 4. We now have enough information to compute exp(tQ). We let D denote the diagonal matrix

D =

 λ1 0 0
0 λ2 0
0 0 λ3

 =

 0 0 0
0 −2 0
0 0 −4


From (5.3) we know that

P (t) = exp(tQ) = U exp(tD)U−1

=

 1 1 −3
1 −1 1
1 1 5

 1 0 0
0 e−2t 0
0 0 e−4t




3
8

1
2

1
8

1
4 − 1

2
1
4

− 1
8 0 1

8



=


3
8 + 3e−4t

8 + e−2t

4
1
2 − e−2t

2
1
8 − 3e−4t

8 + e−2t

4

3
8 − e−4t

8 − e−2t

4
1
2 + e−2t

2
1
8 + e−4t

8 − e−2t

4

3
8 − 5e−4t

8 + e−2t

4
1
2 − e−2t

2
1
8 + 5e−4t

8 + e−2t

4

 (5.14)

Thus, for example, the transition probability from state 1 to 1 in time t is given by the (1, 1) matrix
element of P (t):

p11(t) =
3

8
+

1

4
e−2t +

3

8
e−4t.

and the transition probability from state 3 to 2 in time t is given by the (3, 2) matrix element of P (t):

p32(t) =
1

2
− 1

2
e−2t.

5.4.2 Some observations

1. Observe that the row sums of P (t) are all equal to one. For example in the first row

p11(t) + p12(t) + p13(t) =

[
3

8
+

3

8
e−4t +

1

4
e−2t

]
+

[
1

2
− 1

2
e−2t

]
+

[
1

8
− 3

8
e−4t +

1

4
e−2t

]
= 1

This is simply the statement that the probability of starting in an initial state i and being in
any state j is one.

2. Observe that

lim
t→∞P (t) =


3
8

1
2

1
8

3
8

1
2

1
8

3
8

1
2

1
8


This means that after a long time no matter what is the initial state i, the transition probability
to any state j is independent of the initial state.
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5.5 Application of matrix DE to radioactive decays

Consider a radioactive decay of type

A −→ B −→ C

where C is assumed to be stable. We denote the decay rate of A by λA and the decay rate of B
by λB. (Since C is assumed to be stable, the decay rate of C equals zero.) An example of such a
radioactive decay (by β-decay) is Iodine–133 decays to Xenon–133 which then decays to Cesium–133.

Introduce pα(t) equal to the amount of material α = A,B,C present at time t. We start with an
initial amount of material A which for simplicity we take to be 1. Thus the initial conditions are

pA(0) = 1, pB(0) = 0, pC(0) = 0.

The differential equations satisfied by the pα, α = A,B,C, are

dpA
dt

= −λA pA,
dpB
dt

= λA pA − λB pB,

dpC
dt

= λBpB.

We can write this in matrix form
dP

dt
= AP

where

P =

 pA
pB
pC


and

A =

 −λA 0 0
λA −λB 0
0 λB 0

 .

We know that

P (t) = exp(tA)P (0)

so we need to compute exp(tA).

Step 1. Since A is a lower triangular matrix, the eigenvalues of A are −λA, −λB and 0.

Step 2. The corresponding eigenvectors of A are

ΨA =


λA−λB

λB

−λA

λB

1

 , ΨB =

 0
−1
1

 , ΨC =

 0
0
1

 .

(Mathematica does these calculations easily.)

Step 3. The columns of U are the vectors ΨA,ΨB,ΨC .
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Step 4.

exp(tA) = U exp(tD)U−1

=

 (λA − λB)/λB 0 0
−λA/λB −1 0

1 1 1

  e−λAt 0 0
0 e−λBt 0
0 0 1

  (λA − λB)/λB 0 0
−λA/λB −1 0

1 1 1

−1

=

 e−λAt 0 0
λA(e

−λBt − e−λAt) e−λBt 0
(λA − λB)

−1
[
λA(1 − e−λBt

)− λB
(
1− e−λAt)

]
1− e−λBt 1


Step 5. To find the solution P (t) we must apply the matrix exp(tA) to the initial vector

P (0) =

 1
0
0

 .

This results in

pA(t) = e−λAt,

pB(t) =
λA

λB − λA

(
e−λAt − e−λBt

)
,

pC(t) = 1− 1

λA − λB

(
λAe

−λBt − λBe
−λAt

)
.

It is an exercise in calculus to show that the maximum of pB(t) occurs at

tmax =
log(λA/λB)

λA − λB
.

We now apply this to the example of Iodine–133 decay. The half-life of A:=Iodine-133 is 20.81
hours and the half-life of B:=Xenon–133 is 5.243 days. From this we can calculate the rates after we
decide whether our unit of time is hours or days—let’s take days. Then7

λA = 0.7994, λB = 0.1322.

Thus, for example, the maximum amount of Xenon–133 occurs in approximately 2.70 days. In the
figure we show the populations of the three nuclides as a function of time.

5.6 Inhomogenous matrix equations

Consider the inhomogenous equation

dx

dt
= Ax+ f(t), x(0) = x0 (5.15)

where x is a vector of dimension n, A a n × n constant coefficient matrix, and f(t) is a given vector
which in general depends, say continuously, upon the independent variable t. We use the method of
variation of parameters to find a particular solution to (5.15). Let8

x(t) = etAy(t)

7Recall the formula T1/2 = log 2
λ

.
8If f(t) = 0 then we know that y(t) would be a constant vector. For nonzero f(t) we are allowing for the possibility

that y can depend upon t; hence the name variation of parameters.
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Figure 5.2: The population of A=Iodine–133, B=Xenon–133 and C=Cesium–133 starting with an
initial amount of Iodine–133. The unit of time is in days.

Then
dx

dt
= AetAy(t) + etA

dy

dt

To satisfy the differential equation this must equal

AetAy(t) + f(t)

and hence we must have

etA
dy

dt
= f(t)

Solving this for dy/dt:
dy

dt
= e−tAf(t)

The right hand side of the above equation is expressed in terms of known quantities. Integrating gives

y(t) =

∫ t

0

e−sAf(s) ds

and hence the particular solution

xpart(t) = etA
∫ t

0

e−sAf(s) ds

Thus the solution satisfying the initial condition is

x(t) = etA
∫ t

0

e−sAf(s) ds+ etAx0 (5.16)

Observe that the solution of (5.15) has been reduced in (5.16) to matrix calculations and integration.
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5.6.1 Nonautonomous linear equations

Consider the inhomogeneous equation

dx

dt
= A(t)x+ f(t) (5.17)

where now we assume the n × n matrix A(t) depends upon the independent variable t and f(t), as
before, is a given column vector of size n which in general depends upon t. We assume that the
coefficients of A(t) are continuous on some closed interval [a, b] and for simplicity we take a < 0 < b.
Everything we say below is for t in the interval a ≤ t ≤ b.

The homogeneous version of (5.17) is

dx

dt
= A(t)x. (5.18)

Since A is now assumed to depend upon t, the solution to (5.18) satisfying the initial condition
x(0) = x0 is not exp(tA)x0. So what plays the role of exp(tA) when A is a function of t?

Let xj(t), a column vector of size n, denote the solution to (5.18) satisfying the initial condition
xj(0) = ej , j = 1, 2, . . . , n, where {ek}k=1,2,...n denotes the standard basis of Rn. It can be shown
that the functions {xj(t)}j=1,...,n form a basis for the vector space of solutions to (5.18). Form the
n× n matrix X (t) whose columns are the xj(t):

X (t) =

 ↑ ↑ · · · ↑
x1(t) x2(t) · · · xn(t)
↓ ↓ · · · ↓

 .

X (t) satisfies
X (0) = In,

where In is the n × n identity matrix. (This follows immediately from the fact that xj(0) = ej.)
Furthermore, it can be shown that X (t) is invertible for all t. Note that X (t) satisfies the matrix
differential equation

dX (t)

dt
= A(t)X (t),

a fact that follows immediately from the fact that for each j, dxj/dt = A(t)xj . The n × n matrix
X (t) is called the fundamental matrix. In the case when A has constant coefficients, the fundamental
matrix is exp(tA).

We now use the matrix X (t) to construct a particular solution, xpart(t), to the inhomogeneous
equation (5.17) by following the ideas for the constant coefficient case. We seek solutions to (5.17) of
the form

xpart(t) = X (t)y(t).

We differentiate xpart(t) with respect to t:

dxpart
dt

=
d

dt
(X (t)y(t))

=
dX
dt

y(t) + X (t)
dy

dt

= A(t)X (t)y(t) + X (t)
dy

dt
.
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We want this to equal A(t)xpart(t) + f(t) so we get the equation

A(t)X (t) y(t) + X (t)
dy

dt
= A(t)xpart(t) + f(t) = A(t)X (t)y + f(t)

or

X (t)
dy

dt
= f(t).

Multiplying both sides of the above equation by [X (t)]−1 gives

dy

dt
= [X (t)]−1f(t).

Now integrate the above from 0 to t

y(t) =

∫ t

0

[X (s)]−1f(s) ds,

and recalling xpart(t) = X (t)y gives

xpart(t) = X (t)y(t) = X (t)

∫ t

0

[X (s)]−1f(s) ds.

Since the general solution to (5.17) is a particular solution plus a solution to the homogeneous equation,
we have

x(t) = X (t)

∫ t

0

[X (s)]−1f(s) ds+ X (t)x0 (5.19)

solves (5.17) with initial condition x(0) = x0. This formula should be compared with (5.16).

To summarize,

To solve the inhomogeneous equation (5.17), one first finds the basis of solutions {xj(t)}j=1,...,n,
xj(0) = ej , to the homogeneous equation (5.18) and constructs the n×n fundamental ma-
trix X (t). Then the solution to the inhomogeneous equation satisfying the initial condition
x(0) = x0 is given by (5.19). Thus the real difficulty is in solving the homogeneous problem,
i.e. finding the fundamental matrix X (t).



80 CHAPTER 5. MATRIX DIFFERENTIAL EQUATIONS

5.7 Exercises

#1. Harmonic oscillator via matrix exponentials

Write the oscillator equation
ẍ+ ω2

0x = 0

as a first order system (5.1). (Explicitly find the matrix A.) Compute exp(tA) and show that
x(t) = exp(tA)x0 gives the now familiar solution. Note that we computed exp(tA) in (5.5) for the
case ω0 = 1.

#2. Exponential of nilpotent matrices

1. Using the series expansion for the matrix exponential, compute exp(tN) where

N =

(
0 1
0 0

)
.

Answer the same question for

N =

 0 1 1
0 0 1
0 0 0

 .

How do these answers differ from exp(tx) where x is any real number?

2. A n× n matrix N is called nilpotent9 if there exists a positive integer k such that

Nk = 0

where the 0 is the n × n zero matrix. If N is nilpotent let k be the smallest integer such that
Nk = 0. Explain why exp(tN) is a matrix whose entries are polynomials in t of degree at most
k − 1.

#3. Computing etA

Let

A =

 1 −1 4
3 2 −1
2 1 −1

 (5.20)

1. Find the eigenvalues and eigenvectors of A. (You can use any software package you like and
merely quote the results.)

2. Use these to compute etA.

9In an advanced course in linear algebra, it will be proved that every matrix A can be written uniquely as D + N
where D is a diagonalizable matrix, N is a nilpotent matrix, and DN = ND. Furthermore, an algorithm will be given
to find the matrices D and N from the matrix A. Once this is done then one can compute exp(tA) as follows

exp(tA) = exp(tD + tN) = exp(tD) exp(tN).

We showed above how to reduce the computation of exp(tD), D a diagonalizable matrix, to linear algebra. This problem
shows that exp(tN) reduces to finitely many matrix multiplications. Thus the computation of both exp(tD) and exp(tN)
are reduced to linear algebra and hence so is exp(tA). Observe that it is crucial that we know DN = ND.
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#4.

Consider the system of linear differential equations

dx

dt
= Ax

where A is the 4× 4 matrix

A =


−5/2 1 1/2 −1/2
3/4 −5/2 0 3/4
1 2 −3 1
0 2 −1/2 −2

 (5.21)

Prove that all solutions x(t) to this DE tend to zero as t→ ∞. Hint: You need not compute etA. You
can prove this statement simply by computing the eigenvalues of A. (Why?)

#5.

Consider the system of linear differential equations

dx

dt
= Ax

where A is the 4× 4 matrix

A =


0 0 −3/2 2

−3/4 1/2 0 −3/4
−1 −2 1 −1
1/2 −3 3/2 −3/2

 (5.22)

Find a subspace V of R4 such that if x(0) ∈ V , then x(t) → 0 as t → ∞. Hint: The subspace V is
described in terms of (some of) the eigenvectors of A.

#6.

Consider the system of linear differential equations

dx

dt
= Ax

where A is the 2× 2 matrix

A =

(
1 α

−α 3

)
(5.23)

For what values of α will the solutions exhibit oscillatory behavior?

#7. Radioactive decay & first introduction to Laplace transforms

Birth processes have been used since the time of Rutherford to model radioactive decay. (Radioactive
decay occurs when an unstable isotope transforms to a more stable isotope, generally by emitting
a subatomic particle.) In many cases a radioactive nuclide A decays into a nuclide B which is also
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radioactive; and hence, B decays into a nuclide C, etc. The nuclides B, C, etc. are called the progeny
(formerly called daughters). This continues until the decay chain reaches a stable nuclide. For example,
uranium-238 decays through α-emission to thorium-234 which in turn decays to protactinium-234
through β-emission. This chain continues until the stable nuclide lead-206 is reached.

1. Let the decay states be E1 → E2 → · · · → EN where EN is the final stable state. We can relabel
these states to be simply 1, 2, . . . , N . (That is, we write Ej as simply j.) Let N (t) denote the
state of the nuclide at time t. N (t) is a random process (called a Markov process) due to the
fact that radioactive decay is inherently random. Thus we introduce

pj(t) = P(N (t) = j|N(0) = 1)

= probability that nuclide is in state j at time t

given it starts in state 1 at time t = 0.

These probabilities pj(t) satisfy differential equations called the Kolmogorov forward equations :

dpj
dt

= λj−1pj−1(t)− λjpj(t), j = 1, 2, . . . , N. (5.24)

The constants λj are called the decay rates. A decay rate λ is related to the half-life, T1/2, of
the nuclide by the well-known formula

T1/2 =
log 2

λ
, log 2 = 0.693147 . . . (5.25)

We assume λi �= λj for i, j = 1, . . . , N − 1. We set λ0 = 0 and λN = 0. (λN is set equal to zero
since the final state N is a stable nuclide and does not decay.)

In applications to radioactive decay, if N1 is the number of initial nuclides (the number of
nuclides in state E1), then N1pj(t) is the number of nuclides in state Ej at time t.

2. Introduce the Laplace transform10

p̂j(s) =

∫ ∞

0

e−tspj(t) dt

and show that the Laplace transform of (5.24) is

sp̂j(s)− δj,1 = λj−1p̂j−1(s)− λj p̂j(s), j = 1, . . . , N. (5.26)

Solve these equations for p̂j(s) and show that

p̂j(s) =
λ1

s+ λ1

λ2
s+ λ2

· · · λj−1

s+ λj−1

1

s+ λj

3. Using the above expression for p̂j(s) partial fraction the result:

p̂j(s) =

j∑
k=1

cj,k
s+ λk

See if you can find expressions for cj,k. You might want to take some special cases to see if you
can make a guess for the cj,k. (The Mathematica command Apart will prove useful.)

10See Chapter 8 of these Notes and Boyce & Diprima, Chapter 6 [4].
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4. From the partial fraction decomposition of p̂j(s) explain why you can almost immediately con-
clude

pj(t) =

j∑
k=1

cj,k e
−λkt, j = 1, 2, . . . , N. (5.27)

5. For the special case of N = 4: E1 → E2 → E3 → E4 find explicitly the probabilities pj(t). (You
can use Mathematica if you wish. Note there is a command InverseLaplaceTransform.)

6. Show that p2(t) has a maximum at t = tm

tm =
log(λ1/λ2)

λ1 − λ2
> 0.

In terms of the radioactive decay interpretation, this is the time when the first progeny has a
maximum population.

