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Introduction to Exactly Solvable
Models in Statistical Mechanics

CRAIG A. TRACY

1. Introduction. The purpose of these notes is to provide an introduction to
exactly solvable models in lattice statistical mechanics. No prior knowledge
of statistical mechanics is assumed. Hence these notes are not addressed
to the experts in solvable models! They are not meant to be an exhaustive
survey of solvable models, but rather by focusing on three examples—the two-
dimensional Ising model, the symmetric eight-vertex model (“Baxter model”),
and the hard hexagon model—it is hoped that some of the basic properties
of all solvable models emerge. Even so we cannot give complete details for
these three models.

For work on the 2-dimensional Ising model prior to 1973, the reader should
consult the book by McCoy and Wu [21]. For details concerning the 8-vertex
model and the hard hexagon model, the book by Baxter [10] is the basic
reference. In addition to these books there are several reviews: Andrews
[4] discusses the hard hexagon model from a g-series point of view; Baxter
[12] gives an overview of solvable models as does Pearce [25], who stresses
the physics associated with solvable models. Thacker [33] develops solvable
models from the quantum inverse method (see also Takhtadzhan and Fad-
deev [32] and Kulish and Sklyanin [19]). Further references can be found in
the recent review [35].

In §2 a brief introduction to statistical mechanics is presented. §3 surveys
some properties of the two-dimensional Ising model, but the main theme of
this paper begins in §4, where vertex models are introduced. §5 introduces
corner transfer matrices and shows how they are applied to compute the
order parameter for the Baxter model. §6 introduces the hard hexagon model,
where we see that the Rogers-Ramanujan identities play a crucial role.
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2. Statistical mechanics. Statistical mechanics is the bridge between a mi-
croscopic description of matter and a macroscopic description of matter. At
the microscopic level this means specifying the forces amongst the “parti-
cles.” The particles may be atoms in a crystal, molecules in a gas or liquid,
electrons in a plasma, or even amino acid units in a protein. For example, for
molecules in a gas we might take that the interaction between the molecules
is 2-body, and the Hamiltonian has the form

N 2
H=Y 7o+3 Via.a).
i=1 i<y
where p; is the momentum of the ith molecule and ¢; the position. Here
V(q,q') is the 2-body potential. A favorite choice of chemists is the so-called
Lennard-Jones potential

o= [(%)- (]

with vo, ¢ € R, and V' (q,q') = v(|]g — ¢q|). We may treat the Hamiltonian
either as a classical Hamiltonian or a quantum Hamiltonian.

We know, of course, there is another description of a gas, and we remember

from high school the formula for an ideal gas
(2.1) pV = NkgT.
What this is telling us is that the macroscopic properties pressure, p, temper-
ature, T, and volume, V, are related by the above “equation of state” where
N is the number of particles and kg is a constant, called the Boltzmann con-
stant (kg = 1.36 x 10~ %erg/deg). A macroscopic description is in terms of
thermodynamic functions and transport coefficients, including density, pres-
sure, temperature, thermal and electrical conductivity, magnetization, tensile
strength, fluid viscosity, specific heat, chemical reaction rates, etc.

A chemist or physicist postulates the form of the force laws (based upon
experimental data, symmetry principles, or just plain physical intuition), and
it is the task of statistical mechanicians to predict the bulk properties of
matter with this force law. The “force law” may be classical (Hamilton’s
equations) or it may involve quantum mechanics (Schrodinger equation). In
either case these force laws are for our purposes definitions.

From a practical point of view it is clear that a purely microscopic ap-
proach to bulk matter is hopeless. For example, at zero degrees Celsius and a
pressure of one atmosphere, the number of molecules in one cubic centimeter
of gas is 2.69 x 10!°. That is a lot of differential equations to solve! Recall
that if NV is the number of particles the dimension of phase space is 6/N. If
we are interested, say, in the equation of state of a gas

(2.2) p=pV,T),

then there is a good deal less information here than is in the 6 N differential
equations (assuming a classical description). It is a good guess that statisti-
cal mechanics involves some sort of averaging procedure. By the way, it is
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customary in thermodynamics to use the same letter for both the function
and the variable as I have done above in the equation of state. In some in-
stances pressure and temperature are the independent variables, and then the
density is determined. This can get a little confusing at times, but it has the
advantage of minimizing the number of symbols, p is pressure!

Before giving the basic definitions of classical statistical mechanics, I in-
vite you to consider the following example, due to Arnold, which illustrates
in a simple way the power of “statistical thinking.” Our dynamical sys-
tem is the sequence of digits formed by taking the first digit of 27, i.e.,
2,4,8,1,3,6,1,.... The problem is to calculate the relative number of 7’s
to 8’s in this sequence. (Answer: (log8 —log7)/(log9 — log 8) = 1.1337... )

Implicitly in the discussion above, the particle position ¢ was an element of
R3. We make the simplifying assumption that the particles lie on a lattice Z*.
We are now ready to give the basic definitions of classical (equilibrium) lattice
statistical mechanics. Mathematically, this amounts to defining a probability
space (Q, %, P).

