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Abstract. We give an explicit description of the Mirkovic-Vilonen cycles on the affine Grass-

mannian for arbitrary reductive groups. We also give a combinatorial characterization of the MV
polytopes. We prove that a polytope is an MV polytope if and only if every 2-face of it is a rank

2 MV polytope.

1. Introduction

Let G be a complex connected semisimple group. Let G∨ be its Langlands dual group. Let
K = C((t)) denote the field of Laurent series and let O = C[[t]] denote the ring of power series. The
quotient Gr = G(K)/G(O) is called the affine Grassmannian. The geometric Satake correspondence
of Lusztig, Ginzburg, Beilinson-Drinfeld, and Mirkovič-Vilonen provides a connection between the
geometry of Gr and the representation theory of G∨.

In particular, Mirkovič-Vilonen [MV] identified a certain class of subvarieties of the affine Grass-
mannian, called Mirkovič-Vilonen cycles, which give bases for representations of G∨. These MV
cycles are the components of intersections of opposite “semi-infinite cells” in Gr. Anderson [A2]
studied the moment map images of the Mirkovič-Vilonen cycles, called Mirkovič-Vilonen polytopes,
and showed that these polytopes could be used to understand the combinatorics of representations
of G∨.

Because of this connection to the representation theory, some attempts have been made to give
an explicit description of the MV cycles and polytopes. Gaussent-Littelmann [GL] associated an
MV cycle to each Littelmann path. However, their method did not give equations cutting out the
MV cycles and does not lead to a description of the MV polytopes. Anderson-Kogan [AK] studied
MV cycles for GLn by means of the lattice model for Gr. They gave a recipe for producing MV
cycles and polytopes for GLn, but not an explicit description of the cycles and polytopes.

Here we give an explicit combinatorial description of the MV cycles and polytopes uniform across
all types. We show (Theorem 2.5) that a polytope is an MV polytope if and only if every 2-face is
an MV polytope of the appropriate rank 2 group (of type A1 ×A1, A2, B2, G2). A polygon is a rank
2 MV polytope if the distances of its sides from the origin satisfy a certain (+,max) equation called
the “tropical Plücker relation” (15), (16), (17).

This result, combined with [BZ2], shows that Lusztig’s canonical basis and the set of MV cycles
are governed by the same combinatorics (Theorem 2.7). In the case of MV cycles, the tropical
Plücker relations appear naturally, whereas their appearance in [BZ2] to describe the canonical
basis was unexpected.

There is a close connection between our work and the Anderson-Kogan description of MV cycles
and polytopes forGLn and our work. In fact, their work served as an important source of motivation.
The details of this connection will be explained in [K].
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The proof of our main theorem uses the results of Berenstein-Fomin-Zelevinsky [BFZ, BZ1, FZ]
concerning generalized minors.
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2. Background and results

2.1. Notation. If G is complex connected semisimple group, then its affine Grassmannian is the
disjoint union of π1(G) many copies of the affine Grassmannian of the simply-connected semisimple
group with the same root system as G. So here we only consider the case G connected simply-
connected semisimple. As another simplification, in this paper we consider only the case of G singly
or doubly-laced. Extending our results to include G2 factors is quite simple; it just requires including
the extra cases of aij = −3 and aji = −3 in the statement of the tropical Plücker relation and in
Propositions 4.1 and 4.2. The case aij = −3 appears in [BZ1] and the case aji = −3 can be easily
derived from there.

Let G be a connected simply-connected semisimple complex group.

Let T be a maximal torus of G and let X∗(T ) = Hom(T,C×), X∗(T ) = Hom(C×, T ) denote the
weight and coweight lattices of T . Let ∆ ⊂ X∗(T ) denote the set of roots of G. Let W = N(T )/T
denote the Weyl group.

Let B be a Borel subgroup of G containing T . Let α1, . . . , αr and α∨
1 , . . . , α

∨
r denote the simple

roots and coroots of G with respect to B. Let N denote the unipotent radical of B. Let Λ1, . . . ,Λr

be the fundamental weights. Let I = {1, . . . , r} denote the vertices of the Dynkin diagram of G. Let
aij = 〈α∨

i , αj〉 denote the Cartan matrix. Let ρ :=
∑

Λi, ρ
∨ :=

∑

Λ∨
i be the Weyl and dual Weyl

vectors.

We use ≥ for the usual partial order on X∗(T ), so that µ ≥ ν if and only if µ − ν is a sum of
positive coroots. More generally, we have the twisted partial order ≥w , where µ ≥w ν if and only if
w−1 · µ ≥ w−1 · ν .

Let tR := X∗(T ) ⊗ R. For each w, we extend ≥w to a partial order on tR, so that β ≥w α if and
only if 〈β − α, w ·Λi〉 ≥ 0 for all i.