7. Using Mathematica (recall the command Series) show that as t→ 0

p1(t) = 1− λ1t+O(t2)

p2(t) = λ1t+O(t2)

p3(t) =
1

2
λ1λ2t

2 +O(t3)

p4(t) =
1

3!
λ1λ2λ3t

3 +O(t4)

8. Radon 222 gas is a chemically inert radioactive gas that is part of the Uranium 238 decay chain.
Radon and its radioactive progeny are known carcinogens. Here is part of the decay chain11

· · · −→ Rn 222 −→ Po 218 −→ Pb 214 −→ Bi 214 −→ · · ·

The half-life of each nuclide is known (recall (5.25)):

Rn 222: T1/2 = 3.8235 days

Po 218: T1/2 = 3.10 minutes

Pb 214: T1/2 = 26.8 minutes

Bi 214: T1/2 = 19.9 minutes

Let NRn denote the initial amount of Rn 220 and assume the other nuclides are not present at
time t = 0. Solve the Kolmogorov forward equations for this particular birth process. (Note
that here the probabilities do not sum to one since the Bi 214 also decays.) This is not so messy
if you use Mathematica. Find the times when each of the progeny have maximum population.
(Highest probability) You might want to use Mathematica’s FindRoot.

11Po=polonium, Pb=lead, Bi=bismuth.
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Figure 5.3: From the EPA website: Radon is a radioactive gas. It comes from the natural decay
of uranium that is found in nearly all soils. It typically moves up through the ground to the air
above and into your home through cracks and other holes in the foundation. Your home traps radon
inside, where it can build up. Any home may have a radon problem. This means new and old homes,
well-sealed and drafty homes, and homes with or without basements. Radon from soil gas is the main
cause of radon problems. Sometimes radon enters the home through well water. In a small number of
homes, the building materials can give off radon, too. However, building materials rarely cause radon
problems by themselves.



Chapter 6

Weighted String

Figure 6.1: Hermann von Helmholtz, 1821–1894.

Because linear equations are easy to solve and study, the theory of linear oscillations is
the most highly developed area of mechanics. In many nonlinear problems, linearization
produces a satisfactory approximate solution. Even when this is not the case, the study of
the linear part of a problem is often a first step, to be followed by the study of the relation
between motions in a nonlinear system and its linear model.

V. I. Arnold, Mathematical Methods of Classical Mechanics [1]

85
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6.1 Derivation of differential equations

The weighted string is a system in which the mass is concentrated in a set of equally spaced mass
points, N in number with spacing d, imagined to be held together by massless springs of equal tension
T . We further assume that the construction is such that the mass points move only in the vertical
direction (y direction) and there is a constraining force to keep the mass points from moving in the
horizontal direction (x direction). We call it a “string” since these mass points give a discrete string—
the tension in the string is represented by the springs. The figure below illustrates the weighted string
for N = 5.

0 1d 2d 3d 4d 5d 6d

The string is “tied down” at the endpoints 0 and (N +1)d. The horizontal coordinates of the mass
points will be at x = d, 2d, . . . , Nd. We let uj denote the vertical displacement of the jth mass point
and Fj the transverse force on the jth particle. To summarize the variables introduced so far:

m = mass of particle,

N = total number of particles,

T = tension of spring,

d = horizontal distance between two particles,

uj = vertical displacement of jth particle, j = 1, 2, . . .N,

Fj = transverse force on jth particle, j = 1, 2, . . .N.

To impose the boundary conditions that the ends of the string are rigidly fixed at x = 0 and x =
(N + 1)d, we take

u0 = 0 and uN+1 = 0.

Newton’s equations for these mass points are

Fj = m
d2uj
dt2

, j = 1, 2, . . . , N.

This is a system of N second order differential equations. We now find an expression for the transverse
force Fj in terms of the vertical displacements.

In the diagram below, the forces acting on the jth particle are shown.

(j − 1)d jd (j + 1)d

β

α

T

T
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From the diagram,
Fj = T sinβ − T sinα.

We make the assumption that the angles α and β are small. (The string is not stretched too much!)
In this small angle approximation we have

sinα ≈ tanα and sinβ ≈ tanβ.

Therefore, in this small angle approximation

Fj ≈ T tanβ − T tanα

= T

(
uj+1 − uj

d

)
− T

(
uj − uj−1

d

)
.

Thus,

m
d2uj
dt2

=
T

d
(uj+1 − 2uj + uj−1) , j = 1, 2, . . . , N. (6.1)

Note that these equations are valid for j = 1 and j = N when we interpret u0 = 0 and uN+1 = 0. For
example, for j = 1 the force F1 is determined from the diagram:

0 d 2d

T
T

F1 = T
(u2 − u1)

d
− T

u1
d

=
T

d
(u2 − 2u1 + u0) , u0 = 0.

Equation (6.1) is a system of N second order linear differential equations. Thus the dimension of
the vector space of solutions is 2N ; that is, it takes 2N real numbers to specify the initial conditions
(N initial positions and N initial velocities). Define the N ×N matrix

VN =



2 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 0
0 −1 2 −1 · · · 0 0 0
...

...
...

... · · · ...
...

...
0 0 0 0 · · · −1 2 −1
0 0 0 0 · · · 0 −1 2


(6.2)

and the column vector u

u =


u1
u2
·
·
uN

 . (6.3)

Then (6.1) can be written in the compact matrix form
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d2u

dt2
+

T

md
VNu = 0. (6.4)

Note: We could also have written (6.1) as a first order matrix equation of the form

dx

dt
= Ax (6.5)

where A would be a 2N × 2N matrix. However, for this application it is simpler to develop a special
theory for (6.4) rather than to apply the general theory of (6.5) since the matrix manipulations with
VN will be a bit clearer than they would be with A.

6.2 Reduction to an eigenvalue problem

Equation (6.4) is the matrix version of the harmonic oscillator equation

d2x

dt2
+
k

m
x = 0, ω2

0 =
k

m
. (6.6)

Indeed, we will show that (6.4) is precisely N harmonic oscillators (6.6)—once one chooses the correct
coordinates. We know that solutions to (6.6) are linear combinations of

cosω0t and sinω0t.

Thus we “guess” that solutions to (6.4) are linear combinations of the form

cosωt f and sinωt f

where ω is to be determined and f is a column vector of length N . (Such a “guess” can be theoretically
deduced from the theory of the matrix exponential when (6.4) is rewritten in the form (6.5).)

Thus setting
u = eiωtf ,

we see that (6.4) becomes the matrix equation

VN f =
md

T
ω2f .

That is, we must find the eigenvalues and eigenvectors of the matrix VN . Since VN is a real symmetric
matrix, it is diagonalizable with real eigenvalues. To each eigenvalue λn, i.e.

VN fn = λnfn, n = 1, 2, . . . , N,

there will correspond a positive frequency

ω2
n =

T

md
λn, n = 1, 2, . . . , N,

and a solution of (6.4) of the form

un = (an cos(ωnt) + bn sin(ωnt)) fn

where an and bn are constants. This can now be easily verified by substituting this above expression
into the differential equation. To see we have enough constants of integration we observe that we have
two constants, an and bn, for each (vector) solution un. And we have N vector solutions un—thus
2N constants in all. We now turn to an explicit evaluation of the frequencies ω2

n—such frequencies
are called normal modes .
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6.3 Computation of the eigenvalues of VN

We introduce the characteristic polynomial of the matrix VN :

DN(λ) = DN = det (VN − λI) .

Expanding the determinant DN in the last column, we see that it is a sum of two terms—each a
determinant of matrices of size (N − 1) × (N − 1). One of these determinants equals (2 − λ)DN−1

and the other equals DN−2 as is seen after expanding again, this time by the last row. In this way
one deduces

DN = (2− λ)DN−1 −DN−2, N = 2, 3, 4, . . .

with

D0 = 1 and D1 = 2− λ.

We now proceed to solve this constant coefficient difference equation (in N). From earlier work we
know that the general solution is of the form

c1µ
N
1 + c2µ

N
2

where µ1 and µ2 are the roots of

µ2 − (2− λ)µ + 1 = 0.

Solving this quadratic equation gives

µ1,2 = 1− λ

2
± 1

2

√
(2 − λ)2 − 4 .

It will prove convenient to introduce an auxiliary variable θ through

2− λ = 2 cos θ,

A simple computation now shows

µ1,2 = e±iθ.

Thus

DN = c1e
iNθ + c2e

−iNθ.

To determine c1 and c2 we require that

D0 = 1 and D1 = 2− λ.

That is,

c1 + c2 = 1,

c1e
iθ + c2e

−iθ = 2− λ = 2 cos θ.

Solving for c1 and c2,

c1 =
eiθ

eiθ − e−iθ
,

c2 = − e−iθ

eiθ − e−iθ
.
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Therefore,

DN =
1

eiθ − e−iθ

(
ei(N+1)θ − e−i(N+1)θ

)
=

sin ((N + 1)θ)

sin θ
.

The eigenvalues of VN are solutions to

DN(λ) = det(VN − λI) = 0.

Thus we require
sin ((N + 1)θ) = 0,

which happens when

θ = θn :=
nπ

N + 1
, n = 1, 2, . . . , N.

Thus the eigenvalues of VN are

λn = 2− 2 cos θn = 4 sin2(θn/2), n = 1, 2, . . . , N. (6.7)

The eigenfrequencies are

ω2
n =

T

md
λn =

2T

md
(1− cos θn)

=
2T

md

(
1− cos

nπ

N + 1

)
=

4T

md
sin2

(
nπ

2(N + 1)

)
. (6.8)

Remark: We know there are at most N distinct eigenvalues of VN . The index n does not start
at zero because this would imply θ = 0, but θ = 0—due to the presence of sin θ in the denominator
of DN—is not a zero of the determinant and hence does not correspond to an eigenvalue of VN . We
conclude there are N distinct eigenvalues of VN . These eigenfrequencies are also called normal modes
or characteristic oscillations.

6.4 The eigenvectors

6.4.1 Constructing the eigenvectors fn

We now find the eigenvector fn corresponding to eigenvalue λn. That is, we want a column vector fn
that satisfies

VN fn = 2(1− cos θn)fn, n = 1, 2, . . . , N.

Setting,

fn =


fn1
fn2
·
·

fnN

 ,

the above equation in component form is

−fn,j−1 + 2fn,j − fn,j+1 = 2(1− cos θn)fn,j
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10 20 30 40 50
n

1

2

3

4
Eigenvalues for N=50 particles

Figure 6.2: Eigenvalues λn, (6.7), for N = 50 particles.
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with
fn,0 = fn,N+1 = 0.

This is a constant coefficient difference equation in the j index . Assume, therefore, a solution of the
form

fn,j = eijϕ.

The recursion relation becomes with this guess

−2 cosϕ+ 2 = 2(1− cos θn),

i.e.
ϕ = ±θn.

The fn,j will be linear combinations of e±ijθn ,

fn,j = c1 sin(jθn) + c2 cos(jθn).

We require fn,0 = fn,N+1 = 0 which implies c2 = 0.

To summarize,

VN fn =
md

T
ω2
nfn, n = 1, 2, . . . , N,

ω2
n =

2T

md
(1− cos θn), θn =

nπ

N + 1
,

fn =


sin(θn)
sin(2θn)

·
·

sin(Nθn)

 n = 1, 2, . . . , N.

(6.9)

The general solution to (6.4) is

u(t) =

N∑
n=1

(an cos(ωnt) + bn sin(ωnt)) fn,

or in component form,

uj(t) =

N∑
n=1

(an cos(ωnt) + bn sin(ωnt)) sin(jθn). (6.10)

Thus every oscillation of the weighted string is a sum of characteristic oscillations.

6.4.2 Orthogonality of eigenvectors

The set of eigenvectors {fn}Nn=1 forms a basis for RN since the matrix VN is symmetric. (Another
reason they form a basis is that the eigenvalues of VN are distinct.) We claim the eigenvectors have
the additional (nice) property that they are orthogonal, i.e.

fn · fm = 0, n �= m,
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where · denotes the vector dot product. The orthogonality is a direct result of the fact that VN is a
symmetric matrix. Another way to prove this is to use (6.9) to compute

fn · fm =

N∑
j=1

sin(jθn) sin(jθm). (6.11)

To see that this is zero for n �= m, we leave as an exercise to prove the trigonometric identity

N∑
j=1

sin

(
njπ

N + 1

)
sin

(
mjπ

N + 1

)
=

1

2
(N + 1)δn,m

where δn,m is the Kronecker delta function. (One way to prove this identity is first to use the formula
sin θ = (eiθ − e−iθ)/2i to rewrite the above sum as a sum of exponentials. The resulting sums will be
finite geometric series.) From this identity we also get that the length of each vector, ‖fn‖, is

‖fn‖ =

√
N + 1

2
.

6.5 Determination of constants an and bn

Given the initial vectors u(0) and u̇(0), we now show how to determine the constants an and bn. At
t = 0,

u(0) =

N∑
n=1

anfn.

Dotting the vector fp into both sides of this equation and using the orthogonality of the eigenvectors,
we see that

ap =
2

N + 1

N∑
j=1

sin

(
pjπ

N + 1

)
uj(0), p = 1, 2, . . . , N. (6.12)

Differentiating u(t) with respect to t and then setting t = 0, we have

u̇(0) =
∑
n=1

ωnbnfn.

Likewise dotting fp into both sides of this equation results in

bp =
2

N + 1

1

ωp

N∑
j=1

sin

(
pjπ

N + 1

)
u̇j(0), p = 1, 2, . . . , N. (6.13)

If we assume the weighted string starts in an initial state where all the initial velocities are zero,

u̇j(0) = 0,

then the solution u(t) has components

uj(t) =
N∑

n=1

an cos(ωnt) sin(jθn) (6.14)

where the constants an are given by (6.12) in terms of the initial displacements uj(0). The special
solutions obtained by setting all the an except for one to zero, are called the normal modes of oscillation
for the weighted string. They are most interesting to graph as a function both in space (the j index)
and in time (the t variable). In figures we show a “snapshot” of various normal mode solutions at
various times t.
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Figure 6.3: Vertical displacements uj for the two lowest (n = 1 and n = 2) normal modes are plotted
as function of the horizontal position index j. Each column gives the same normal mode but at
different times t. System is for N = 25 particles.
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6.6 Continuum limit: The wave equation

As the pictures illustrate, when the number of particles N becomes large and the distance d between
the particles becomes small, there appear limiting curves that describe the oscillations of the entire
system. These limiting curves describe the oscillations of the string. Let us pursue this in more detail.
We assume

N → ∞ and d→ 0 such that Nd→ L

where L is the length of the string (under no tension). We assume that the mass of the string is given
by µL where µ is the mass per unit length. Thus we assume

mN → µL

The positions of the particles, jd, j = 1, 2, . . . , N , are then assumed to approach a continuous position
variable x:

jd→ x

We now examine the continuum limit of the system of ordinary differential equations

d2uj
dt2

=
T

md
(uj−1 − 2uj + uj+1)

To do this we assume there exists a function u(x, t) such that

uj(t) = u(jd, t)

Then, since d is small,

uj−1 = u(jd− d, t) = u(x, t)− d
∂u

∂x
(x, t) +

1

2
d2
∂2u

∂x2
(x, t) +O(d3)

and similarly

uj+1 = u(jd+ d, t) = u(x, t) + d
∂u

∂x
(x, t) +

1

2
d2
∂2u

∂x2
(x, t) +O(d3)

and hence

uj−1 − 2uj + uj+1 = d2
∂2u

∂x2
(x, t) + O(d3)

Substituting this into our differential equations we obtain

∂2u

∂t2
=
T

µ

∂2u

∂x2

Note that since m = µL/N ,
Td2

md
=
Td

m
=
TdN

µL
=
T

µ

Also observe that T/µ has the dimensions of (velocity)2. Thus let’s call

v2 =
T

µ
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Figure 6.4: Vertical displacements uj for the two normal modes n = 5 and n = 10 are plotted as
function of the horizontal position index j. Each column gives the same normal mode but at different
times t. System is for N = 100 particles.
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so that we have

∂2u

∂x2
− 1

v2
∂2u

∂t2
= 0. (6.15)

This is the one-dimensional wave equation. It is an example of a partial differential equation. Given
our analysis of the weighted string, we can anticipate that if we studied solutions of the single partial
differential equation (6.15), then u = u(x, t) would describe the oscillations of a string. Note that we
would have the two boundary conditions

u(0, t) = u(L, t) = 0

which corresponds to the statement that the string is tied down at x = 0 and at x = L for all times
t. In addition, we specify at t = 0 the initial displacement of the string: u(x, 0) = f(x) where f is
a given function as well as the initial velocity ∂u

∂t (x, 0). The problem then is to find the solution to
(6.15) satisfying these conditions. In the next section we show how the methods we’ve developed so
far permit us to find such a solution.