Consider a “box” A C Z¥, |A| < o0, and take for Q, y the set of micro-
scopic states of the system with N particles confined to A. The “force law”
is given by specifying an energy function

gA,N: QA,N — RU {:i:OO}

The probability measure for the system of N particles in equilibrium at tem-
perature T in box A with energy function &, y is given by the Gibbs measure

(2.3) Ppn(@) = exp(—BE n(w))/Zx N (B),

where f = (kgT)~! and Z, y(B), called the partition function, is the normal-
izing factor

(2.4) Zyn(B) = D exp(-B& n(®)).

WEQ, N

Thermodynamics is obtained via

(2.5) —BF\ = log Zs n(8),

where F) is the free energy at temperature 7 in box A. Averages are com-
puted using the Gibbs measure. This probability space is called the canonical
ensemble.

Sometimes it is convenient not to have the particle number N fixed. In this
case we let Q) be the set of microscopic configurations with no restriction on
the particle number, i.e., Q) = Uy_o Q4 - For example, a simple lattice gas
configuration w € Q, is specified by giving the “occupation number” g;(w),
i €A,

1 if particle present at site i € A,
0 if no particle at site i € A.

oi(w) = {
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That is, Q, = {0, 1}A. The probability of configuration w € Q, in box A at
temperature T and chemical potential u is given by
(2.6) Pa(w) = exp(—BEL(w))/ZA(3, B),

where
Er(w) = & v(w) — uN(w),
N(w) = number of particles in configuration w,

and
(2.7a) Zr(3,8) = ) exp(—B&,(w))
wEQ,
=> 5" Y exp(-B& n(w),  3=efh
N=0 WEQ, N
(2.7v) => N Zyn(B).

The quantity Z, (3, 8) is called the grand partition function, and the proba-
bility space so defined is called the grand canonical ensemble. The pressure
in a volume V is given by

(2.8) pV/ksT =1log Zy (3, B),
and the expected number of particles is
N=(N)= Y N(w)Pr(w)

wEQ,\
(2.9) = Y M P E, n(@)/ZAG, B)
WEQ,
= —a—lo ZA(3,B)
- 363 g A 39 .
The reader can verify that
(2.10) ((N—N)?) = ke TpNKr,

where p = N/V and

1 /0V
KT—‘7<5;)T

is the isothermal compressibility. Defining
(2.11) x = ksTpKr,

the reduced isothermal compressibility, we see that y = 1 for the ideal gas
(2.1).

For the lattice models we will consider, the above structure is not so in-
teresting mathematically since the set Q, and Q, y are finite sets. As indi-
cated at the beginning, statistical mechanics is concerned with bulk proper-
ties of matter when A and N are quite large (the volume A is large compared
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with microscopic length scales). In fact, statistical mechanics, as formulated
above, cannot describe the macroscopic phenomenon of a phase transition.
One characterization of a phase transition is nonanalytic behavior of vari-
ous thermodynamic functions as a function of temperature. In the canonical
ensemble, the bulk free energy F,(f) is a finite sum of terms, each term an-
alytic in 8. Thus F, () is analytic, and hence all thermodynamic quantities
obtained from F, (via differentiation) will be analytic in S.

To describe the phenomena of phase transitions, we must consider the
thermodynamic limit

(2.12) A—-27, N — o0

such that
N/|A| - p, 0<p <o,

where the sequence of “boxes” A approaching Z” is “reasonable” (take actual
boxes!). Thus we consider the free energy per lattice site

A—Z", N—oo
N/|A|—p

f(B.p)= lim ﬁmﬂ)
(2.13)

A—Z N

=—kgT lim ﬁ log Zx n(B)
N/IA|—p

in the canonical ensemble. In the grand canonical ensemble

. 1
(2.14a) pp = lim TA] 108 Za . B),
. 1 0
(2.14b) p= AI_II%I W36—3 log Zx(3, B),

where p is the density. The equation of state (2.2) is obtained by eliminating
31n (2.14a) and (2.14b).

In the above discussion we have not been careful about the boundary con-
ditions at the walls of A. It is possible to discuss Gibbs states for infinite
volume systems directly, as was first done by Dobrushin [16, 17] and Lan-
ford and Ruelle [20]. These infinite volume Gibbs states are obtained by
passing to the thermodynamic limit with various boundary conditions (see
discussion of the Ising model in §4). The reader is referred to Ruelle [29] for
the theory of Gibbs states.

3. The two-dimensional Ising model. The Ising model is a simplified model
of a magnet. At each site i € A C Z? there is a spin “pointing up or down,”
ie.,

+ 1 if spin is up at site i,

oi(w) = {

— 1 if spin is down at site /.
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The configuration space is Qs = {—1, 1}, and the energy function is

(3.1) Bu@)=—J Y aiw)(w),

ijEA

li—jl=1
where the sum is restricted to nearest neighbor pairs. For J > 0 the system
is said to be ferromagnetic since like spins are more favorable.