For each i ∈ I, let ψi : SL2 → G be denote the ith root subgroup of G.

For w ∈W , let w denote the usual lift of w to G, using the lift of si := ψi

(

[

0 1
−1 0

]

)

.

We will also need the Bruhat order on W , which we also denote by ≥. Let w0 denote the longest
element of W .

A reduced word for an element w ∈ W is a sequence of indices i = (i1, . . . , im) such that
w = si1 · · · sim

is a reduced expression.

Let kpf denote the Kostant partition function on X∗(T ), so that kpf(µ) is the number of ways
to write µ as a sum of positive coroots.
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2.2. MV cycles. For the purposes of this paper, it will be convenient to write the affine Grassman-
nian as the left quotient Gr = G(O) \ G(K). We view Gr as an ind-scheme over C whose set of C

points is G(O) \G(K). Similarly, we view G(K), N(K),Km as ind-schemes over C, in fact they are
the images of the formal loop space functor. For more details, see [FB, Sections 11.3.3, 20.3.3].

A coweight µ ∈ X∗(T ) gives a homomorphism C× → T and hence an element of Gr. We denote
the corresponding element tµ. It is easy to see that these tµ are the fixed points for the action of
T (C) on Gr.

For w ∈W , let Nw = wNw−1. For w ∈ W and µ ∈ X∗(T ) define the semi-infinite cells

(1) Sµ
w := tµNw(K).

To a certain extent, these semi-infinite cells behave like the Schubert cells on a finite dimensional
flag variety. In particular, they are each attracting cells for a certain C× action on Gr,

(2) Sµ
w = {L ∈ Gr : lim

s→∞
L · (w · ρ∨)(s) = tµ}.

They have the simple containment relation (see [MV])

(3) Sµ
w =

⋃

ν≥wµ

Sν
w.

Lemma 2.1. If Sµ
w ∩ Sν

v 6= ∅ then ν ≥w µ.

Proof. Let L ∈ Sµ
w ∩ Sν

v . Then by (2), tν = lims→∞ L · (v · ρ∨)(s). Since Sµ
w is T -invariant, this

shows that tν ∈ Sµ
w. So by (3), ν ≥w µ. �

Following Anderson [A2], for µ ≥ 0 we define an MV cycle of coweight µ to be a component

of X(µ) where X(µ) is the intersection of two opposite semi-infinite cells,

(4) X(µ) = S0
1 ∩ Sµ

w0
.

It is well-known that this intersection has kpf(µ) components (for example this follows from [BFG,
Section 13], or from [A2]). It is also known that this intersection has pure dimension 〈µ, ρ〉, but we
will not need this fact.

Following Anderson [A2], given a T -invariant closed subvariety A of the affine Grassmannian let
Φ(A) ⊂ tR be the convex hull of {µ ∈ X∗(T ) : tµ ∈ A}. By [A2], this is the moment polytope for the
T action on the A. If A is an MV cycle of coweight µ, then we say that Φ(A) is an MV polytope

of coweight µ.

For example, by (3), we see that Φ(Sµ
w) = Cµ

w := {α ∈ tR : α ≥w µ} = {α : 〈α, w ·Λi〉 ≥ 〈µ, w ·Λi〉
for all i}.

2.3. pseudo-Weyl polytopes. We will start our investigation by examining a larger family of
polytopes, called pseudo-Weyl polytopes, which we will show contains the family of MV polytopes.
We will show how to pick out the MV polytopes from the pseudo-Weyl polytopes.

For λ ∈ X∗(T ), Wλ = conv(W · λ) ⊂ tR is called the λ-Weyl polytope. Recall that the Weyl
polytope Wλ can be described in three different ways. It is the convex hull of the orbit of λ under
the action of the Weyl group, it is the intersection of translated and reflected cones, and it is the
intersection of half spaces. In particular, if λ is in the anti-dominant Weyl chamber, then

Wλ =
⋂

w

Cw·λ
w = {α ∈ tR : 〈α, w · Λi〉 ≥ 〈λ,Λi〉 for all w ∈W and i ∈ I}.
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Following Berenstein-Zelevinsky, we call a weight w · Λi a chamber weight of level i. So the
chamber weights Γ :=

⋃

w∈W,i∈I w ·Λi are dual to the hyperplanes defining any Weyl polytope.

A pseudo-Weyl polytope is a polytope P along with a map w 7→ µw from W onto the vertices
of P such that

(5) P =
⋂

w

Cµw

w .

Pseudo-Weyl polytopes admit a dual description in terms of intersecting half spaces.