6.6.1 Solution to the wave equation

We first look for solutions of the form (called separation of variables)

u(x, t) = X(x)T (t)

where X is only a function of x and T is only a function of t. Since

∂2u

∂x2
=
d2X

dx2
T (t) and

∂2u

∂t2
= X(x)

d2T

dt2
,

we have, upon substituting these expressions into (6.15) and dividing by X T the condition

1

X

d2X

dx2
=

1

v2
1

T

d2T

dt2
.

The left-hand side of the above equation is a function only of x and the right-hand side of the same
equation is a function only of t. The only way this can be true is for both sides to equal the same
constant. (We will see below that this constant has to be negative to satisfy the boundary conditions.
Anticipating this fact we write the constant as −k2.) That is to say, we have

1

X

d2X

dx2
= −k2 =

1

v2
1

T

d2T

dt2

This gives us two ordinary differential equations:

d2X

dx2
+ k2X = 0,

d2T

dt2
+ k2v2T = 0.

The solution to the first equation is

X(x) = c1 cos(kx) + c2 sin(kx).

We want u(0, t) = 0 which implies c1 = 0. We also require u(L, t) = 0. If we set c2 = 0 then X is
identically zero and we have the trivial solution. Thus we must require

sin(kL) = 0.
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This is satisfied if
kL = nπ, n = 1, 2, 3, . . . .

(Note that n = −1,−2, . . . give the same solution up to a sign and n = 0 corresponds to X identically
zero.) The solution to the T equation is also a linear combination of sines and cosines. Thus for each
value of n we have found a solution satisfying the conditions u(0, t) = u(L, t) = 0 of the form

un(x, t) = sin(
nπ

L
x)

[
an cos(

nπv

L
t) + bn sin(

nπv

L
t)
]

where an and bn are constants. Since the wave equation is linear, linear supposition of solutions results
in a solution. Thus

u(x, t) =
∞∑
n=1

sin(
nπ

L
x)

[
an cos(

nπv

L
t) + bn sin(

nπv

L
t)
]

is a solution satisfying u(0, t) = u(L, t) = 0. We now require that u(x, 0) = f(x). That is we want

u(x, 0) =

∞∑
n=1

an sin(
nπ

L
x) = f(x)

We now use the fact that the for m,n = 1, 2, . . .∫ L

0

sin(
mπ

L
x) sin(

nπ

L
x) dx =

L

2
δm,n

to find

an =
2

L

∫ L

0

f(x) sin(
nπ

L
x) dx. (6.16)

This determines the constants an. If we further assume (for simplicity) that

∂u

∂t
(x, 0) = 0

(initial velocity is zero), then a very similar calculation gives bn = 0. Thus we have shown

u(x, t) =

∞∑
n=1

an sin(
nπ

L
x) cos(

nπv

L
t) (6.17)

where an are given by (6.16).

It is instructive to compare this solution of the wave equation to the solution (6.14) of the weighted
string. We take the N → ∞ limit directly in (6.14) and use the same scaling as we have in the above
derivation of the wave equation. In this limit we can replace

d −→ L

N
, m −→ µL

N
, j −→ xN

L

Thus

ω2
n =

4T

md
sin2(

nπ

2(N + 1)
) ∼ 4T

md

n2π2

4(N + 1)2
∼ T

µ

n2π2

L2

so that
ωn −→ v

n π

L
.

(Recall the definition v =
√
T/µ.) Similarly,

jθn =
njπ

N + 1
=

N

N + 1

nπ

L
x −→ nπ

L
x.
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Putting these limiting expressions into (6.14) and taking the N → ∞ limit we see that (6.14) becomes
(6.17). The only point that needs further checking is to show the an as given by (6.12) approaches
the an as given by (6.16). This requires the natural assumption that the initial conditions uj(0) can
be written in the form uj(0) = f(jd) for some smooth function f . This is the f of u(x, 0) = f(x). A
calculation then shows that (6.12) is the Riemann sum approximation to (6.16) and approaches (6.16)
as N → ∞.

The take home message is that the oscillations described by the solution to the wave equation can
be equivalently viewed as an infinite system of harmonic oscillators.

6.7 Inhomogeneous problem

The inhomogeneous version of (6.4) is

d2u

dt2
+

T

md
VNu = F(t) (6.18)

where F(t) is a given driving term. The jth component of F(t) is the external force acting on the
particle at site j. An interesting case of (6.18) is

F(t) = cosωt f

where f is a constant vector. The general solution to (6.18) is the sum of a particular solution and a
solution to the homogeneous equation. For the particular solution we assume a solution of the form

up(t) = cosωt g.

Substituting this into the differential equation we find that g satisfies(
VN − md

T
ω2I

)
g =

md

T
f .

For ω2 �= ω2
n, n = 1, 2, . . . , N , the matrix (

VN − md

T
ω2I

)
is invertible and hence

g =
md

T

(
VN − md

T
ω2I

)−1

f .

Writing (possible since the eigenvectors form a basis)

f =

N∑
n=1

αnfn,

we conclude that

g =

N∑
n=1

αn

ω2
n − ω2

fn

for ω2 �= ω2
n, n = 1, 2, . . . , N . The solution with initial values

u(0) = 0, u̇(0) = 0 (6.19)
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is therefore of the form

u(t) = cosωt

N∑
n=1

αn

ω2
n − ω2

fn +
∑
n=1

(an cos(ωnt) + bn sin(ωnt)) fn .

Imposing the initial conditions (6.19) we obtain the two equations∑
n=1

(
αn

ω2
n − ω2

+ an

)
fn = 0, (6.20)∑

n=1

ωnbnfn = 0. (6.21)

From the fact that {fn}Nn=1 is a basis we conclude

an = − αn

ω2
n − ω2

, bn = 0 for n = 1, 2, . . . , N.

Thus the solution is

u(t) =

N∑
n=1

αn

ω2
n − ω2

(cos(ωt)− cos(ωnt)) fn (6.22)

=

N∑
n=1

2αn

ω2
n − ω2

sin

(
1

2
(ωn + ω)t

)
sin

(
1

2
(ωn − ω)t

)
fn . (6.23)

We observe that there is a beat whenever the driving frequency ω is close to a normal mode of
oscillation ωn. Compare this discussion with that of Boyce & DiPrima [4].

6.8 Vibrating membrane

6.8.1 Helmholtz equation

In the previous section we discussed the vibrating string. Recall that we have a string of unstretched
length L that is tied down at ends 0 and L. If u = u(x; t) denotes the vertical displacement of the
string at position x, 0 ≤ x ≤ L, at time t, then we showed that for small displacements u satisfies the
one-dimensional wave equation

∂2u

∂x2
− 1

v2
∂2u

∂t2
= 0

where v2 = T/µ, T equals the tension in string and µ is the density of the string. We solved this
equation subject to the boundary conditions u(0, t) = u(L, t) = 0 for all t and with initial conditions
u(x, 0) = f(x) and ∂u

∂t (x, 0) = g(x) where f and g are given.

Now we imagine a uniform, flexible membrane, of mass ρ per unit area, stretched under a uniform
tension T per unit length over a region Ω in the plane whose boundary ∂Ω is a smooth curve (with a
possible exception of a finite number of corners).

We now let U = U(x, y; t) denote the vertical displacement of the membrane at position (x, y) ∈ Ω
at time t from its equilibrium position. We again assume that the membrane is tied down at the
boundary; that is1

U(x, y; t) = 0 for (x, y) ∈ ∂Ω.

1In one dimension Ω = (0, L) and the boundary of Ω consists of the two points 0 and L.
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The motion of U = U(x, y; t) is governed by the two-dimensional wave equation:

∂2U

∂x2
+
∂2U

∂y2
− 1

v2
∂2U

∂t2
= 0 for (x, y) ∈ Ω (6.24)

where v2 = T/ρ. One recognizes ∂2U
∂x2 + ∂2U

∂y2 as the two-dimensional Laplacian. So if we introduce

∆ =
∂2

∂x2
+

∂2

∂y2

the wave equation takes the form

∆U − 1

v2
∂2U

∂t2
= 0.

We proceed as before and look for solutions of (6.24) in which the variables separate

U(x, y; t) = u(x, y)T (t).

Substituting this into (6.24), and then dividing by uT gives

1

u
∆u =

1

v2
1

T

d2T

dt2
.

The right-hand side depends only upon t where as the left-hand side depends only upon x, y. Thus
for the two sides to be equal they must equal the same constant. Call this constant −k2. Thus we
have the two equations

d2T

dt2
+ ω2T = 0 where ω = kv,

∆u+ k2u = 0. (6.25)

The differential equation for T has our well-known solutions

eiωt and e−iωt.

The second equation (6.25), called the Helmholtz equation, is a partial differential equation for u =
u(x, y). We wish to solve this subject to the boundary condition

u(x, y) = 0 for (x, y) ∈ ∂Ω.

6.8.2 Rectangular membrane

Consider the rectangular domain

Ω = {(x, y) : 0 < x < a, 0 < y < b} (6.26)

For this rectangular domain the Helmholtz equation can be solved by the method of separation of
variables. If one assumes a solution of the form (variables x and y separate)

u(x, y) = X(x)Y (y)

then the problem is reduced to two one-dimensional problems. It is an exercise to show that the
allowed frequencies are

ωm,n = πv

[(m
a

)2

+
(n
b

)2
]1/2

, m, n = 1, 2, 3, . . . (6.27)
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6.8.3 Circular membrane: The drum

We now consider the circular domain

Ω =
{
(x, y) : x2 + y2 < a2

}
so the boundary of Ω is the circle ∂Ω : x2 + y2 = a2. Even though the variables separate in the
Cartesian coordinates x and y, this is of no use since the boundary is circular and we would not be
able to apply the BC u = 0 on the circular boundary ∂Ω. Since the domain is circular it is natural to
introduce polar coordinates

x = r cos θ, y = r sin θ.

It is an exercise in the chain rule to show that in polar coordinates the 2D Laplacian is

∆u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
;

and hence, the Helmholtz equation in polar coodinates is

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+ k2u = 0. (6.28)

We write u = u(r, θ).2

Separation of variables

We now show that the variables separate. So we look for a solution of the form

u(r, θ) = R(r)Θ(θ).

Substituting this into (6.28), multiplying by r2/RΘ we have

r2

R

d2R

dr2
+
r

R

dR

dr
+ k2r2 = − 1

Θ

d2Θ

dθ2

By the now familiar argument we see that each of the above sides must equal a constant, call it m2,
to obtain the two differential equations

d2Θ

dθ2
+m2Θ = 0 (6.29)

d2R

dr2
+

1

r

dR

dr
+ (k2 − m2

r2
)R = 0 (6.30)

Two linearly independent solutions to (6.29) are

eimθ and e−imθ

The point with polar coordinates (r, θ) is the same point as the one with polar coordinates (r, θ+2π).
Thus our solution u(r, θ) and u(r, θ + 2π) must be the same solution. This requires

eimθ+im2π = eimθ

2Possible point of confusion: We wrote u = u(x, y) so really our new function of r and θ is u(r cos θ, r sin θ).
Technically we should give this function of r and θ a new name but that would be rather pedantic.
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Bessel Function J0

Figure 6.5: The Bessel function J0(x). First zero occurs at approximately 2.4048, the second zero at
5.5201, the third zero at 8.6537, . . . .

or e2πim = 1. That is, m must be an integer. If m = 0 the general solution to (6.29) is c1 + c2θ. But
the θ → θ + 2π argument requires we take c2 = 0. Thus the general solution to (6.29) is

am cos(mθ) + bm sin(mθ), m = 0, 1, 2, . . .

We now return to (6.30), called the Bessel equation, which is a second order linear differential equation.
General theory tells us there are two linearly independent solutions. Tradition has it we single out
two solutions. One solution, called Jm(kr), is finite as r → 0 and the other solution, called Ym(kr)
goes to infinity as r → 0. Both of these functions are called Bessel functions. It can be shown that
the Bessel function Jm(z) is given by the series expansion

Jm(z) =
(z
2

)m ∞∑
j=0

(−1)j
1

j!(m+ j)!

(z
2

)2j

(6.31)

A plot of the Bessel function J0(x) for 0 ≤ x ≤ 40 is given in Figure 6.5. In Mathematica, Bessel
functions Jm(z) are called by the command BesselJ[m,z]. Since u(r, θ) is well-defined at r = 0
(center of the drum), this requires we only use the Jm solutions. Thus we have shown that

Jm(kr) (am cos(mθ) + bm sin(mθ)) , m = 0, 1, 2, . . .

are solutions to (6.28). We now require that these solutions vanish on ∂Ω. That is, when r = a and
for all θ we require the above solution to vanish. This will happen if

Jm(ka) = 0.

That is we have to be at a zero of the Bessel function Jm. It is known that Jm has an infinite number
of real zeros, call them jm,n, n = 1, 2, . . .. Thus the frequencies that the drum can oscillate at are

ωm,n =
v

a
jm,n, m = 0, 1, 2, . . . ;n = 1, 2, . . .
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where jm,n is the nth zero of the Bessel function Jm(z). These zeros can be found in Mathematica
using the command BesselJZero[m,n].

6.8.4 Comments on separation of variables

For general domains Ω one cannot solve the Helmholtz equation (6.25) by the method of separation of
variables. In general if one makes the transformations x = f(ξ, η) and y = g(ξ, η) then one would want
the curves of constant ξ (or constant η) to describe the boundary ∂Ω and for Helmholtz’s equation
to separate variables in the new variables ξ and η. In general there are no such coordinates. For an
elliptical membrane the Helmholtz equation does separate in what are called elliptic coordinates

x =
c

2
coshµ cos θ, y =

c

2
sinhµ sin θ

where c ∈ R+, 0 < µ < ∞ and 0 ≤ θ ≤ 2π. The curves µ = constant and θ = constant are
confocal ellipses and hyperbolas, respectively. Qualitative new phenomena arise for elliptical (and
more generally convex) membranes: the existence of whispering gallery modes and bouncing ball
modes. In the whispering gallery mode the eigenfunction is essentially nonzero only in a thin strip
adjacent to the boundary of Ω. Thus a person who speaks near the wall of a convex room can be
heard across the room near the wall, but not in the interior of the room. For further information see
[5] and references therein.
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6.9 Exercises

#1. Weighted string on a circle

We consider the same weighted string problem but now assume the masses lie on a circle; this means
that the first mass is coupled to the last mass by a string. The effect of this is that (6.1) remains the
same if we now interpret u0 = uN and uN+1 = u1. Explain why this is the case. What is the matrix
VN in this case? Show that the differential equations can still be written in the matrix form (6.4)
where now the VN is your new VN . Does the reduction to an eigenvalue problem, as in §6.2, remain
the same? Explain.

#2. Diagonalization of VN from problem #1

Let VN be the N ×N matrix found in the previous problem. Show that the eigenvalue problem

VN f = λf

becomes in component form

−fj−1 + 2fj − fj+1 = λfj , j = 1, 2, . . . , N (6.32)

where f0 = fN and fN+1 = f1. Let ω denote an N th root of unity; that is, any of the values e2πin/N ,
n = 0, 1, . . . , N − 1. For each such choice of ω, define

f̂ω =

N∑
j=1

fj ω
j (6.33)

Multiply (6.32) by ωj and sum the resulting equation over j = 1, 2, . . . , N . Show that the result is

2(1− cosφ)f̂ω = λf̂ω

where ω = eiφ. From this we conclude that the eigenvalues are

λn = 2

(
1− cos

(
2πn

N

))
, n = 0, 1, . . . , N − 1

Explain why this is so. This should be compared with (6.7). Find an eigenvector fn corresponding to
eigenvalue λn. (Hint: Follow the method in §6.4.1.)
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#3. Coupled pendulums

Figure 6.6: Coupled pendulums. Here we assume the damping force is zero.