A rigorous discussion requires a description of the boundary conditions at
the walls of A. Theoretically, the two most obvious boundary conditions are
to fix on and outside the walls all spins either +1 or —1. The resulting infinite
volume Gibbs measures are called P, and P_. It is a theorem due to Aizen-
man [1] that there is a unique temperature 7, (given by (3.2) below) such
that for all T < T, any Gibbs state is a convex combination of the distinct
measures P, and P_, whereas for T > T, there is a unique Gibbs measure
(P, = P_), called the high-temperature measure. It should be noted that this
holds only for the two-dimensional Ising model. For the three-dimensional
Ising model, Dobrushin [18] has shown that for sufficiently low temperatures
the number of extreme measures is infinite. There is a complete characteri-
zation of the measures P, and P_ for the two-dimensional Ising model (see
Palmer and Tracy [23, 24] and references therein). From a computational
point of view, the boundary conditions obtained by identifying opposite sides
of the box A (periodic boundary conditions) are most convenient as they pre-
serve the translational invariance.

In any case, the free energy per site in the thermodynamic limit is known
exactly (and is independent of boundary conditions) and was first computed
by Onsager [22] in his now-classic 1944 paper. The free energy per site, f(f),
has a singularity at a temperature T, called the critical temperature, defined
by

(3.2) sinh(28J) = 1.

Furthermore, the spontaneous magnetization (an example of an order param-
eter) is known exactly [39]

(1 -k%)'8 for T < T,
0 for T > T,

where k = (sinh28J)~2. A detailed discussion of these results can be found
in McCoy and Wu [21]. One important aspect of (3.3) is that it illustrates the
phenomenon of spontaneous symmetry breaking. The energy (3.1) is invari-
ant under g; — —o;, and one might naively conclude (g;), = 0. However, the
boundary conditions of all + at the walls give (g;)5 . # 0 and these boundary
conditions are still “felt” for low enough temperatures in the limit A — Z2.
The reason exact calculations can be carried out in the nearest neighbor
2-dimensional Ising model is that the transfer matrix (see §4) is an element
of the Clifford group. We will hear more about this in Professor Jimbo’s
lectures on holonomic quantum fields. Here it suffices to say that because of

63 (o= Jim Enslo) = {
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this many exact calculations cah be performed. To give one further example,
it was shown in 1973 by Wu, McCoy, Tracy, and Barouch [15, 37, 38] that
the two-spin correlation function

Vo= I . e 72
(@00))+ = lim Ej . (000;),  jEZ7,

in the so-called scaling limit |j| — oo, T — T such that |T —~ T¢||j| is fixed
is given by

00 2
lim (Z;’OG)Q) = cosh (—;—W(r)) exp{%/ s [sinh2 w(s) — (%) ] ds} ,

where r is proportional to [T — T¢| |j| and n = exp(—y) is a Painlevé function
of the third kind. This result was reformulated and generalized by Sato,
Miwa, and Jimbo [30] in the context of holonomic quantum fields. Finally,
Palmer and Tracy [23, 24] gave a rigorous account of this scaling limit and
showed the existence of a generalized random field in this scaling limit.

4. Vertex models and the Yang-Baxter equations. Consider a square lat-
tice A with M rows and N columns with periodic boundary conditions, i.e.,
opposite sides identified. Let X be a finite set. A configuration w is defined
by assigning to each bond of A an element of X. As above, we let Q, be
the collection of all such configurations w. To an individual vertex « € A is
assigned an energy ¢/(a), i, j,k,! € X, and corresponding Boltzmann weight
S¥(a) = exp(—Bek!(a)) (see Figure 1). The energy of a configuration, &, (),
is defined to be the sum of the energies of the individual vertices. Then the
partition function is

(4.1) ZaB) =Y, [] SH,
wWEQ, a€EA

where the product is taken over all vertices of the lattice A. This defines an

X vertex model.
)

J
kl
Efl(a)

FIGURE 1. Vertex configuration corresponding to energy &}/ (a).

The most studied vertex model is the case when X is a two-element set and
the Boltzmann weight is independent of the site label a. The term multistate
vertex model is used for cases | X| > 2. In the 2-state case it is conventional
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AR
bt

FIGURE 2. Eight elementary vertices in the eight-vertex model.

to indicate the bond state by drawing an arrow either up or down on vertical
bonds and either right or left on horizontal bonds. Thus, there are sixteen
elementary vertices, and the resulting model is called the 16-vertex model.
The exact evaluation of the free energy per site in the thermodynamic limit
is beyond present techniques. Thus, additional restrictions are imposed, the
first being that only an even number of arrows is allowed into each vertex.
This leaves eight elementary vertices (see Figure 2), and to each vertex we
assign an energy &;, { = 1,...,8. Since we are assuming periodic boundary
conditions, there must be as many sinks as sources in a configuration @ so
it is no restriction to take &; = &z. Likewise, vertical sinks and sources
occur in equal number so we may take &; = &. Thus the resulting partition
function depends upon six parameters. Even with these restrictions the exact
evaluation of f as a function of these six parameters is not known.