Let M• =
(

Mγ

)

γ∈Γ
be a collection of integers, one for each chamber weight. Given such a

collection, we can form P (M•) := {α ∈ tR : 〈α, γ〉 ≥ Mγ for all γ ∈ Γ}. This is the polytope made
by translating the hyperplanes defining the Weyl polytopes to distances Mγ from the origin.

Proposition 2.2. Let µ• =
(

µw

)

w∈W
be a collection of coweights. Then conv(µ•) is a pseudo-Weyl

polytope if and only if µv ≥w µw for all v, w.

A pseudo-Weyl polytope has defining hyperplanes dual to the chamber weights. In particular, if P
is a pseudo-Weyl polytope with vertices µ•, then

(6) P = P (M•)

where

(7) Mw·Λi
= 〈µw, w · Λi〉.

Moreover, the M• satisfy the following condition which we call the non-degeneracy inequali-

ties.

For each w ∈W and i ∈ I, we have:

(8) Mwsi·Λi
+Mw·Λi

+
∑

j 6=i

ajiMw·Λj
≤ 0

Conversely, suppose that a collection of positive integers
(

Mγ

)

γ∈Γ
satisfies the above condition.

Then the polytope P (M•) is pseudo-Weyl polytope with vertices given by

(9) µw =
∑

i

Mw·Λi
w · α∨

i .

Another way to describe pseudo-Weyl polytopes is to say that they are polytopes whose dual fan
is a coarsening of the Weyl fan. The proposition follows from a standard result concerning polytopes
with fixed dual fans (see [F]).

Let P be a pseudo-Weyl polytope, P = conv(µ•) = P (M•). For any w ∈ W, i ∈ I, there is an
edge connecting µw and µwsi

. We have

(10) µwsi
− µw = cw · α∨

i , where c = −Mw·Λi
−Mwsi·Λi

−
∑

j 6=i

ajiMw·Λj
.

We call c the length of the edge from µw to µwsi
. Note that it is the negative of the left hand side

of (8).
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2.4. GGMS strata. The geometric version of the pseudo-Weyl polytopes are the Gelfand-Goresky-
MacPherson-Serganova (GGMS) strata on the affine Grassmannian. These GGMS strata will be
our candidates to be MV cycles.

Given any collection µ• =
(

µw

)

w∈W
of coweights, we can form the GGMS stratum

(11) A(µ•) :=
⋂

w∈W

Sµw

w .

By Lemma 2.1, this intersection is empty unless µu ≥w µw for all u, w. Hence the intersection is
empty unless conv(µ•) is a pseudo-Weyl polytope.

We will prove that each MV cycle is the closure of A(µ•) for appropriate µ•. Once we know
which of these are MV cycles, we will also know the MV polytopes, since we have the following easy
lemma, due to Anderson-Kogan in type A.

Lemma 2.3. Let µ• be as above. Then Φ(A(µ•)) = conv(µ•) or A(µ•) = ∅.

Proof. Let X = A(µ•). Assume that X is non-empty.

Let P denote the moment polytope of X. We know that P is the convex hull of the set {µ ∈
X∗(T ) : tµ ∈ X}. Let L ∈ ∩wS

µw
w . Since X is the closure of the intersection of T -invariant

subsets, X is T -invariant. For each w ∈ W consider the one parameter subgroup w · ρ∨ : C× → T .
Since X is closed and T -invariant, lims→∞ L · (w · ρ∨)(s) ∈ X. But since L ∈ Sµw

w , we see that
lims→∞ L · (w · ρ∨)(s) = tµw .

Hence tµw ∈ A for all w ∈W . Hence conv(µ•) ⊂ P .

Conversely, if tν ∈ X, then tν ∈ Sµw
w for each w ∈ W . So ν ∈ Cµw

w . Hence ν ∈ ∩wC
µw
w . Since

∩wC
µw
w = conv(µ•) is convex, this shows that P ⊂ conv(µ•). �

For each L ∈ Gr, let P (L) denote the pseudo-Weyl polytope corresponding to the GGMS stratum
containing L.

We now introduce constructible functions on the affine Grassmannian which cut out the GGMS
strata. These functions are new, but were motivated by the work of Speyer [S].

If U is a vector space over C, the vector space U ⊗K has a filtration by · · · ⊂ U ⊗ tO ⊂ U ⊗O ⊂
U⊗t−1O ⊂ · · · . We use this filtration to define a valuation val on U⊗K, by val(u) = k if u ∈ U⊗tkO
and u /∈ U ⊗ tk+1O.

Fix a high weight vector vΛi
in each fundamental representation VΛi

of G. For each chamber
weight γ = w · Λi, let vγ = w · vΛi

. Since G acts on VΛi
, G(K) acts on VΛi

⊗K.