Consider the system of two mathematical pendulums of lengths �1 and �2 and masses m1 and m2,
respectively, in a gravitional field mg which move in two parallel vertical planes perpendicular to a
common flexible support such as a string from which they are suspended. Denote by θ1 (θ2) the angle
of deflection of pendulum #1 (#2). The kinetic energy of this system is

KE =
1

2
m1�

2
1θ̇

2
1 +

1

2
m2�

2
2θ̇

2
2 ,

and the potential energy is

PE = m1g �1(1 − cos θ1) +m2g �2(1− cos θ2) + Vint

where Vint is the interaction potential energy.3 If there is no twist of the support, then there is no
interaction of the two pendulums. We also expect the amount of twist to depend upon the difference
of the angles θ1 and θ2. It is reasonable to assume Vint to be an even function of θ1 − θ2. Thus

Vint(0) = 0, V ′
int(0) = 0.

For small deflection angles (the only case we consider) the simplest assumption is then to take

Vint(θ1 − θ2) =
1

2
κ(θ1 − θ2)

2

3These expressions should be compared with (2.26).
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where κ is a positive constant. Since we are assuming the angles are small, the potential energy is
then given, to a good approximation, by

PE =
1

2
m1g�1 θ

2
1 +

1

2
m2g�2 θ

2
2 +

1

2
κ(θ1 − θ2)

2.

Under these assumptions it can be shown that Newton’s equations are

m1�
2
1θ̈1 = −(m1g�1 + κ)θ1 + κθ2 ,

m2�
2
2θ̈2 = κθ1 − (m2g�2 + κ)θ2 .

Observe that for κ = 0 the ODEs reduce to two uncoupled equations for the linearized mathematical
pendulum. To simplify matters somewhat, we introduce

ω2
1 =

g

�1
, ω2 =

g

�2
k1 =

κ

m1�21
, k2 =

κ

m2�22
.

Then it is not difficult to show (you need not do this) that the above differential equations become

θ̈1 = −(ω2
1 + k1)θ1 + k1θ2

θ̈2 = k2θ1 − (ω2
2 + k2)θ2 .

(6.34)

We could change this into a system of first order DEs (the matrix A would be 4× 4). However, since
equations of this form come up frequently in the theory of small oscillations, we proceed to develop a
“mini theory” for these equations. Define

Θ =

(
θ1
θ2

)
.

Show that the equations (6.34) can be written as

Θ̈ = AΘ (6.35)

where A is a 2× 2 matrix. Find the matrix A. Assume a solution of (6.35) to be of the form

Θ(t) = eiωt

(
a1
a2

)
. (6.36)

Using (6.36) in (6.35) show that (6.35) reduces to

AΘ = −ω2Θ. (6.37)

This is an eigenvalue problem. Show that ω2 must equal

ω2
± =

1

2
(ω2

1 + ω2
2 + k1 + k2)

±1

2

√
(ω2

1 − ω2
2)

2 + 2(ω2
1 − ω2

2)(k1 − k2) + (k1 + k2)2 . (6.38)

Show that an eigenvector for ω2
+ is

f1 =

(
1

−k2(ω2
+ − ω2

2 − k2)
−1

)
, (6.39)
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and an eigenvector corresponding to ω2
− is

f2 =

( −k1(ω2
− − ω2

1 − k1)
−1

1

)
. (6.40)

Now show that the general solution to (6.34) is(
θ1(t)
θ2(t)

)
= (c1 cos(ω+t) + c2 sin(ω+t)) f1 + (c3 cos(ω−t) + c4 sin(ω−t)) f2 (6.41)

where ci are real constants. One can determine these constants in terms of the initial data

θ1(0), θ̇1(0), θ2(0), θ̇2(0).

To get some feeling for these rather complicated expressions, we consider the special case

θ1(0) = θ0, θ̇1(0) = 0, θ2(0) = 0, θ̇2(0) = 0 (6.42)

with
m1 = m2 = m, �1 = �2 = �. (6.43)

These last conditions imply
ω1 = ω2 := ω0.

Explain in words what these initial conditions, (6.42), correspond to in the physical set up.

If we define
k =

κ

m�2
,

show that in the special case (6.42) and (6.43) that

ω+ =
√
ω2
0 + 2k and ω− = ω0. (6.44)

In this same case solve for the coefficients c1, c2, c3 and c4 and show that

c1 =
1

2
θ0, c2 = 0, c3 =

1

2
θ0, c4 = 0,

and hence (6.41) becomes

θ1(t) = θ0 cos

(
1

2
(ω+ + ω−)t

)
cos

(
1

2
(ω+ − ω−)t

)
,

θ2(t) = θ0 sin

(
1

2
(ω+ + ω−)t

)
sin

(
1

2
(ω+ − ω−)t

)
.

Suppose further that
k

ω2
0

� 1. (6.45)

What does this correspond to physically? Under assumption (6.45), show that approximately

θ1(t) ≈ θ0 cos (ω0t) cos

(
k

2ω0
t

)
,

θ2(t) ≈ θ0 sin (ω0t) sin

(
k

2ω0
t

)
. (6.46)
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Discuss the implications of (6.46) in terms of the periods

T0 =
2π

ω0
and T1 =

2π

k/2ω0
.

Show that in this approximation
T1 � T0.

Draw plots of θ1(t) and θ2(t) using the approximate expressions (6.46).

#4. The Toda chain and Lax pairs

Consider N particles on a circle (periodic boundary conditions) whose positions xn(t) at time t satisfy
the Toda equations

d2xn
dt2

= exp (−(xn − xn−1))− exp (−(xn+1 − xn)) , n = 1, 2, . . . , N, (6.47)

where xN+1 = x1 and x0 = xN . These equations are nonlinear and admit certain solutions, called
solitons, which are stable pulses. This system of equations has been extensively studied. Here we give
only a brief introduction to some of these results.4

To make the problem easier we now set N = 5 but everything that follows can be generalized to
any positive integer N .

Define

an =
1

2
exp (−(xn+1 − xn)/2) and bn =

1

2

dxn
dt

, n = 1, . . . , 5. (6.48)

Show that if xn satisfies the Toda equations (6.47), then an and bn satisfy the differential equations

dan
dt

= an (bn − bn+1) and
dbn
dt

= 2
(
a2n−1 − a2n

)
. (6.49)

Define two 5× 5 matrices L and B, they are called a Lax pair, by

L =


b1 a1 0 0 a5
a1 b2 a2 0 0
0 a2 b3 a3 0
0 0 a3 b4 a4
a5 0 0 a4 b5

 and B =


0 −a1 0 0 a5
a1 0 −a2 0 0
0 a2 0 −a3 0
0 0 a3 0 −a4

−a5 0 0 a4 0

 . (6.50)

Show (6.49) can be written as the matrix equation

dL

dt
= BL− LB (6.51)

Define the matrix U = U(t) to be the solution to the differential equation

dU

dt
= BU

that satisfies the initial condition U(0) = I.

4See, for example, Theory of Nonlinear Lattices by Morikazu Toda, Springer-Verlag, 1981.
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Show that U(t) is a unitary matrix; that is, U∗(t)U(t) = I for all t where U∗ is the adjoint matrix.5

Hint: Observe that B∗ = −B. Use this to first show that

dU∗

dt
= −U∗B

and then show d
dtU

∗(t)U(t) = 0.

Now prove that
d

dt
(U∗L(t)U(t)) = 0

and hence that
U∗(t)L(t)U(t) = L(0)

That is, L(0) and L(t) are unitarily equivalent. From this conclude

The eigenvalues of L(t) are independent of t

Thus the eigenvalues of the Lax matrix L are first integrals of motion of the Toda chain. For general
N this means that we have found N integrals of the motion. This is a remarkable result since normally
one can only find a limited number of integrals of the motion (energy, angular momentum, etc.).

#5. Wave equation

In the section “Solution to the Wave Equation” it was claimed that a similar argument shows that
the coefficients bn are equal to zero. (See discussion between (6.16) and (6.17).) Prove that bn = 0.

#6. Weighted string with friction

We now assume that the particles in the weighted string problem are subject to a force due to the
presence of friction. (Imagine the particles are moving in a medium which offers resistance to the
motion of the particles.) Assuming the frictional force is proportional to the velocity, the system of
differential equations describing the motion is

m
d2uj
dt2

=
T

d
(uj+1 − 2uj + uj−1)− γ

duj
dt

, j = 1, 2, . . . , N (6.52)

where γ is positive and, as before, u0 = uN+1 = 0.

1. Rewrite the system (6.52) in matrix form such that when γ = 0 the equation becomes identical
to the matrix equation (6.4).

2. Assume a solution of the form
u(t) = eiωtf (6.53)

where f is a column vector independent of t and ω is to be determined. For what values of ω is
(6.53) a solution to the matrix equation derived in part (1)?

Note: This will not require a complete reworking of the eigenvalues since you may use the
information we already have proved about VN to find the eigenvalues in this new problem. You
should not have to solve anything more complicated than a quadratic equation.

5Recall that if X is any matrix then X∗ is the matrix obtained by taking the complex conjugate of each element in
X and then taking the transpose.
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3. Explain the significance of the fact that the ω’s you obtain are complex numbers.

4. For a large systemN � 1 explain why you expect some of the allowed ω’s to be purely imaginary.
Explain the significance of this result, i.e. what is the implication for the motion?

#7. Rectangular membrane

Figure 6.7: Four lowest normal modes of a rectangular drum.

In this section we obtain the solution of (6.25) in the case of a rectangular domain (6.26).

1. By assuming that the solution can be written as u(x, y) = X(x)Y (y), obtain a 2nd order DE
for X with independent variable x and similarly a DE for Y with independent variable y.

2. We assume the membrane is tied down at the boundary of the domain Ω. (This implies boundary
conditions on the solutions we seek.)

3. Show that the eigenvalues and the corresponding eigenfunctions of the differential equations
with boundary conditions in parts (1) and (2) are

µm =
m2π2

a2
; Xm(x) = Am sin

(mπx
a

)
, m = 1, 2, · · · (6.54)

νn =
n2π2

b2
; Yn(y) = Bn sin

(nπy
b

)
, n = 1, 2, · · · (6.55)

4. Show that the eigenfrequencies (normal modes) of the rectangular membrane are given by (6.27).
(By dimensional analysis conclude where the factor v, which was set equal to one here, must
appear.)

5. Find the general solution to (6.25) for this rectangular domain.
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#8. Alternating mass-spring: Acoustic and optical phonons

Consider 2N particles on a circle interacting via a spring connnecting adjacent particles. We assume
the particles on the odd sites have mass m1 and the particles on the even sites have mass m2. If
uj denotes the displacement from equilibrium of particle j, the differential equations describing the
motion are

mj
d2uj
dt2

+ k (−uj−1 + 2uj − uj+1) = 0 for j = 1, 2, 3, . . . , 2N, (6.56)

where because the particles are on a circle

u2N+1 = u1 and u0 = u2N .

Here k is the spring constant for the spring connecting any two particles. We are interested in finding
the frequencies at which the system can oscillate.

1. Assume a solution of the form

uj(t) = eiωtvj , vj independent of t,

and show that (6.56) becomes

−mjω
2vj + k (−vj−1 + 2vj − vj+1) = 0 for j = 1, 2, 3, . . . , 2N, (6.57)

2. For j = 1, 2, . . . , N define the vectors

Vj =

(
v2j−1

v2j

)
.

Show that (6.57) can be written equivalently as

−
(
m1 0
0 m2

)
ω2Vj + k

{
−
(

0 1
0 0

)
Vj−1 +

(
2 −1

−1 2

)
Vj −

(
0 0
1 0

)
Vj+1

}
= 0

(6.58)
for j = 1, 2, . . . , N .

3. Let η denote any Nth root of unity, i.e. ηN = 1 so η is of the form η = eiφ = e2πij/N for some
integer j = 0, 1, . . . , N − 1. Define

V̂η =
N∑
j=1

Vjη
j

Show that V̂η satisfies the equation{
−
(
m1 0
0 m2

)
ω2 + k

[
−
(

0 1
0 0

)
η +

(
2 −1

−1 2

)
−
(

0 0
1 0

)
η−1

]}
V̂η = 0. (6.59)

4. What is the condition for nontrivial solutions V̂η to exist for (6.59)? Hint: Equation (6.59) is

of the form AV̂η = 0 where the matrix A is the 2× 2 matrix inside the curly brackets of (6.59).
Using the condition you just found, show that the normal modes of vibration are given by

ω2
±,j = k

(
1

m1
+

1

m2

)
± k

[
1

m2
1

+
1

m2
2

+
2

m1m2
cos

(
2πj

N

)]1/2
(6.60)

where j = 0, 1, 2, . . .N − 1.
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5. Show that the frequencies derived in (6.60) lie on two curves, called dispersion curves. These
two curves should be compared with the one dispersion curve for the equal mass problem. Plot
the two dispersion curves.6 The curve that is zero at j = 0 is called the acoustic mode and the
other is called the optical mode.7 This is a model of a one-dimensional lattice vibrations of a
diatomic system.

#9. Energy of the vibrating string

The vibrating string has the total energy E(t) at time t

E(t) =

∫ L

0

(1
2
µu2t (x, t) +

1

2
T u2x(x, t)

)
dx

Explain why the first term is the kinetic energy and the second term is the potential energy of the
vibrating string. Recall the solution u(x, t) of the vibrating string problem, i.e. (6.17). Above we use
the notation

ut(x, t) :=
∂u(x, t)

∂t
and ux(x, t) :=

∂u(x, t)

∂x
.

You may assume as given the following integrals:∫ L

0

sin
(mπ
L
x
)
sin

(nπ
L
x
)
dx =

1

2
L δm,n (6.61)

and ∫ L

0

cos
(mπ
L
x
)
cos

(nπ
L
x
)
dx =

1

2
L δm,n (6.62)

Use (6.61) and (6.62) to show

E(t) =
π2T

4L

∞∑
n=1

n2a2n. (6.63)

Note that the result is independent of t, i.e. the energy of the vibrating string is conserved. Give a
physical interpretation of this expression for E in terms of harmonic oscillators.

6In plotting you might want to fix some values of m1, m2 and k.
7The acoustic modes correspond to sound waves in the lattice. The optical modes, which are nonzero at j = 0, are

called “optical” because in ionic crystals they are excited by light. The quantized version of these excitations are called
acoustic phonons and optical phonons.
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Chapter 7

Quantum Harmonic Oscillator

Figure 7.1: Erwin Schrödinger, 1887–1961 and Paul Dirac, 1902–1984.

A simple and interesting example of a dynamical system in quantum mechanics is the
harmonic oscillator. This example is of importance for general theory, because it forms a
corner-stone in the theory of radiation.

P. A. M. Dirac, The Principles of Quantum Mechanics
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7.1 Schrödinger equation

In classical mechanics the state of a system consisting of N particles is specified by the position �x
and momentum �p = m�v of each particle. The time evolution of this state is determined by solving
Newton’s Second Law (or equivalently, say Hamilton’s equations). Thus, for example, a one particle
system moving in three-dimensions (three degrees of freedom) determines a curve in 6-dimensional
space: namely, (�x(t), �p(t)). For the familiar harmonic oscillator (mass-spring system) there is only
one-degree of freedom (the movement of the mass is in one dimension only) and the position and
momentum are given by the now familiar formulas1

x(t) = x0 cos(ω0t) +
p0
mω0

sin(ω0t), (7.1)

p(t) = p0 cos(ω0t)−mω0x0 sin(ω0t). (7.2)

In quantum mechanics the notion of the state of the system is more abstract. The state is specified
by a vector Ψ in some abstract vector space H. This vector space has an inner product (·, ·).2 Thus
every state Ψ ∈ H satisfies

‖ Ψ ‖:= (Ψ,Ψ)1/2 <∞. (7.3)

The importance of (7.3) is that in the Born interpretation |(Ψ,Φ)|2 is interpreted as a probability; and
hence, must be finite (and less than or equal to one).3 In what is called the Schrödinger representation,
one can describe the state Ψ as a function Ψ(x) where x is the position (of say the particle). Then
|Ψ(x)|2 is the probability density of finding the particle in some small neighborhood of the point x.
Integrating this over all possible positions must then give one.