We impose the second condition on the eight-vertex model; namely, ¢; = &
and &3 = &4, which amounts to the restriction that reversal of all arrows leaves
the energy of a vertex unchanged. We introduce the four parameters

(4.2) a=e P, b=eho c=eFs, d=eFo,

It is this symmetric eight-vertex model (“Baxter model”) that Baxter [6, 7]
computed the free energy per site as a function of the Boltzmann weights
(4.2). Baxter’s methods are presently the most powerful methods available
for computing the free energy. We now give an introduction to these methods.

For a general X-vertex model we introduce the associated transfer matrix.
Let Hy = C?® --- ® C? (N times), g = |X|, and let e, = €,, ® - ® €,,,

a = (aj,...,ay), @j = 1,...,q be the standard basis for Hy, then we define
the transfer matrix 7" by
Ara! oA Ao
(4.3) Taw =) i St~ Stvaw:
{4}

where the summation is over all horizontal bond states A; (see Figure 3). An
easy calculation shows that

(4.4) ZA(B) = T(TY),

where the trace is on Hy. If we denote by x the vector of independent
Boltzmann weights and D the number of components of x, then T = T(x).
For the Baxter model x = (a,b,c,d) and D = 4. Since changing all the
Boltzmann weights by the same multiplicative factor does not change the
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FIGURE 3. Configuration in a row.

free energy in a significant way, it is perhaps better to think of x as the
homogeneous coordinates of a point in projective space (note that for physical
values all the coordinates must be nonnegative).

It is useful to derive a more compact expression for 7. Define T2 C4 —
C? by

(45) (T/I},’)aa, — S}}:;a;
and TH: % — Z4, 1 < j < N, by

T =1® - @TW g ..ol
(4.6) ]

Jjth slot

Finally, if we denote by # , the direct sum of /%, with itself g-times and by
Lj: &y, — #yg, 1 < j< N, the g x g matrix whose entries are

(4.7) Li(AA)=TF, LNex,

then an elementary calculation gives

(4.8) T =Trg(LiLy--- Ly),

where Tr,(---) indicates the trace is only over the ¢ x ¢ matrix structure of
the L;’s.

We now come to the fundamental question posed by Baxter [6, 10]:
namely, to ask whether there exist commuting families of such transfer ma-
trices. That is, we ask for a deformation from x, to say, x’' such that the
associated transfer matrices 7(x) and 7(x’) commute. From the representa-
tion (4.8) and the commutativity of L; and L, it follows that

(4.9) T(X)T(X') = Tral(Li ® Ly) -+ (Ly ® Lyy)],

where L; = L;(x) and L) = L;(x’), and the subscript ¢* on the trace denotes
the trace is only over the g2 x ¢? matrix structure of L;® L}. To compute
T(x')T(x), one simply switches the primed and unprimed labels. From the
invariance of the trace under similarity transformations, a sufficient condition
for the commutativity of 7'(x) and T(x') is the existence of a nonsingular
matrix R(x,x'):C? — C?" such that

(4.10) (Lj(x') ® Lj(x))R(x,x") = R(x,x")(L;(x) ® L;(x"))

for all j. This equation is the Yang-Baxter equation (or star-triangle equa-
tion) for the vertex model. For a generic vertex model, the only solutions
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to (4.10) will be the trivial solution R(x,x') = I corresponding to the trivial
deformation x — x' = px, pe C.

For the Baxter model there exist nontrivial solutions to (4.10). Baxter
proved [6, 10]

THEOREM 4.1. Let x = (X1, X2, X3, X4) denote homogeneous coordinates of

a point in CP®. Define the elliptic curve Myp by the intersection of the two
quadrics

X1X2 X

4.11 =
( ) X3X4 ‘r 2x1x2

where ¢;,c; € C. Ifx = (a,b,c,d) and x' = (a',b',c’,d") are two Boltzmann
vectors for the symmetric eight-vertex model lying on Myg, then the corre-
sponding transfer matrices T(x) and T(x') commute.

It is essential for Baxter’s computation of the free energy per site to
parametrize the Boltzmann weights (4.2) in terms of Jacobi theta functions
(or elliptic functions). If we write

a=po(2n)6(v —mH( + 1),
b= pb(2n)H(v - n)6(v + 1),
c=pH(2n)6(v — m)0(v + n),
d=pHQ2nH (@ -n)H(v + 1),

where H(u) = — 4, (u/2K, 1), 0(u) = F:(u/2K, 1), then the transfer matri-
ces T(v;n,1, p) for fixed 1,1, p form a family of commuting transfer matri-
ces. The variable v is sometimes called the spectral parameter. A calcula-
tion shows that the parametrization (4.12) makes the combinations (4.11)
independent of the parameter v. An explicit form for R can be found, for
instance, in [32]. The equations (4.10) become, with parametrization (4.12),
addition formulas for theta functions. In fact a slightly different parametri-
zation of (a, b, c,d) makes (4.10) a special case of a Riemann quartic theta
identity, and the quadrics in (4.11) follow from the Jacobi equations for the
four theta functions _%,;(z, 1), a,b =0, 1. (See [34] for details.)

It seems to be the case (though not a theorem!) that once one has found a
nontrivial solution to the Yang-Baxter equations, one can evaluate the parti-
tion function per site

o 1/N
(4.13) x-}}x_r)r;oZN .

(4.12)

The transfer matrix for the symmetric eight-vertex model is a normal matrix.
Elementary spectral arguments and equation (4.4) show that k, as defined
above in (4.13), can be obtained in the limit M — oo by knowing only
the largest eigenvalue of 7. Baxter, in an intricate analysis [6, 7], derives an
equation for this eigenvalue, which can be solved exactly in the limit N — oo.
The parametrization (4.12) plays a crucial role in this analysis.
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FIGURE 4. Eight spin configurations that correspond to

the eight vertices. Reversal of all spins corresponds to
the same vertex configuration.

d c
a b
w(a, b,c.d)

FIGURE 5. Boltzmann weight w(a, b, ¢, d).

Somewhat later Baxter [11] showed that with certain analyticity assump-
tions, the partition function per site k satisfied certain functional equations
from which x could then be derived. It is certainly fair to say that neither cal-
culation of x is completely rigorous, but that the functional equation method
is certainly the least rigorous. It is also the method most frequently used in
multistate models!

Rather than pursue the details of these calculations of x, it is better for
this audience to be introduced to the methods needed to compute the or-
der parameters for various models. Here again, it is Baxter who pioneered
the way by his introduction of corner transfer matrices. Before proceeding,
however, it will be convenient to introduce a dual version of the equations
(4.10).

Associated to any vertex model there is a spin model (see, e.g., Perk and Wu
[26]). For the Baxter model, the spins o; are two-valued random variables,
+1, and are site variables on a square lattice that is the dual lattice of the
vertex lattice. The correspondence (2 to 1) from spin configurations to arrow
configurations is shown in Figure 4. In terms of these spin variables we have
Boltzmann factors corresponding to elementary squares (see Figure 5). For
the Baxter model

(4.14) w(0o1,02,03,04) = exp(BJai03 + BJ' 0204 + BJ40,020304)

with g; = +1, and the mapping between the vertex energies and the spin
coupling constants is

81=—J—J'—J4, 83=J+JI+J4,
85=J—JI+J4, £7=J+J'+J4.
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2 3 2 3

FiGURE 6. Graphical representation of the star-triangle
equation (4.15)

We see that for the special case J; = 0, the Baxter model partition function
is a product of two two-dimensional Ising model partition functions.

In spin language we can also define a transfer matrix 7 = T[w] where we
have indicated its dependence on the Boltzmann factors w(ai, 02, 03, 04), 6; =
spin variable. Two transfer matrices 7 = T[w] and T’ = T[w’] commute if
there exists a third function w” such that forall g;, i = 1,...,6,

Z w(az, 03,07, al)w/(al , 07, 05, 06)w,l(a4, 05,07, 63)
a

(4.15) =Y w" (g7, 06, 01,02)W' (02, 03, 04, 07)w (07, 4, 05, ).
(4}

This is the Yang-Baxter (or star-triangle) equation in spin variables. The
function w"” is the spin version of “R” in (4.10). (4.15) may be derived
from (4.10) via the vertex < spin correspondence, or a derivation similar to
that of (4.10) may be given directly (see Baxter [10, 12]). (4.15) has a nice
graphical representation (see Figure 6). We can think of (4.15) as a partition
function of a graph containing three quadrilateral faces, with a center spin
g, and boundary spins ay,...,0s. The star-triangle relation says these two
partition functions are equal.

Again, I wish to emphasize that once nontrivial solutions to (4.15) are
found, then the model has turned out to be “exactly solvable.” Until quite
recently all solutions to (4.10) or (4.15) involved curves of either genus 0 or
1. As Professor McCoy will report on at this conference, solutions have been
found by Au-Yang et. al. 5] where the genus of the curve is greater than one.
This new development is extremely important for solvable models.