The evolution of the state Ψ with time is determined by solving the Schrödinger equation:

i�
∂Ψ

∂t
= HΨ. (7.4)

Here � is the Planck’s constant4 (divided by 2π) and H is the quantum mechanical Hamiltonian, a
linear self-adjoint operator on the space H.5

7.2 Harmonic oscillator

7.2.1 Harmonic oscillator equation

We illustrate the notions of quantum mechanics and its relationship to differential equations in the
context of the harmonic oscillator. The harmonic oscillator is one of the most important simple

1Actually, the second may look a little different from the earlier formulas. This is due to the fact that we are using
momentum p instead of velocity v to describe the second coordinate of (x, p). Here p0 is the initial momentum and is
related to the initial velocity by p0 = mv0.

2Such vector spaces are called Hilbert spaces.
3This assumes that states Ψ are normalized so that their “length” is one, i.e. ‖ Ψ ‖= 1.
4In the cgs system, � = 1.05457 × 10−27 erg-sec. A quantity that has the units of energy×time is called an action.

In modern particle physics a unit system is adopted such that in these units � = 1. Max Planck received the Nobel
prize in 1919 for “his discovery of energy quanta”.

5An operator H is self-adjoint if (Hψ, ψ) = (ψ,Hψ) for all ψ ∈ H. It is the generalization to Hilbert spaces of the
notion of a Hermitian matrix. There are some additional subtle questions regarding the domain of the operator H. In
these notes we ignore such questions and assume H is well-defined on all states Ψ ∈ H.
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examples in quantum mechanics. In this case the vector space H is the space of square-integrable
functions. This space consists of all (complex valued) functions ψ(x) such that∫ ∞

−∞
|ψ(x)|2 dx <∞.

This space is denoted by L2(R) and it comes equipped with an inner product

(ψ, ϕ) =

∫ ∞

−∞
ψ(x)ϕ̄(x) dx

where ϕ̄ is the complex conjugate of ϕ. (Note that in most physics books the complex conjugation
is on the first slot.) The first observation, and an important one at that, is that the state space is
infinite dimensional. For example, it can be proved that the infinite sequence of functions

xje−x2

, j = 0, 1, 2 . . .

are linearly independent elements of L2(R). Thus in quantum mechanics one quickly goes beyond
linear algebra which is traditionally restricted to finite-dimensional vector spaces.

The operatorH which describes the harmonic oscillator can be defined once we give the quantization
procedure—a heuristic that allows us to go from a classical Hamiltonian to a quantum Hamiltonian.
As mentioned above, classically the state is given by the vector (x, p) ∈ R2. In quantum mechanics the
position and momentum are replaced by operators x̂ and p̂. For the vector space of states H = L2(R),
the position operator acts on L2(R) by multiplication,

(x̂ψ)(x) = xψ(x), ψ ∈ L2(R)

and the momentum operator p̂ acts by differentiation followed by multiplication by the constant −i�,

(p̂ψ)(x) = −i� ∂ψ
∂x

(x), ψ ∈ L2(R).

Since x̂ is multiplication by x we usually don’t distinguish between x and x̂. From this we observe
that in quantum mechanics the position operator and the momentum operator do not commute. To
see this, let ψ ∈ L2(R), then

(x̂p̂− p̂x̂)ψ(x) = −i�x ∂ψ
∂x

+ i�
∂

∂x
(xψ(x))

= −i�x ∂ψ
∂x

+ i�x
∂ψ

∂x
+ i�ψ(x)

= i�ψ(x).

Introducing the commutator; namely, for any two operators A and B we define [A,B] = AB − BA,
the above can be written more compactly as6

[x̂, p̂] = i� id (7.5)

where by id we mean the identity operator. Equation (7.5) is at the heart of the famous Heisenberg
Uncertainty Relation.

6Just as in linear algebra, if A and B are two linear operators and it holds for all vectors ψ that Aψ = Bψ, then we
can conclude that as operators A = B.
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With these rules we can now define the quantum harmonic oscillator Hamiltonian given the classical
Hamiltonian (energy). Classically,7

E = KE + PE

=
1

2m
p2 +

1

2
mω2

0 x
2.

Replacing p→ p̂ and x by multiplication by x we have

H = − �2

2m

d2

dx2
+

1

2
mω2

0x
2

so that Schrödinger’s equation becomes

i�
∂Ψ

∂t
= HΨ = − �2

2m

d2Ψ

dx2
+

1

2
mω2

0x
2Ψ. (7.6)

We first look for solutions in which the variables x and t separate

Ψ(x, t) = A(t)ψ(x).

Substituting this into (7.6) and dividing the result by A(t)ψ(x) we find

i�
1

A

dA

dt
=

1

ψ
Hψ.

Since the left hand side is only a function of t and the right hand side is only a function of x both
sides must equal a common constant. Calling this constant E (observe this constant has the units of
energy), we find

dA

dt
= − iE

�
A,

Hψ = Eψ.

The first equation has solution
A(t) = e−iEt/�

so that
Ψ(x, t) = e−iEt/� ψ(x). (7.7)

We now examine
Hψ = Eψ (7.8)

in detail. The first observation is that (7.8) is an eigenvalue problem in L2(R). Thus the eigenvalues
of the operator H are interpreted as energies. It is convenient to introduce dimensionless variables to
simplify notationally the differential equation. Let

ξ = x

√
mω0

�
, ε =

2E

�ω0
.

Performing this change of variables, the Schrödinger equation Hψ = Eψ becomes

−d
2ψ

dξ2
+ (ξ2 − ε)ψ = 0. (7.9)

7Recall the potential energy for the harmonic oscillator is V (x) = 1
2
kx2 = 1

2
mω2

0x
2.
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We want solutions to (7.9) that are square integrable. It is convenient to also perform a change in the
dependent variable8

ψ(ξ) = e−ξ2/2 v(ξ).

Then a straightforward calculation shows that v must satisfy the equation

d2v

dξ2
− 2ξ

dv

dξ
+ (ε− 1)v = 0. (7.10)

Observe that (7.10) is not a constant coefficient differential equation, so that the methods we have
developed do not apply to this equation.

7.2.2 Hermite polynomials

To find solutions of (7.10) we look for solutions that are of the form9

v(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3 + · · · =
∞∑
k=0

akξ
k. (7.11)

The idea is to substitute this into (7.10) and to find conditions that the coefficients ak must satisfy.
Since

dv

dξ
= a1 + 2a2ξ + 3a3ξ

2 + · · · =
∞∑
k=1

kak ξ
k−1

and
d2v

dξ2
= 2a2 + 6a3ξ + · · · =

∞∑
k=2

k(k − 1)ak ξ
k−2 =

∞∑
k=0

(k + 1)(k + 2)ak+2 ξ
k,

we have

d2v

dξ2
− 2ξ

dv

dξ
+ (ε− 1)v = 2a2 + (ε− 1)a0 +

∞∑
k=1

{(k + 2)(k + 1)ak+2 + (ε− 1− 2k)ak} ξk.

For a power series to be identically zero, each of the coefficients must be zero. Hence we obtain10

(k + 2)(k + 1)ak+2 + (ε− 1− 2k)ak = 0, k = 0, 1, 2, . . . (7.12)

Thus once a0 is specified, the coefficients a2, a4, a6, . . . are determined from the above recurrence
relation. Similarly, once a1 is specified the coefficients a3, a5, a7, . . . are determined. The recurrence
relation (7.12) can be rewritten as

ak+2

ak
=

2k − ε+ 1

(k + 2)(k + 1)
, k = 0, 1, 2, . . . (7.13)

Our first observation from (7.13) is that

lim
k→∞

∣∣∣∣ak+2

ak

∣∣∣∣ = 0

8This change of variables makes the recursion relation derived below simpler.
9This is called the power series method.

10Note that the k = 0 condition is 2a2 + (ε− 1)a0 = 0.
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and so by the ratio test for power series, the radius of convergence of (7.11) is infinite. (This is good
since we want our functions ψ to be defined for all ξ.)

Now comes a crucial point. We have shown for any choices of a0 and a1 and for any choice of
the parameter (dimensionless energy) ε, that the function ψ(ξ) = e−ξ2/2v(ξ) solves the differential
equation (7.9) where v is given by (7.11) and the coefficients ak satisfy (7.13). However, a basic
requirement of the quantum mechanical formalism is that ψ(ξ) is an element of the state space L2(R);

namely, it is square integrable. Thus the question is whether e−ξ2/2v(ξ) is square integrable. We will
show that we have square integrable functions for only certain values of the energy ε; namely, we will
find the quantization of energy.

The ratio of the series coefficients, ak+1/ak, in the function

eαz =
∞∑
k=0

akz
k =

∞∑
k=0

αk

k!
zk

is α/(k + 1) ∼ α/k as k → ∞. For the series (recall given a0 we can determine a2, a4, . . .)

v(ξ) =
∞∑
k=0

a2kξ
2k =

∞∑
k=0

bkz
k, bk = a2k, z = ξ2,

the ratio of coefficients, bk+1/bk, is (we use (7.13) to get the second equality)

bk+1

bk
=
a2k+2

a2k
=

4k − ε+ 1

(2k + 2)(2k + 1)
∼ 1

k
, k → ∞.

This suggests in comparing the series for v with the series for eαz, and it can be proved,11 that

v(ξ) ∼ eξ
2

, ξ → ∞.

Similar remarks hold for the series
∑∞

k=0 a2k+1ξ
2k+1. This means our solution ψ(ξ) = v(ξ)e−ξ2/2 is

not square integrable since it grows as eξ
2/2. Hence ψ is not a valid state in quantum mechanics.

There is a way out of this : If the coefficients ak would vanish identically from some point on, then the
solution v(ξ) will be a polynomial and thus ψ will be square integrable. From the recurrence relation
(7.13) we see that this will happen if the numerator vanishes for some value of k. That is, if

ε = 2n+ 1

for some nonnegative integer n, then an+2 = an+4 = · · · = 0. It is traditional to choose a normalization
(which amounts to choices of a0 and a1) so that the coefficient of the highest power is 2n. With this
normalization the polynomials are called Hermite polynomials and are denoted by Hn(ξ). The first
few polynomials are12

H0(ξ) = 1,

H1(ξ) = 2ξ,

H2(ξ) = 4ξ2 − 2,

H3(ξ) = 8ξ3 − 12ξ,

H4(ξ) = 16ξ4 − 48ξ2 + 12,

H5(ξ) = 32ξ5 − 160ξ3 + 120ξ,

H6(ξ) = 64ξ6 − 480ξ4 + 720ξ2 − 120.

11This asymptotic analysis can be made rigorous using the theory of irregular singular points.
12One can compute a Hermite polynomial in Mathematica by the command HermiteH[n,x] where n is a nonnegative

integer.
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Thus we have found solutions13

ψn(ξ) = NnHn(ξ)e
−ξ2/2 (7.14)

to (7.9); namely,

Hψn =
�ω0

2
(2n+ 1)ψn, n = 0, 1, 2, . . .

We have solved an eigenvalue problem in the infinite dimensional space L2(R). It is convenient to
choose the overall normalization constant Nn such that

‖ ψn ‖= 1, n = 0, 1, 2, . . .

That is, Nn is chosen so that

N2
n

∫ ∞

−∞
Hn(ξ)

2e−ξ2 dξ = 1. (7.15)

It can be shown that

Nn =
[√
π n! 2n

]−1/2
.

7.2.3 Quantization of energy

The quantized energy levels are

En =
1

2
�ω0 εn = �ω0 (n+ 1/2), n = 0, 1, 2, . . . .

That is to say, the energy of the quantum oscillator cannot have arbitrary real values (as in the case
of the classical oscillator), but must be one of the discrete set of numbers

1

2
�ω0,

3

2
�ω0,

5

2
�ω0, . . .

The lowest energy, 1
2 �ω0, is called the ground state energy and has associated wave function

ψ0(ξ) =
1

π1/4
e−ξ2/2.

Thus the ground state energy of the quantum harmonic oscillator is nonzero. In the classical harmonic
oscillator, we can have p = x = 0 which corresponds to E = 0.

7.2.4 Some properties of Hermite polynomials

Solution of recurrence relation

To obtain a more explicit formula for the Hermite polynomials we must solve the recurrence relation
(7.13). The polynomials Hn(x) are normalized so that the coefficient of the highest power is 2n. This

13Here Nn is an overall normalization constant which we choose below.
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n=4

n=3

n=2

n=1

n=0

Figure 7.2: Harmonic Oscillator Wave Functions ψn(x) for n = 0, 1, 2, 3, 4.
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will determine a0 (when n is even) and a1 (when n is odd). We treat here the case of n even and leave
the case of n odd to the reader. First

an
a0

=
a2
a0

a4
a2

· · · an
an−2

The right hand side of this expression is determined from (7.13) and equals

2(n)

1 · 2
2(n− 2)

3 · 4
2(n− 4)

5 · 6 · · · 2(2)

(n− 1)n

This can be rewritten as
2n/2n(n− 2)(n− 4) · · · 4 · 2

n!

This is the ratio an/a0. Requiring that an = 2n gives

a0 = 2n/2 (n− 1)(n− 3)(n− 5) · · · 5 · 3 · 1

We now determine am—the coefficient of xm— (when n is even we can takem even too). Proceeding
in a similar manner we write

am
a0

=
a2
a0

a4
a2

· · · am
am−2

and again note the right hand side is determined from the recurrence relation (7.13); namely,

(−1)m/2 2(n)

1 · 2
2(n− 2)

3 · 4
2(n− 4)

5 · 6 · · · 2(n−m+ 2)

(m− 1) ·m
Multiplying this by the value of a0 we get that am equals

(−1)m/2 2
(n+m)/2

m!
[n(n− 2)(n− 4) · · · (n−m+ 2)] [(n− 1)(n− 3) · · · 5 · 3 · 1]

The product of the two quantities in square brackets can be rewritten as

n!

(n−m)!
(n−m− 1)(n−m− 3)(n−m− 5) · · · 5 · 3 · 1

Now let m→ n−m (so am is the coefficient of xn−m ) to find that am equals

(−1)m/22n−m/2

(
n

m

)
1 · 3 · 5 · · · (m− 1)

where
(
n
m

)
is the binomial coefficient. Since m is even and runs over 0, 2, 4, . . . n, we can let m→ 2m

to get the final formula14

Hn(x) = n!

[n/2]∑
m=0

(−1)m

m!(n− 2m)!
(2x)n−2m. (7.16)

This same formula holds for n odd if we interpret [n/2] = (n − 1)/2 when n is odd. From (7.16) we
can immediately derive the differentiation formula

dHn

dx
= 2nHn−1(x). (7.17)

14We used the fact that
(2m − 1)!!/(2m)! = 1/(2mm!)

where (2m − 1)!! = (2m− 1)(2m − 3) · · · 5 · 3 · 1.
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Orthogonality properties

The harmonic oscillator Hamiltonian H is self-adjoint with distinct eigenvalues. Just as we proved
for matrices, it follows that that eigenfunctions ψn are orthogonal. The normalization constant Nn is
chosen so that they are orthonormal. That is if ψn are defined by (7.14), then

(ψn, ψm) = N2
n

∫ ∞

−∞
Hn(x)Hm(x) e−x2

dx = δm,n (7.18)

where Nn are defined in (7.15) and δm,n is the Kronecker delta function.15 The functions ψn are called
the harmonic oscillator wave functions.

From the orthogonality relations we can derive what is called the three-term recursion relation;
namely, we claim that

Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0. (7.19)

Since the highest power of Hn has coefficient 2n, we see that

Hn+1(x)− 2xHn(x)

must be a polynomial of degree less than or equal to n. Using (7.16) we can see that the highest power
is the same as the highest power of 2nHn−1(x). Thus the left hand side of (7.19) is a polynomial of
degree less than or equal to n− 2. It can be written as the linear combination

c0H0(x) + c1H1(x) + · · ·+ cn−2Hn−2(x).

We now multiply both sides of this resulting equation by Hk(x) e
−x2

, 0 ≤ k ≤ n − 2, and integrate
over all of R. Using the orthogonality relation one concludes that ck = 0.16

For applications to the harmonic oscillator, it is convenient to find what (7.16) and (7.19) imply
for the oscillator wave functions ψn. It is an exercise to show that17

xψn(x) =

√
n

2
ψn−1(x) +

√
n+ 1

2
ψn+1(x) , (7.20)

dψn(x)

dx
=

√
n

2
ψn−1(x) −

√
n+ 1

2
ψn+1(x) . (7.21)

7.2.5 Completeness of the harmonic oscillator wave functions {ψn}n≥0

In finite-dimensional vector spaces, we understand the notion of a basis. In particular, we’ve seen
the importance of an orthonormal basis. In Hilbert spaces these concepts are more subtle and a full
treatment will not be given here. Here is what can be proved. For any vector Ψ ∈ L2(R) we can find
coefficients an such that

Ψ =

∞∑
n=0

anψn. (7.22)

15δm,n equals 1 if m = n and 0 otherwise.
16Perhaps the only point that needs clarification is why∫

R

2xHn(x)Hk(x)e
−x2

dx

is zero for 0 ≤ k ≤ n − 2. Since 2xHk(x) is a polynomial of degree k + 1 ≤ n − 1, it too can be expanded in terms of
Hermite polynomials of degree less than or equal to n − 1; but these are all orthogonal to Hn. Hence the expansion
coefficients must be zero.

17These formulas are valid for n = 0 if we define ψ−1(x) = 0.
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Since this is an infinite sum we must say in what sense this sum converges. If we define the partial
sums

Ψn =

n∑
k=0

akψk,

then we say Ψn → Ψ as n→ ∞ if

lim
n→∞ ‖ Ψ−Ψn ‖= 0.

(Observe that Ψn, being a sum of a finite number of terms is well-defined.) Recall that the norm ‖ · ‖
in L2(R) is

‖ Ψ−Ψn ‖2=
∫
R

|Ψ(x)−Ψn(x)|2 dx.

It is in this sense the series converges. Since ψn form an orthonormal sequence, the coefficients an are
given simply by

an = (ψn,Ψ) .

Observe that since ψn form an orthonormal basis, the vector Ψ in (7.22) satisfies

‖ Ψ ‖2=
∞∑

n=0

|an|2 <∞.

7.3 Some properties of the harmonic oscillator

In quantum mechanics if O is an observable (mathematically, a self-adjoint operator on the Hilbert
space H), then the average (or expected) value of O in the state Ψ is

〈O〉 = (OΨ,Ψ) .

For the quantum oscillator, the average position in the eigenstate ψn is

〈x〉 = (xψn, ψn) =

∫
R

xψn(x)
2 dx = 0.

(The integral is zero since ψ2
n is an even function of x so that xψn(x)

2 is an odd function.) The
average of the square of the position in the eigenstate ψn is〈

x2
〉
=
(
x2ψn, ψn

)
.

This inner product (integral) can be evaluated by first using (7.20) twice to write x2ψn as a linear
combination of the ψk’s:

x2ψn = x

{√
n

2
ψn−1 +

√
n+ 1

2
ψn+1

}

=

√
n

2

{√
n− 1

2
ψn−2 +

√
n

2
ψn

}
+

√
n+ 1

2

{√
n+ 1

2
ψn +

√
n+ 2

2
ψn+2

}

=
1

2

√
n(n− 1)ψn−2 + (n+

1

2
)ψn +

1

2

√
n+ 1)(n+ 2)ψn+2.
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The inner product can now be calculated using the orthonormality of the wave functions to find18〈
x2
〉
= n+

1

2
.

A very similar calculation with p̂ = −i d
dx (but this time using (7.21)) gives19

〈p̂〉 = 0,〈
p̂2
〉

= (n+
1

2
) .

If we define

∆x =

√
〈x2〉 − 〈x〉2 ,

∆p =

√
〈p̂2〉 − 〈p̂〉2 ,

then (in physical units) we have in state ψn

∆x∆p =

(
n+

1

2

)
� ≥ �

2
.

This is the Heisenberg Uncertainty Principle for the harmonic oscillator. The inequality part of the
statement can be shown to be valid under very general conditions.

7.3.1 Averages 〈x̂(t)〉 and 〈p̂(t)〉

Let Ψ be any state of the system

Ψ(x) =

∞∑
n=0

anψn(x)

such that

A :=
∑
n≥0

√
n

2
anān−1, B :=

∑
n≥0

√
n+ 1

2
anān+1

are convergent sums. (Here, as throughout, the ψn are the harmonic oscillator wave functions.) The
time evolution of Ψ is then given by

Ψ(x, t) =
∑
n≥0

ane
−iEnt/� ψn(x) (7.23)

which follows from the above discussion of separation of variables.

18This is the dimensionless result. Putting back in the dimensions, the average is

(n+ 1/2)
�

mω0

.
19Again these are the dimensionless results. Putting back the units the second average is

〈
p̂2

〉
= (n+

1

2
)mω0�.
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In the state Ψ(x, t) we are interested in computing the average values of x̂ and p̂. For notationally
convenience let’s define

xavg(t) = 〈x̂〉 = (x̂Ψ(x, t),Ψ(x, t))

and
pavg(t) = 〈p̂〉 = (p̂Ψ(x, t),Ψ(x, t)) .

Let
x0 := xavg(0) = (x̂Ψ(x, 0),Ψ(x, 0))

and
p0 := pavg(0) = (p̂Ψ(x, 0),Ψ(x, 0)) .

We first calculate x0 and p0.

x0 =
∑

m,n≥0

anām (xψn, ψm)

=
∑

m,n≥0

anām

[√
n

2
(ψn−1, ψm) +

√
n+ 1

2
(ψn+1, ψm)

]

=
∑

m,n≥0

anām

[√
n

2
δn−1,m +

√
n+ 1

2
δn+1,m

]
= A+B

where we use the orthonormality of the functions ψn. Similarly,

p0 = −iA+ iB.

We now calculate xavg(t) Now the state is (7.23). Proceeding as in the t = 0 case we see

xavg(t) =
∑

m,n≥0

anāme
−i(En−Em)t/� (xψn, ψm) .

The calculation of the inner products (xψn, ψm) was done in the t = 0 case. Noting that

En − En−1 = �ω0 and En − En+1 = −�ω0,

we see that
xavg(t) = e−iω0tA+ eiω0tB. (7.24)

Similarly, we find
pavg(t) = −ie−iω0tA+ ieiω0tB. (7.25)

Writing these averages in terms of sines and cosines and using the above expressions for x0 and p0,
we see that the average position and momentum in the state Ψ(x, t) evolve according to20

xavg(t) = x0 cos(ω0t) +
p0
mω0

sin(ω0t) (7.26)

pavg(t) = p0 cos(ω0t)−mω0x0 sin(ω0t) (7.27)

One should now compare the time evolution of the quantum averages (7.26) and (7.27) with the time
evolution of the classical position and momentum (7.1) and (7.2). They are identical. It is a special
property of the quantum harmonic oscillator that the quantum averages exactly follow the classical
trajectories. More generally, one expects this to occur only for states whose wave function remains
localized in a region of space.

20We restore the physical units in these last equations
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7.4 The Heisenberg Uncertainty Principle

The more precisely the position is determined, the less precisely the momentum is known
in this instant, and vice versa. Werner Heisenberg, 1927.21

In §7.3 we proved the Heisenberg Uncertainty Principle for the special case of the harmonic oscillator.
Here we show this is a general feature of quantum mechanics.22 First we recall some basic facts about
complex vector spaces.

1. If Ψ and Φ are any two states in our Hilbert space of states H, we have an inner product defined
(Ψ,Φ) that satisfies the properties

(a) (Ψ,Φ) = (Φ,Ψ) where z denotes the complex conjugate of z.

(b) (c1Ψ1 + c2Ψ2,Φ) = c1 (Ψ1,Φ) + c2 (Ψ2,Φ) for all states Ψ1, Ψ2 and all complex numbers
c1, c2.

(c) The length or norm of the state Ψ is defined to be ‖Ψ‖2 = (Ψ,Ψ) ≥ 0 with ‖Ψ‖ = 0 if and
only if Ψ = 0, the zero vector in H.

2. An operator A is called Hermitian (or self-adjoint) if

(AΨ,Φ) = (Ψ, AΦ)

for all states Ψ, Φ. In quantum mechanics observables are assumed to be Hermitian. Note this
makes the expected value of the observable A in state Ψ a real number

〈A〉 := (AΨ,Ψ)

= (Ψ, AΨ)

= (AΨ,Ψ)

= 〈A〉.

Sometimes one writes 〈A〉Ψ to denote the state in which the expected value is computed.

3. Just as in linear algebra, we have the Cauchy-Schwarz inequality

|(Ψ,Φ)|2 ≤ ‖Ψ‖2 ‖Φ‖2 (7.28)

for all states Ψ,Φ ∈ H.

We now assume we have observables A and B that satisfy the commutation relation

AB −BA = i id (7.29)

21From Wikipedia: Werner Karl Heisenberg (5 December 1901 — 1 February 1976) was a German theoretical physicist
and one of the key pioneers of quantum mechanics. He published his work in 1925 in a breakthrough paper. In the
subsequent series of papers with Max Born and Pascual Jordan, during the same year, this matrix formulation of
quantum mechanics was substantially elaborated. In 1927 he published his uncertainty principle, upon which he built
his philosophy and for which he is best known. Heisenberg was awarded the Nobel Prize in Physics for 1932 “for the
creation of quantum mechanics”.

22This is an optional section and is not covered in the class lectures.
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where id is the identity operator and i is the imaginary number, i2 = −1. We showed earlier that in
units where � = 1 the position and momentum operators satisfy such a commutation relation. For a
given state Ψ and observable A we define23

∆A =

√〈
(A− 〈A〉)2

〉
=

√
〈A2〉 − 〈A〉2 ≥ 0.

We now prove that if observables A and B satisfy (7.29) then

∆A ·∆B ≥ 1

2
. (7.30)

Proof: Let Ψ denote any normalized state vector, i.e. ‖Ψ‖ = 1. Apply (7.29) to Ψ to obtain

ABΨ −BAΨ = iΨ

Now take the inner product of each side with the state Ψ to obtain

(ABΨ,Ψ)− (BAΨ,Ψ) = i (Ψ,Ψ)

which simplifies to24

(BΨ, AΨ)− (AΨ, BΨ) = i (7.31)

Let t denote any real number, then by the Cauchy-Schwarz inequality (7.28)

|(Ψ, AΨ+ itBΨ)|2 ≤ ‖AΨ+ itBΨ‖2 (7.32)

since ‖Ψ‖ = 1. Let’s simplify the left-hand side of (7.32)

(Ψ, AΨ+ itBΨ) = (Ψ, AΨ)− it(Ψ, BΨ) = 〈A〉 − it〈B〉.
The absolute value squared of this is

〈A〉2 + t2〈B〉2.
We now examine the right-hand side of (7.32)

‖AΨ+ itBΨ‖2 = (AΨ+ itBΨ, AΨ+ itBΨ)

= ‖AΨ‖2 + it {(BΨ, AΨ)− (AΨ, BΨ)}+ t2‖BΨ‖2
= ‖AΨ‖2 − t+ t2‖BΨ‖2 by use of (7.31). (7.33)

Thus the inequality (7.32) becomes

〈A〉2 + t2〈B〉2 ≤ ‖AΨ‖2 − t+ t2‖BΨ‖2.
Using the fact that ‖AΨ‖2 = (AΨ, AΨ) = (A2Ψ,Ψ) = 〈A2〉 (and similarly for B) and the definition
of ∆A (and similarly for ∆B), the above inequality can be rewritten as

t2 (∆B)2 − t+ (∆A)2 ≥ 0.

This holds for all real t. The above is a quadratic polynomial in t that is always nonnegative. This
means that the discriminant of the quadratic polynomial must be nonpositive, i.e. b2− 4ac ≤ 0. That
is,

1− 4 (∆A)2 (∆B)2 ≤ 0

23In classical probability ∆A is called the standard deviation of A. The quantity ∆A is a measure of the deviation of
A from its expected value 〈A〉.

24Note (ABΨ,Ψ) = (BΨ, AΨ) and (BAΨ,Ψ) = (AΨ, BΨ) since A and B are Hermitian. Also note on the right hand
side we used the fact that (Ψ,Ψ) = ‖Ψ‖2 = 1.
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which implies that

∆A ·∆B ≥ 1

2

which is what we want to prove.

When A is the position operator and B is the momentum operator we get the Heisenberg Uncer-
tainty Principle which states

∆x ·∆p ≥ �

2

where we have returned to physical units. The appearance of Planck’s constant � in the right hand
side shows that � sets the scale for quantum mechanical phenomena.

7.5 Comparison of three problems

Weighted String Vibrating String Quantum Harmonic Oscillator

Vector space R
N Functions on [0, L] that vanish H = Square integrable

V at the endpoints 0 and L functions on R

Inner product (�f,�g) = �f · �g =
∑N

i=1 figi (f, g) =
∫ L

0
f(x)g(x)dx (f, g) =

∫∞
−∞ f(x)g(x)dx

Norm ‖�f‖ =
[
(�f, �f)

]1/2
‖f‖ =

[∫ L

0
|f(x)|2 dx

]1/2
‖f‖ =

[∫ ∞
−∞ |f(x)|2 dx

]1/2

Operator VN , N ×N tridiagonal matrix L = d2

dx2 H = − d2

dx2 + x2

Symmetry
(
VN

�f,�g
)
=

(
�f, VN�g

)
(Lf, g) = (f, Lg) (Hf, g) = (f,Hg)

Eigenvalues & VN
�fn = λn

�fn, n = 1, 2, . . . , N Lun = −k2nun, n = 1, 2, 3, . . . Hψn = εnψn, n = 0, 1, 2, . . .

Eigenvectors λn = 2
(
1− cos( nπ

N+1
)
)

kn = nπ
L

εn = 2n+ 1

�fn = (fn,j)1≤j≤N un(x) =
√

2
L
sin(nπ

L
x) ψn(x) = NnHn(x)e

−x2/2

fn,j =
√

2
N+1

sin( nπ
N+1

j) Hn(x) = Hermite polynomial

Nn = [
√
π n! 2n]

−1/2

Orthonormal (�fm, �fn) = δm,n (um, un) = δm,n (ψm, ψn) = δm,n

Completeness �u ∈ R
N , �u =

∑N
j=1 aj

�fj u ∈ V, u(x) = ∑∞
j=1 ajuj(x) Ψ ∈ H, Ψ(x) =

∑∞
j=0 ajψj(x)

Coefficients aj =
(
�fj , �u

)
aj = (u, uj) aj = (Ψ, ψj)
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7.6 Exercises

#1.

Using (7.17) and (7.19), prove (7.20) and (7.21).

#2. Averages 〈x̂4〉 and 〈p̂4〉:

For the state ψn, compute the averages 〈x̂4〉 and 〈p̂4〉.

#3.

Prove (7.25). (The proof is similar to the proof of (7.24).)

#4.

Define the operators

a =
1√
2

(
x+

d

dx

)
a∗ =

1√
2

(
x− d

dx

)
That is, if ψ = ψ(x), then

(aψ)(x) =
1√
2

(
xψ(x) +

dψ

dx

)
and similarly for a∗. Using (7.20) and (7.21) show that for the harmonic oscillator wave functions ψn

aψn =
√
n ψn−1, n ≥ 1, aψ0 = 0,

a∗ψn =
√
n+ 1 ψn+1, n = 0, 1, . . . ,

a∗aψn = nψn, n = 0, 1, . . . ,

(aa∗ − a∗a)ψn = ψn, n = 0, 1, . . . .

Explain why this last equation implies the operator equation

[a, a∗] = id.

In quantum mechanics the operator a is called an annihilation operator and the operator a∗ is called
a creation operator. On the basis of this exercise, why do you think they have these names?

#5. Hermite polynomials

We obtained the Hermite polynomials from the recurrence relation (7.13). Alternatively, we have a
generating formula for the Hermite polynomials. Starting with this (which many books take as the
definition of the Hermite polynomials), we may obtain the Schrödinger equation.
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1. Verify that the first three Hermite polynomials H0(ξ), H1(ξ) and H2(ξ) are given using the
generating formula

Hn(ξ) = (−1)neξ
2

(
dn

dξn
e−ξ2

)
(7.34)

2. The generating function (7.34) can be used to give an alternative generating function for Hermite
polynomials. Show that

e−z2+2zξ =
∞∑
n=0

zn

n!
Hn(ξ) . (7.35)

Hint: Let F (z) = e−z2

and consider the Taylor expansion of eξ
2

F (z − ξ) about the point z = 0.