5. Corner transfer matrices and order parameters. The corner transfer ma-
trix A associated with the spin configurations shown in Figure 7 is defined to
be

w(o;,a0;,0,01) if a1 =0},
(5.1) Aa,a"_—{ ZH ( »Uj, Uk I) 1 ‘ 1
0 otherwise,

o =(01,...,0m), 6' = (0],...,0,), and the sum is over all internal spins (de-

picted as open circles in Figure 7) and the product is over all the elementary
squares in the corner depicted in Figure 7. The weight w(a, b,c,d), in the
case of the Baxter model, is the Boltzmann weight (4.14). The matrix 4 is
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’
1% Tm

X
Om a9 =AY

FIGURE 7. Corner transfer matrix 4. The open circles
correspond to sites summed over in sum (5.1). The
triangular sites correspond to sites fixed at the ground
state values. For the Baxter model order parameter (oi),
the ground state corresponds to g; = +1 for all i € A.

for the SE corner; matrices B, C, and D for the NE, NW, and SW corners,
respectively, are similarly defined. Then the partition function is given by

(5.2) Z) =tr(ABCD),
and if we define the matrix 6,
(61)0,00 = 016(0,0"),
then
_ Tr(6,ABCD)
(3-3) (1) = lim - 4BCD) -

Fixing the edge spins (see Figure 7) to their ground state value g, = +1,
suitably normalized corner transfer matrices can be diagonalized in the limit
m — oo. The spectrum remains discrete, which is in contrast to the row
transfer matrix. The Yang-Baxter equations and the elliptic parametrization

are crucial in this diagonalization (for details see Baxter [10, 12]). Baxter
thus arrives at formulas of the form

54)  A(o)=lim Y aM(or,...,om)/ 3 M(ay,...,0m),

01Oy
where M(oy,...,0,,) (for all values of oy,...,0n,) are the eigenvalues of
ABCD. Explicitly for the Baxter model

M(oy,...,0m) = exp(—24(0103 + 20,04 + - + MG 0 p,2))

(4 is related to the parameter # in (4.12)). Making the change of variables
uj =00, and oy = uyu3 - - - K, Baxter finds

2
. E:#F WY ERRRY ] xHit2pat ot mp,
{o1) = lim D Ui+2u++mp
m—oo ni=%1 X 2 m

(5.5) 1

=H1+q2_]|’ q:e =x’




368 C. A. TRACY

which is the order parameter for the Baxter model.

6. Hard hexagon model. The hard hexagon model is a lattice gas on a tri-
angular lattice with the rule that if a site is occupied then the six neighboring
sites are necessarily vacant. Such a rule can be visualized by placing “hard”
hexagons on the lattice (see Figure 8). Since the energy of a configuration is
either +o0o (such a configuration violates the hard hexagon rule) or is some
fixed constant, say 0, the partition function, Z, 5 in (2.4), becomes simply
a combinatoric factor g(n, N), equal to the number of ways of placing n
hexagons on a lattice of N sites (assuming periodic b.c.). Thus the grand
partition function (2.7b) is

(6.1) Zy=) 3"g(nN),
n=0

where g(n, N) is zero for n > [N/3] and ; is the activity (see (2.7)). For
example, g(1,N) = N and g(2, N) = iN(N - 7).

FIGURE 8. A configuration of hard hexagons

If we introduce an occupation variable o; = 0,1 (g; = 1 means there is a
particle at site i, etc.), then another quantity of interest is the local density
at site |

(6.3) pi = (G:).

Intuitively we see that there are two extreme cases; namely, that of high
density (close packing of the hexagons) and that of low density. In the close
packing limit, one of three possible sublattices is completely occupied, say the
“1” sublattice, and the other two, say “2” and “3” sublattices, are completely
vacant. That is, in the close packing limit we expect

(6.4) p=1, p2=p3=0,

where the subscript / means p; = (0;) is evaluated for a point in sublattice
In the low density limit we expect no preferential ordering on the sublattices,

6 29
1.
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i.e.,

(6.5) p1 = p2 = ps.

In a remarkable pair of papers Baxter [8, 9] (see also Baxter and Pearce
(13, 14]) showed that the hard hexagon model is exactly solvable in the sense
of commuting transfer matrices. To show this Baxter generalized the hard
hexagon model to a square lattice gas model with diagonal interactions and
nearest neighbor exclusion (this is necessary to obtain a spectral parameter,
i.e., a family of commuting transfer matrices). Precisely, if w(a, b, c,d) is the
Boltzmann weight for the configuration of an elementary square, a,b,c,d €
{0, 1}, then

latbre+d)/d exn(Lac + Mbd)
(6.6) w(a,b,c,d) = ifab=bc=cd=da=0,
0 otherwise,

where L and M are diagonal interaction constants (see Figure 5) and ; is the
activity. The hard hexagon model is regained by taking L = 0 and M = —c0.