3. Derive (7.17) from (7.35). Now derive (7.19) using (7.34) and the newly derived (7.17).

4. Use (7.17) and (7.19) to show that the Hermite polynomials are solutions of the Hermite equation

d2

dξ2
Hn(ξ)− 2ξ

d

dξ
Hn(ξ) + 2nHn(ξ) = 0. (7.36)

5. We know that the Hermite polynomials satisfy

N2
n

∫ ∞

−∞
Hn(ξ)Hm(ξ)e−ξ2dξ = δnm. (7.37)

Here by setting ψn(ξ) = NnHn(ξ)e
−ξ2/2 we see that ψn(ξ) are orthonormal in L2(R). Use (7.36)

to obtain the differential equation that ψn(ξ) satisfy. You should obtain (7.9) with ε = 2n+ 1.

This implies that ψn(ξ) = NnHn(ξ)e
−ξ2/2 is the eigenfunction corresponding to the eigenvalue

of the Hamiltonian operator.



Chapter 8

Heat Equation

Figure 8.1: Joseph Fourier (1768–1830) a French mathematician and physicist best known for initiating
the study of Fourier series with applications to the theory of oscillatory systems and heat transfer.
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8.1 Introduction

The heat equation is the partial differential equation

∂u

∂t
−∆u = 0 (8.1)

where ∆ is the Laplacian. In three-dimensions if (x, y, z) are Cartesian coordinates, the heat equation
reads

∂u

∂t
− ∂2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
= 0,

whereas in one-dimension the heat equation reads

∂u

∂t
− ∂2u

∂x2
= 0. (8.2)

The heat equation has the following physical interpretation: the temperature u(�x, t) at position �x and
time t satisfies (8.1). This assumes that the medium is homogeneous and the thermal diffusivity has
been set equal to one. The heat equation is fundamental in probability theory due to its connection
with Brownian motion. In this chapter we show how to solve the (8.2) subject to the initial condition
u(x, 0) = f(x). The function f(x) can be interpreted as the initial distribution of temperature.

8.2 Fourier transform

Suppose f = f(x), x ∈ R, is smooth (say continuous) and decays sufficiently fast at ±∞ so that the
integral

f̂(ξ) :=

∫ ∞

−∞
f(x)e−2πixξ dx, ξ ∈ R, (8.3)

exists. The function f̂(ξ) is called the Fourier transform of f . For example, if f(x) = e−a|x|, a > 0,
then

f̂(ξ) =
2a

a2 + 4π2ξ2
.

The most important property of the Fourier transform is the Fourier inversion formula which says
given f̂(ξ) we can find f(x) from the formula

f(x) =

∫ ∞

−∞
f̂(ξ)e2πixξ dξ, x ∈ R. (8.4)

Thus, for example, we have ∫ ∞

−∞

2a

a2 + 4π2ξ2
e2πixξ dξ = e−a|x|.
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8.3 Solving the heat equation by the Fourier transform

We consider the 1D heat equation (8.2) for x ∈ R subject to the initial condition u(x, 0) = f(x).
Write u(x, t) in terms of its Fourier transform û(ξ, t):

u(x, t) =

∫ ∞

−∞
û(ξ, t)e2πixξ dξ.

Then
∂u

∂t
− ∂2u

∂x2
=

∫ ∞

−∞
e2πixξ

[
∂û(ξ, t)

∂t
+ 4π2ξ2û(ξ, t)

]
dξ

We want this to equal zero so this will certainly be the case if

∂û(ξ, t)

∂t
+ 4π2ξ2û(ξ, t) = 0.

We solve this last equation:

û(ξ, t) = e−4π2ξ2tû(ξ, 0).

Thus we have

u(x, t) =

∫ ∞

−∞
e2πixξ−4π2ξ2tû(ξ, 0) dξ. (8.5)

Specializing to t = 0 and using the initial condition gives

f(x) = u(x, 0) =

∫ ∞

−∞
e2πixξû(ξ, 0) dξ.

By the Fourier inversion formula

û(ξ, 0) =

∫ ∞

−∞
e−2πixξf(x) dx = f̂(ξ).

We now substitute this expression for û(ξ, 0) into (8.5) to obtain

u(x, t) =

∫ ∞

−∞
e2πixξ−4π2ξ2tf̂(ξ) dξ

=

∫ ∞

−∞
e2πixξ−4π2ξ2t

[∫ ∞

−∞
f(x′)e−2πix′ξ dx′

]
dξ

=

∫ ∞

−∞

[∫ ∞

−∞
e2πi(x−x′)ξ−4π2ξ2t dξ

]
f(x′) dx′ (8.6)

We now evaluate the integral

I :=

∫ ∞

−∞
e2πi(x−x′)ξ−4π2ξ2t dξ.

To do this we first evaluate the integral

I1 =

∫ ∞

−∞
e−αξ2 dξ, α > 0.
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We look at I2
1 and transform the resulting double integral to polar coordinates:

I2
1 =

∫ ∞

−∞

∫ ∞

−∞
e−αξ21e−αξ22 dξ1dξ2

=

∫ ∞

0

∫ 2π

0

e−αr2r drdθ

= 2π

∫ ∞

0

re−αr2 dr

=
π

α

Thus

I1 =

√
π

α
.

We are now ready to evaluate I. Let y = x− x′ so the integral we wish to evaluate is∫ ∞

−∞
e2πiyξ−4π2ξ2t dξ

We make the change of variables ξ = ξ′ + a and choose a so that the linear term in ξ′ vanishes:

2πiyξ− 4π2ξ2t = 2πiy(ξ′ + a)− 4π2t(ξ′2 +2ξ′a+ a2) = −4π2tξ′2 +
[
2πiy − 8π2ta

]
ξ′ +2πiya− 4π2ta2

Thus we choose

a =
2πiy

8π2t
=

iy

4πt
.

With this value of a we then have

2πiyξ − 4π2ξ2t = −4π2tξ′2 − y2

4t
.

Thus ∫ ∞

−∞
e2πiyξ−4π2ξ2t dξ =

∫ ∞

−∞
e−4π2tξ′2−y2/(4t) dξ′

= e−y2/(4t)

∫ ∞

−∞
e−4π2tξ′2 dξ′ =

1√
4πt

e−y2/(4t).

We summarize what we have found in the following theorem:

Theorem. Let f(x) be continuous and decaying sufficiently fast at infinity so that its Fourier trans-
form exists. Then the solution to the one-dimensional heat equation (8.2) satisfying the initial condi-
tion u(x, 0) = f(x) is

u(x, t) =

∫ ∞

−∞
K(x, y; t)f(y) dy, where (8.7)

K(x, y; t) =
1√
4πt

e−(x−y)2/(4t). (8.8)
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Figure 8.2: The heat kernel K(x, y; t), (8.8), for x = 0 as a function of y for various fixed values of t.
Note that for small t the functions is concentrated near x = 0 but for large t, K is spread out over a
wide range of values.

8.3.1 Comments on (8.7) and (8.8)

1. For all x ∈ R and all t > 0 we have ∫ ∞

−∞
K(x, y; t) dy = 1.

2. Let’s take the initial condition to be (see Figure 8.3)

f(x) =


0 if x < −1,

1 + x if −1 ≤ x < 0,
1− x if 0 ≤ x < 1,
0 if x ≥ 1.

(8.9)

In Figure 8.4 we plot the solution u(x, t) as a function of x for various values of t.

3. It is convenient to record the Gaussian integral we evaluated:∫ ∞

−∞
e−ax2+2bx dx =

√
π

a
eb

2/a, a > 0. (8.10)
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Figure 8.3: The initial temperature distribution f(x) as defined in (8.9). Note that the distribution
is not smooth at zero.

8.3.2 Semigroup property

We rewrite (8.7) as an operator Pt acting on a function f ; namely,

(Ptf) (x) :=

∫ ∞

−∞
K(x, y; t)f(y) dy, t > 0. (8.11)

We now examine the effect of applying this operator twice; first at time t and secondly at time s:

(PsPtf) (x) =

∫ ∞

−∞
K(x, y; s) (Ptf) (y) dy

=

∫ ∞

−∞
K(x, y; s)

[∫ ∞

−∞
K(y, z; t)f(z) dz

]
dy

=

∫ ∞

−∞

[∫ ∞

−∞
K(x, y; s)K(y, z; t) dy

]
f(z) dz

=

∫ ∞

−∞

[
1√

4πs
√
4πt

e−x2/(4s)−z2/(4t)

∫ ∞

−∞
e−(1/(4s)+1/(4t))y2+2(x/(4s)+z/(4t))y dy

]
f(z) dz

=

∫ ∞

−∞

[
1√

4πs
√
4πt

e−x2/(4s)−z2/(4t)

√
π

1/(4s) + 1/(4t)
e(x/(4s)+z/(4t))2/(1/(4s)+1/(4t))

]
f(z) dz

=

∫ ∞

−∞

1√
4π(s+ t)

e−(x−z)2/(4(s+t))f(z) dz =

∫ ∞

−∞
K(x, z; s+ t)f(z) dz (8.12)

= (Ps+tf) (x) (8.13)

We used (8.10) in going from the fourth line to the fifth line above; and then, simplified the result to
obtain (8.12). We summarize this result by the equation

PsPt = Ps+t = Pt+s = PtPs (8.14)

which is called the semigroup property.1 In words it says the effect of applying Pt and followed by
applying Ps is the same as simply applying Ps+t.

1Precisely, a one-parameter semigroup of operators on a complex vector space V is a family of bounded linear
operators X(t), t ≥ 0, each mapping V → V with the following properties:

X(t + s) = X(t)X(s) for all t, s ≥ 0; X(0) = I.
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Figure 8.4: The solution u(x, t) with initial condition (8.9). Note that the solution is “smoothed” by
the action of the heat operator.

We have seen this property before in Chapter 5:

esAetA = e(s+t)A = etAesA

where A is any n×n constant coefficient matrix. This analogy can be developed further: The solution
to the equation dx/dt = Ax that satisfies the initial condition x(0) = x0 is obtained by applying the
semigroup etA to the initial condition, i.e. x(t) = etAx0. For the heat equation we want the solution
u(x, t) that satisfies the initial condition u(x, 0) = f(x). This solution is obtained by applying the
semigroup Pt to f ; namely (8.13). This raises the question what is the analog of the matrix A for the
heat equation? The obvious guess in comparing

dx

dt
= Ax with

∂u

∂t
=
∂2u

∂x2

is that A and d2/dx2 are analogous. Let’s see if we can make this more precise.

From the power series expansion of etA we know that A can be recovered from the formula

lim
t→0+

1

t

[
etAf − f

]
= Af.

This suggests we compute

lim
t→0+

1

t
[(Ptf)(x) − f(x)] .

First recall that ∫ ∞

−∞
K(x, y; t) dy = 1.
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Therefore we can write

Ptf(x)− f(x) =

∫ ∞

−∞
K(x, y; t)f(y) dy −

[∫ ∞

−∞
K(x, y; t) dy

]
f(x)

=

∫ ∞

−∞
K(x, y; t) (f(y)− f(x)) dy. (8.15)

Now for small t the Gaussian
1√
4πt

e(x−y)2/(4t)

is sharply peaked around y = x. This suggests that the main contribution in the above integral comes
in the vicinity of y = x. Therefore we expand f(y) about the point x:

f(y) = f(x) + (y − x)f ′(x) +
1

2
f ′′(x)(y − x)2 +

1

3!
f ′′′(x)(y − x)3 +

1

4!
(y − x)4f (iv)(x) + · · · .

We now substitute this into (8.15). The integral∫ ∞

−∞
(y − x)K(x, y; t) dy

as is easily seen to equal zero. (Make the change of variables z = x−y and then note one is integrating
an odd function over the real line; hence equal to zero.) The next integral is (make the same change
of variables z = x− y)∫ ∞

−∞
(y − x)2K(x, y; t) dy =

1√
4πt

∫ ∞

−∞
z2e−z2/(4t) dz = 2t.

All the remaining terms with odd powers of (y − x) are zero. The higher even powers, e.g. (y − x)4,
integrate to give higher powers of t. Thus

1

t
[Ptf(x)− f(x)] =

1

t

[
1

2
f ′′(x)2t+

1

4!
f (iv)(x)12t2 + · · ·

]
so that

lim
t→0+

1

t
[Ptf(x)− f(x)] =

d2f

dx2
. (8.16)

Thus the second-order differential operator d2

dx2 is the analogue of the matrix A. Since d2/dx2 is the
one-dimensional Laplacian ∆, you will frequently see Pt written as et∆ in analogy with etA in the
matrix case.2

A point that might need clarification is how one computes integrals∫ ∞

−∞
x2ne−ax2

dx, a > 0.

Integration by parts will do the trick, but here is a faster way: Start with the known result (8.10)∫ ∞

−∞
e−ax2

dx =

√
π

a
.

Now differentiate both sides with respect to a:

−
∫ ∞

−∞
x2e−ax2

dx = −1

2

√
π

a3/2
.

Differentiating again with respect to a gives∫ ∞

−∞
x4e−ax2

dx =
3

4

√
π

a5/2
.

2For a discussion of et∆ when ∆ is the d-dimensional Laplacian, see the Wikipedia article Heat kernel.



8.4. HEAT EQUATION ON THE HALF-LINE 141

8.4 Heat equation on the half-line

We consider the heat equation but with the spatial variable x restricted to positive axis—the semi-
infinite rod or half-line R+. Thus we wish to solve (8.2) with an initial heat distribution f(x), x > 0;
and we further assume, that the end of the rod, x = 0, is fixed to zero temperature for all t > 0.

For the line we found a solution of the form

u(x, t) =

∫ ∞

−∞
K(x, y; t)f(y) dy

where K(x, y; t) is the heat kernel for the line R—see (8.8). For the half-line we look for a solution of
the form

u(x, t) =

∫ ∞

0

KR+(x, y; t)f(y) dy. (8.17)

We want KR+(x, y; t) to satisfy the heat equation as a function of (x, t) but we also want

KR+(0, y; t) = 0 for all t.

This last condition will guarantee that u(0, t) = 0 for all t > 0. Observe that

KR+(x, y; t) = K(x, y; t)−K(−x, y; t)
=

1√
4πt

e−(x−y)2/4t − 1√
4πt

e−(x+y)2/4t (8.18)

satisfies these conditions. The physical region is x ≥ 0. In the unphysical region we place a second
“heat pulse” at −x. Thus the problem for x ≥ 0 with the boundary condition at x = 0, has been
replaced by a problem on all of x ∈ R but with two heat pulses. This new problem solves the old
problem since (1) it satisfies the heat equation in the physical region and (2) it satisfies the boundary
condition of the first problem. This technique is called the method of images.3 See also J. D. Jackson,
Classical Electrodynamics, 3rd. edition.4

3From Wikipedia: “The method of image charges (also known as the method of images and method of
mirror charges) is a basic problem-solving tool in electrostatics. The name originates from the replacement of certain
elements in the original layout with imaginary charges, which replicates the boundary conditions of the problem (see
Dirichlet boundary conditions or Neumann boundary conditions). The validity of the method of image charges rests
upon a corollary of the uniqueness theorem, which states that the electric potential in a volume V is uniquely determined
if both the charge density throughout the region and the value of the electric potential on all boundaries are specified.
Alternatively, application of this corollary to the differential form of Gauss’ Law shows that in a volume V surrounded
by conductors and containing a specified charge density ρ, the electric field is uniquely determined if the total charge on
each conductor is given. Possessing knowledge of either the electric potential or the electric field and the corresponding
boundary conditions we can swap the charge distribution we are considering for one with a configuration that is easier
to analyze, so long as it satisfies Poisson’s equation in the region of interest and assumes the correct values at the
boundaries.”

4Here is how Jackson describes the method: “The method of images concerns itself with the the problem of one
or more point charges in the presence of boundary surfaces, for example, conductors either grounded or held at fixed
potentials. Under favorable conditions it is possible to infer from the geometry of the situation that a small number of
suitably placed charges of appropriate magnitudes, external to the region of interest, can simulate the required boundary
conditions. These charges are called image charges, and the replacement of the actual problem with boundaries by an
enlarged region with image charges but not boundaries is called the method of images. The image charges must be
external to the volume of interests, since their potential must be solutions of the Laplace equation inside the volume;
the “particular integral” (i.e. solution of the Poisson equation) is provided by the sum of the potentials of the charges
inside the volume.”
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Figure 8.5: The kernel KR+(x, y; t) as a function of y for the values x = 3 and t = 1/10. Note that
the horizontal axis should have the label y, not x.

8.5 Heat equation on the circle

Suppose we now consider the heat equation where the spatial variable x is restricted to a circle;5

equivalently, we want a solution to (8.2) that is periodic6 in x

u(x+ 1, t) = u(x, t).

We are given an initial distribution f(x), 0 ≤ x ≤ 1. Can we use the method of images to find a new
kernel K◦(x, y; t), so that the solution we seek is of the form

u(x, t) =

∫ 1

0

K◦(x, y; t)f(y) dy (8.19)

and satisfies u(x, 0) = f(x) and u(x+ 1, t) = u(x)?

We use the kernel K(x, y; t) and place image pulses at all integer translations of x,

K◦(x, y; t) =

∞∑
n=−∞

K(x+ n, y; t)

=
1√
4πt

∞∑
n=−∞

e−(x−y+n)2/(4t) (8.20)

The resulting new kernel satisfies the heat equation (since each kernel K(x+ n, y; t) satisfies the heat
equation) and K◦(x+ 1, y; t) = K◦(x, y; t) as is easily seen by rearranging the sum.0

We could also proceed by the method of separation of variables: Look for solutions that are of the
form

u(x, t) = X(x)T (t).

5For simplicity we take the circle to have circumference equal to 1.
6Since the circumference was chosen to equal 1, the period also equals 1.



8.5. HEAT EQUATION ON THE CIRCLE 143

2 4 6 8
x

0.1

0.2

0.3

0.4

Figure 8.6: Plot of u(x, t) as a function of x for three values of t = 1/10, 1/2, 1 with initial heat
distribution f(x) = e−x. As t increases the heat distribution becomes flatter and less peaked.

Substituting this into the one-dimensional heat equation gives

1

T

dT

dt
=

1

X

d2X

dx2

and the usual separation of variables argument concludes

1

T

dT

dt
= −k2 and

1

X

d2X

dx2
= −k2

for some constant k. The general solution of the X is equation is a linear combination of eikx and
e−ikx. We require that our solution be periodic; namely, X(x + 1) = X(x) (this way the function is
defined on the circle). This requires

eik = 1

from which we conclude that k = 2πn where n = 0,±1,±2, . . .. The solution of the T equation is

T (t) = e−k2t = e−4π2n2t,

so we’ve found solutions
un(x, t) = e2πinxe−4π2n2t.

Taking linear combinations we arrive at the general solutions

u(x, t) =

∞∑
n=−∞

ane
2πinxe−4π2n2t (8.21)

where an are constants to be determined from the initial condition. We require at t = 0 that u(x, 0) =
f(x); namely,

f(x) =

∞∑
n=−∞

ane
2πinx
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Multiplying this last equation by e−2πimx and then integrating the resulting expression from 0 to 1
gives ∫ 1

0

e−2πimxf(x) dx =
∞∑

n=−∞
an

∫ 1

0

e2πi(n−m)x dx = am (8.22)

since
∫ 1

0
e2πi(n−m)x dx equals zero if m �= n and equals 1 if m = n.

We now use (8.22) in (8.21) to find

u(x, t) =
∞∑

n=−∞

[∫ 1

0

e−2πinyf(y) dy

]
e2πinxe−4π2n2t

=

∫ 1

0

[ ∞∑
n=−∞

e2πin(x−y)e−4π2n2t

]
f(y) dy (8.23)

Comparing (8.23) with (8.19) and (8.20), and noting this hold for all initial conditions f(x), we
conclude that

K◦(x, y; t) =
1√
4πt

∞∑
n=−∞

e−(x+n−y)2/(4t)

=
∞∑

n=−∞
e2πin(x−y)e−4π2n2t

Observe that for small t the first sum converges rapidly whereas the second sum converges slowly;
however, for large t the first sum converges slowly and the second sum converges rapidly! For x = y = 0
we get the identity

∞∑
n=−∞

e−4π2n2t =
1√
4πt

∞∑
n=−∞

e−n2/(4t).
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8.6 Exercises

#1.

Consider the partial differential equation for u = u(x, t):

∂u

∂t
=
∂2u

∂x2
+ (1 − a)

∂u

∂x
, t > 0,−∞ < x <∞, (8.24)

with initial condition u(x, 0) = f(x). When a = 1 this reduces to the heat equation. Following the
method (Fourier transforms) used to solve the heat equation in §8.3, find the analogue of equations
(8.7) and (8.8).

#2.

In analogy with the operator Pt defined in (8.13) for the heat equation on the line, we define for the
half-line the operator P+

t by

(
P
+
t f

)
(x) :=

∫ ∞

0

KR+(x, y; t)f(y) dy, t > 0, (8.25)

where KR+ is defined in (8.18). Show that P+
t satisfies the semigroup property

P
+
s+t = P

+
s P

+
t .
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Chapter 9

Laplace Transform

Figure 9.1: Pierre-Simon Laplace (1749–1827) was a French mathematician known for his contributions
to celestial mechanics, probability theory and analysis. Both the Laplace equation and the Laplace
transform are named after Pierre-Simon Laplace.

147
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9.1 Matrix version of the method of Laplace transforms for

solving constant coefficient DEs

The Laplace transform of a function f(t) is

F (s) = L(f)(s) =
∫ ∞

0

e−tsf(t) dt (9.1)

for �(s) sufficiently large and positive. For the Laplace transform to make sense the function f cannot

grow faster that an exponential near infinity. Thus, for example, the Laplace transform of ex
2

is not
defined.

We extend (9.1) to vector-valued functions f(t),

f(t) =


f1(t)
f2(t)
...

fn(t)

 (9.2)

by

F (s) = L(f)(s) =


∫∞
0 e−tsf1(t) dt∫∞
0 e−tsf2(t) dt

...∫∞
0
e−tsfn(t) dt

 . (9.3)

Integration by parts shows that

L(df
dt

)(s) = sL(f)(s) − f(0). (9.4)

We now explain how matrix Laplace transforms are used to solve the matrix ODE

dx

dt
= Ax+ f(t) (9.5)

where A is a constant coefficient n × n matrix, f(t) is a vector-valued function of the independent
variable t (“forcing term”) with initial condition

x(0) = x0. (9.6)

First, we take the Laplace transform of both sides of (9.5). From (9.4) we see that the Laplace
transform of the LHS of (9.5) is

L(dx
dt

) = sL(x)− x0.

The Laplace transform of the RHS of (9.5) is

L(Ax + f) = L(Ax) + L(f)
= AL(x) + F (s)
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where we set F (s) = L(f)(s) and we used the fact that A is independent of t to conclude1

L(Ax) = AL(x). (9.7)

Thus the Laplace transform of (9.5) is

sL(x)− x0 = AL(x) + F,

or
(sIn −A)L(x) = x0 + F (s) (9.8)

where In is the n×n identity matrix. Equation (9.8) is a linear system of algebraic equations for L(x).
We now proceed to solve (9.8). This can be done once we know that (sIn − A) is invertible. Recall
that a matrix is invertible if and only if the determinant of the matrix is nonzero. The determinant
of the matrix in question is

p(s) := det(sIn −A), (9.9)

which is the characteristic polynomial of the matrix A. We know that the zeros of p(s) are the
eigenvalues of A. If s is larger than the absolute value of the largest eigenvalue of A; in symbols,

s > max|λi|, (9.10)

then p(s) cannot vanish and hence (sIn − A)−1 exists. We assume s satisfies this condition. Then
multiplying both sides of (9.8) by (sIn −A)−1 results in

L(x)(s) = (sIn −A)−1x0 + (sIn −A)−1F (s). (9.11)

Equation (9.11) is the basic result in the application of Laplace transforms to the solution of constant
coefficient differential equations with an inhomogeneous forcing term. Equation (9.11) will be a quick
way to solve initial value problems once we learn efficient methods to (i) compute (sIn − A)−1, (ii)
compute the Laplace transform of various forcing terms F (s) = L(f)(s), and (iii) find the inverse
Laplace transform. Step (i) is easier if one uses software packages such as MatLab . Steps (ii)
and(iii) are made easier by the use of extensive Laplace transform tables or symbolic integration
packages such as Mathematica. It should be noted that many of the DE techniques one learns in
engineering courses can be described as efficient methods to do these three steps for examples that
are of interest to engineers.

We now give two examples that apply (9.11).

9.1.1 Example 1

Consider the scalar ODE
d2y

dt2
+ b

dy

dt
+ cy = f(t) (9.12)

where b and c are constants. We first rewrite this as a system

x(t) =

(
x1
x2

)
=

(
y(t)
y′(t)

)
1You are asked to prove (9.7) in an exercise.
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so that
dx

dt
=

(
0 1
−c −b

)
x+

(
0
f(t)

)
.

Then

sI2 −A =

(
s −1
c s+ b

)
,

and

(sI2 −A)−1 =
1

s2 + bs+ c

(
s+ b 1
−c s

)
.

Observe that the characteristic polynomial

p(s) = det(sI2 −A) = s2 + bs+ c

appears in the denominator of the matrix elements of (sI2 −A)−1. (This factor in Laplace transforms
should be familiar from the scalar treatment—here we see it is the characteristic polynomial of A.)
By (9.11)

L(x)(s) = 1

s2 + bs+ c

(
(s+ b)y(0) + y′(0)
−cy(0) + sy′(0)

)
+

F (s)

s2 + bs+ c

(
1
s

)
where F (s) = L(f)(s). This implies that the Laplace transform of y(t) is given by

L(y)(s) = (s+ b)y(0) + y′(0)
s2 + bs+ c

+
F (s)

s2 + bs+ c
. (9.13)

This derivation of (9.13) may be compared with the derivation of equation (16) on page 302 of Boyce
and DiPrima [4] (in our example a = 1).

9.1.2 Example 2

We consider the system (9.5) for the special case of n = 3 with f(t) = 0 and A given by

A =

1 0 −1
1 2 1
1 −1 −1

 . (9.14)

The characteristic polynomial of (9.14) is

p(s) = s3 − 2s2 + s− 2 = (s2 + 1)(s− 2) (9.15)

and so the matrix A has eigenvalues ±i and 2. A rather long linear algebra computation shows that

(sI3 −A)−1 =
1

p(s)

s2 − s− 1 1 −s+ 2
s+ 2 s2 s− 2
s− 3 −s+ 1 s2 − 3s+ 2

 . (9.16)

If one writes a partial fraction decomposition of each of the matrix elements appearing in (9.16) and
collects together terms with like denominators, then (9.16) can be written as

(sI3 −A)−1 =
1

s− 2

 1/5 1/5 0
4/5 4/5 0
−1/5 −1/5 0


+

1

s2 + 1

 (3 + 4s)/5 −(2 + s)/5 −1
−(3 + 4s)/5 (2 + s)/5 1
(7 + s)/5 (−3 + s)/5 −1 + s

 . (9.17)
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We now apply (9.17) to solve (9.5) with the above A and f = 0 for the case of initial conditions

x0 =

 1
−2
1

 . (9.18)

We find

L(x)(s) = (sI3 −A)−1x0 =
1

s− 2

−1/5
−4/5
1/5

+
s

s2 + 1

 6/5
−6/5
4/5

+
1

s2 + 1

 2/5
−2/5
8/5

 . (9.19)

To find x(t) from (9.19) we use Table 6.2.1 on page 300 of Boyce and DiPrima [4]; in particular, entries
2, 5, and 6. Thus

x(t) = e2t

−1/5
−4/5
1/5

+ cos t

 6/5
−6/5
4/5

+ sin t

 2/5
−2/5
8/5

 .

One can also use Mathematica to compute the inverse Laplace transforms. To do so use the
command InverseLaplaceTransform. For example if one inputs
InverseLaplaceTransform[1/(s-2),s,t] then the output is e2t.

We give now a second derivation of (9.19) using the eigenvectors of A. As noted above, the
eigenvalues of A are λ1 = 2, λ2 = i, and λ3 = −i. If we denote by φj an eigenvector associated
to eigenvalue λj (j = 1, 2, 3), then a routine linear algebra computation gives the following possible
choices for the φj :

φ1 =

−1
−4
1

 , φ2 =

 (1 + i)/2
−(1 + i)/2

1

 , φ3 =

 (1− i)/2
(−1 + i)/2

1

 .

Now for any eigenvector φ corresponding to eigenvalue λ of a matrix A we have

(sIn −A)−1φ = (s− λ)−1φ.

To use this observation we first write

x0 = c1φ1 + c2φ2 + c3φ3.

A computation shows that

c1 = 1/5, c2 = 2/5− 4i/5, and c3 = 2/5 + 4i/5.

Thus

(sI3 −A)−1x0 =
1

5
(s− 2)−1φ1 +

2− 4i

5
(s− i)−1φ2 +

2 + 4i

5
(s+ i)−1φ3.

Combining the last two terms gives (9.19).

9.2 Structure of (sIn − A)−1 when A is diagonalizable

In this section we assume that the matrix A is diagonalizable; that is, we assume a set of linearly
independent eigenvectors of A form a basis. Recall the following two theorems from linear algebra:
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(1) If the n × n matrix A has n distinct eigenvalues, then A is diagonalizable; and (2) If the matrix
A is symmetric (hermitian if the entries are complex), then A is diagonalizable.

Since A is assumed to be diagonalizable, there exists a nonsingular matrix P such that

A = PDP−1

where D is

D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


and each eigenvalue λi of A appears as many times as the (algebraic) multiplicity of λi. Thus

sIn −A = sIn − PDP−1

= P (sIn −D)P−1 ,

so that

(sIn −A)−1 =
(
P (sIn −D)P−1)

)−1

= P (sIn −D)−1P−1.

Since P and P−1 are independent of s, the s dependence of (sIn−A)−1 resides in the diagonal matrix
(sIn −D)−1. This tells us that the partial fraction decomposition of the matrix (sIn −A)−1 is of the
form

(sIn −A)−1 =

n∑
j=1

1

s− λj
Pj

where

Pj = PEjP
−1

and Ej is the diagonal matrix with all zeros on the main diagonal except for 1 at the (j, j)th entry.
This follows from the fact that

(sIn −D)−1 =

n∑
j=1

1

s− λj
Ej

Note that Pj have the property that

P 2
j = Pj .

Such matrices are called projection operators.

In general, it follows from Cramer’s method of computing the inverse of a matrix, that the general
structure of (sIn − A)−1 will be 1/p(s) times a matrix whose entries are polynomials of at most
degree n − 1 in s. When an eigenvalue, say λ1, is degenerate and of (algebraic) multiplicity m1,
then the characteristic polynomial will have a factor (s − λ1)

m1 . We have seen that if the matrix
is diagonalizable, upon a partial fraction decomposition only a single power of (s − λ1) will appear
in the denominator of the partial fraction decompostion. Finally, we conclude by mentioning that
when the matrix A is not diagonalizable, then this is reflected in the partial fraction decomposition
of (sIn −A)−1 in that some powers of (s− λj) occur to a higher degree than 1.
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9.3 Exercises

#1.

Use the Laplace transform to find the solution of the initial value problem

dx

dt
=

 1 −1 0
0 −1 1
0 1 −1

 x+

 0
12
0

 , x(0) =

 0
0
0

 .

#2.

Let A be a n× n matrix whose entries are real numbers and x ∈ Rn. Prove that

L(Ax) = AL(x)
where L denotes the Laplace transform.

#3.

Let Ej denote the diagonal n×n matrix with all zeros on the main diagonal except for 1 at the (j, j)
entry.

• Prove that E2
j = Ej .

• Show that if P is any invertible n× n matrix, then P 2
j = Pj where Pj := PEjP

−1.

#4.

It is a fact that you will learn in an advanced linear algebra course, that if a 2 × 2 matrix A is not
diagonalizable, then there exists a nonsingular matrix P such that

A = P B P−1

where

B =

(
λ 1
0 λ

)
for some constant λ.

• Show that λ must be an eigenvalue of A with algebraic multiplicity 2.

• Find an eigenvector of A (in terms of the matrix P ), and show that A has no other eigenvectors
(except, of course, scalar multiples of the vector you have already found).

• Show that

(sI2 −A)−1 =
1

s− λ
PE1P

−1 +
1

s− λ
PE2P

−1 +
1

(s− λ)2
PNP−1

where

N =

(
0 1
0 0

)
.

• Relate what is said here to the remarks in the footnote in Exercise 5.5.2.
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