Using (6.6), Baxter showed that the star-triangle relations (4.15) have a
nontrivial solution provided that 3, L, and M satisfy

(6.7) 3=(L—e Ly(1 —e=M)/(el+M _ oL _ oMy,

In the hard hexagon limit, (6.7) puts no restriction on 3. An explicit param-
etrization of the weights in (6.6) that satisfies (6.7) is [8, 10]

w(0,0,0,0) = (24 + u)/6(24),

w(1,0,0,0) = w(0,0,1,0) = 6(u)/[6(A)0(24)]"/2,
(6'8) w(oa ]a O’ 0) = 'U)(O, 0’ 03 1) = G(A - u)/e('l)’

w(1,0,1,0) = 6(24 —u)/6(24),

w(0,1,0,1) = (24 + u)/6(4),
where 0(u) = 4 ,(u/n, ) and A = n/5. The hard hexagon model is u = —-n/S.

As in the Baxter model, Baxter introduces corner transfer matrices A, B,

C, and D. Again suitably normalized corner transfer matrices have limits
(this is not rigorous, though) in the thermodynamic limit m — oo (see Figure
7). These limits are taken fixing the edge spins to their “ground state” values.
The hard square lattice gas, as defined by (6.6) and (6.7), has four phases, so
there are four “ground states” to consider. The simplest case is the disordered

regime (called Regime I by Baxter), in which case Baxter shows that in the
diagonal representation

(6.9) (ABCD)G,.,I — rgmqaz+203+3a4+--~56)6,’

where 6 = (0y,03,...), etc. The spin indices g; are subject to the hard
hexagon constraint

(610) Ti0i4] =O, i = 1,2,...,
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and r¢ is given by

(6.11) rd = -xG(x)/H(x), q=x5,
where G(x) and H(x) are

(6.12a) G(x) = ﬁ[(l — X541 — xSy
n=1

(6.12b) H(x) = ﬁ[(l — X531 - xSm=2)]-1.
n=1

Those familiar with the Rogers-Ramanujan identities (see, e.g., [2]) recognize
(6.12) as the product side of these identities.

Thus, when computing the trace in (5.3), Baxter was led to sums of the
form

(6.13) F(a) = Z’ gort2otdogt

02,03,...
where the sum Y’ is subject to the constraint (6.10). Thus, in the disordered
regime, Baxter finds

2
(6.14) p= (o) = F—(Oi)"%

However, F(0) and F(1) are related to the sum side of the Rogers-Ramanujan
identity (perhaps more clearly, F(0) and F(1) are related to one side of the
combinatoric version of the Rogers-Ramanujan identities):

(6.15) F(0)=G(q), F(1)=H(q).
Using (6.11) and (6.15) in (6.14) we have
(6.16) p = —xG(x)H(x%)/[H(x)G(x®) — xG(x)H(x®)].
A further identity of Ramanujan is

H(x)G(x®) - xG(x)H(x®) = P(x)/P(x?)
with P(x) = [I52,(1 — x2"~1), which implies
(6.17) p = —xG(x)H(x®)P(x*)/ P(x),

where p; = py = p3 = p.

The analysis in the other three regimes is more complicated since new
Rogers-Ramanujan type identities had to be discovered and proved by Baxter
[9] and Andrews [3]. In the hard hexagon limit there are just two phases, a
disordered phase and an ordered phase.
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We give Baxter’s complete results for the hard hexagon model. If # =
{z € C|Im z > 0} denotes the upper half-plane, then in the disordered regime

_ n2(5T)nd, (57 5)1(3,0)(67; 6)12,0)(67; 6)

18 ) = T e e Mg (65,6
_ [100051:97°
(6.20) p(T)=pr = —% [101,0)(57; 5)12,0(307;5)] ",

where the physical values of T € # are Ret = %, and in the ordered regime
_ 12(50)nk,0)(57; 5)101,0)(37; 3)

(621) K(T) - ’72(31)”(21’0)(51; 5) b
_ 100051571
(6.23) R(®)=pi—pr= %5-)’—)
and
(6.24) p2(7) = p3(7) = w['l(z,m(ﬁ; 5)M2,0)(457; 5)171,

n*(37)
and the physical values of 7 € # in the ordered regime are Re 7 = 0.

We have written Baxter’s results in terms of the Dedekind eta function
(1) and the generalized Dedekind eta function 1g(1; N) (see Schoeneberg
[31] and Appendix A). The remarkable mathematical structure of Baxter’s
results (6.8)-(6.24) is summarized in the following theorem [36]. First define
I'[N]= {4 €SL(2,Z)|4=+(} }) mod N}.

THEOREM 6.1. In the disordered regime, 3(t) is a modular function with
respect to the group T'\[S], and k(t) and p(t) are modular functions with
respect to the group T'\[30). In the ordered regime, 3(t) is a modular function
with respect to the group I'\[5], k3(t) and R3(t) are modular functions with
respect to the group T'\[15], and p,(t) = p3(t) are modular functions with
respect to the group T'[45].

Baxter’s corner transfer matrix has produced meromorphic functions on
various compact (number-theoretical) Riemann surfaces in uniformized
form! The only way we understand this result is to do the calculation. That
is, there is no proof before these calculations that these physical quantities
are such beautiful functions.

In the grand canonical ensemble one has, see (2.14), k = k(3) and p = p(3).
Using the modular properties one can show [36] that the only branch points
of x and p occur at 3 = 0, 3., 3np, 00, where

1H+5/3 [(1+5/5)
3c = ) = 3
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is the critical activity, and

NP = D) D)

11—5\/§=_(\/§—1)5

is a nonphysical activity. In the disordered regime x is a 24-sheeted func-
tion of 3, and on the physical sheet the point 3 = 0 is a holomorphic point.
The function (1) = 1(1,0(57; 5)/n2,0)(57; 5) is the famous Klein icosahedron
function.

In the disordered regime x(t) has valence 22 and p(t) has valence 8, so
there exists a polynomial of degree less than or equal to 22 in p and degree
less than or equal to 8 in x:

(6.19) P(x, p) = 0.

A complete cusp analysis for x(z7) and p(t) can be given (the transforma-
tion properties of 7(t) and ng(t; N) under SL(2,Z) are well known, see
Schoeneberg [31] or Appendix A). This makes an explicit determination of
P possible [27]: Let

y=p",
go = 4322,
g1 = 43291001 + 2y + 48y + 56y — 42y* — 12y°
+ 100y® — 132y7 — 625y'2],
g = 16y% + 192)° + 645y% — 516y” — 5826y% — 4116)°
+9349y'0 — 11400y'" — 42672y'2 — 9800y"3
+7350p'4 — 4500y'5 + 1750p'¢ + 3125y%2,
g3 = — 1 — 12y — 48y% — 563 + 42p* + 12y°
— 100y + 132y7 + 625p12,
g =y
then
(6.20) 8o + g1k + gt + &b + gx® = 0.

This is the equation of state for the hard hexagon model in the disordered
regime. The critical point (x¢, pc),

2 1/2 5
Ke = [—7—(25+11\/§)] y o Pe= vs

250 10 °

is a cusp with tangent line k — k. = 0 of the algebraic curve (6.20).
The reduced compressibility x (see (2.10) and (2.11)) in terms of k and p
is

dk oP [/OP
(6.21) r=rx /9= 5L /50,
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i.e., x is a rational function of k and p. Similar polynomial relations can be
derived in the ordered regime including a polynomial relation between x in
the disorderd phase and x in the ordered phase [28]. For p — p- we have

(6.22) x(p)= %31‘1/2 1-2112 4 %(1 +4V5)t + 0(3?)
with ¢ = v/5(p. — p). This divergence of the compressibility (see (2.10) and
(2.11)) is characteristic of second-order phase transitions.

Appendix A: Dedekind functions. For 7 € # the Dedekind eta function
n(7) is defined by

(A.l) ’7(7) — enit/12 ﬁ(l _ e2m’mr)‘

m=1

For g = (g, h) € Zy x Zy we have the generalized Dedekind functions [31]

(A2) (1 N) = ag)e™ M T (1 - whel?riMim,
m>0
m=g modN
x H (1- w;he(Zni/N)rm)
m>0
m=-—g modN
with A .
a(g) = { (1 — wy")e P h/N) if g =0and h # 0 mod N,
1 otherwise,

wy = exp(2mi/N), Pi(x) = x —[x] - §, and Po(x) = (x = [x])? — (x — [x]) + L.
For 4= (¢ 2) € SL(2,Z), n(t) and ng(1; N) transform as follows:

(A3 1(57) = o (How) Y e,
and for g #Z (0,0) mod N,
(A9 (ZL5N) = oxplr g (),

where g’ = (g',h') = (g, h)4,
(a+d)/c—12sgn(c)S(d,|c|]) forc #0,

(A-5) ®) = { b/d forc=0,

ni [%Pz (5,,—’) +4p, (£) - ZSgn(c)SéV(a,c)] for ¢ # 0,
ning (%) ifC:O’
and S(a, c) is the Dedekind sum

(A7) s@a= 3 ((2)((3))

v mod ¢

(A6) my(d4) = {
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and SY,(a,c) is the generalized Dedekind sum

ansueo= 2 ((S50) (£5))

v mod ¢
where ((x)) = x — [x] - % + %5(x) with d(x) = 1 if x € Z and 0 otherwise.
In particular, for 4 = I'[N] and g # (0,0) mod N
(A.9) Ng(AT; N) = e™Dng(1; N).

Since my(A) € Q, there exists an integer Ny such that (ng(7; N )M is a modular
function of level N, g # (0,0). According to Schoeneberg, the choice N; =
12N/(6, N) works. The periods 7g(A) satisfy

(A.10) ng(AB) = my(A4) + 1z,l4g(B),

so that if 4 € I'TN] we have

(A.11) ng(AB) = my(A) + my(B).
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