For each γ ∈ Γ define the function Dγ by:

(12)
Dγ : Gr → Z

[g] 7→ val(g · vγ)

This gives a well-defined function on Gr = G(O) \G(K), since if g ∈ G(O) and u ∈ VΛi
⊗K, then

val(g · u) = val(u).

The functions Dγ have a simple structure with respect to the semi-infinite cells. To see this note
that if γ = w · Λi, then vγ is invariant under Nw. This immediately implies the following lemma.

Lemma 2.4. Let w ∈W . The function Dw·Λi
takes the constant value 〈µ, w · Λi〉 on Sµ

w. In fact,

Sµ
w = {L ∈ Gr : Dw·Λi

(L) = 〈µ, w · Λi〉 for all i}.
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Let M• be a collection of integers, one for each chamber weight. Then we consider the simulta-
neous level set of the functions D•,

(13) A(M•) := {L ∈ Gr : Dγ(L) = Mγ for all γ}.

Let µ• be a collection of coweights describing a pseudo-Weyl polytope. Let M• be the corre-
sponding collection of integers defined by (7). Then by Lemma 2.4, we have two descriptions of the
GGMS stratum: A(µ•) = A(M•).

By Proposition 2.2, we also have two different descriptions of the pseudo-Weyl polytope: conv(µ•) =
P (M•).

If the GGMS stratum is non-empty, then the GGMS stratum and the pseudo-Weyl polytope are
related in two different ways:

A(µ•) = A(M•) = {L ∈ Gr : P (L) = conv(µ•) = P (M•)},

Φ
(

A(µ•)
)

= Φ
(

A(M•)
)

= conv(µ•) = P (M•),

where the first line of equations is by the definition of P (L) and the second is by Lemma 2.3.

2.5. BZ data. Our goal is now to give neccesary and sufficient conditions on a collection M• for
A(M•) to be an MV cycle. For this purpose, it is necessary to understand better the functions
D•. To that end, we consider the generalized minors of Berenstein-Zelevinsky [BZ1]. For each
chamber weight γ of level i, they introduced the function

(14)
∆γ : G→ C

g 7→ 〈g · vγ , v−Λi
〉

(note that v−Λi
∈ V−w0·Λi

= V ⋆
Λi

).

When G = SLn , a chamber weight of level i is just an i element subset of {1, . . . , n} and ∆γ(g)
is the minor of g using the first i rows and column set γ.

The function Dγ on the affine Grassmannian is closely related to the valuation of ∆γ . In general,
one can see that val(∆γ(g)) ≥ Dγ([g]) (see the remarks at the beginning of Section 3.5). We will
show (in the course of the proof of Theorem 3.5) that if L ∈ Gr then there exists g ∈ G(K) such
that [g] = L and Dγ(L) = val(∆γ(g)) for all γ.

Berenstein-Zelevinsky [BZ1] established certain three-term Plücker relations among these gener-
alized minors. In general, the process of passing from relations among Laurent series to relations
among integers using val is called tropicalization. The most naive way to tropicalize is to simply
replace multiplication by addition and addition by min. This will not always work because cancel-
lation of leading terms can occur in addition. However, we will show that this naive tropicalization
is enough to understand the values of the Dγ on an open subset of each MV cycle. This motivates
the following definition (which originally appeared - though with a different motivation - in [BZ2]).

Let w ∈ W, i, j ∈ I be such that wsi > w,wsj > w, i 6= j. We say that a collection
(

Mγ

)

γ∈Γ

satisfies the tropical Plücker relation at (w, i, j) if aij = 0 or if

(i) if aij = aji = −1, then

(15) Mwsi·Λi
+Mwsj ·Λj

= min(Mw·Λi
+Mwsisj·Λj

,Mwsjsi·Λi
+Mw·Λj

);
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(ii) if aij = −1, aji = −2, then

(16)

Mwsj ·Λi
+Mwsisj·Λj

+Mwsi·Λi
= min

(

2Mwsisj·Λj
+Mw·Λi

,

2Mw·Λj
+Mwsisjsi·Λi

,

Mw·Λj
+Mwsjsisj·Λj

+Mwsi·Λi

)

,

Mwsjsi·Λi
+ 2Mwsisj·Λj

+Mwsi·Λi
= min

(

2Mw·Λj
+ 2Mwsisjsi·Λi

,

2Mwsjsisj·Λj
+ 2Mwsi·Λi

,

Mwsisjsi·Λi
+ 2Mwsisj·Λj

+Mw·Λi

)

;

(iii) if aij = −2, aji = −1, then

(17)

Mwsjsi·Λi
+Mwsi·Λi

+Mwsisj ·Λj
= min

(

2Mwsi·Λi
+Mwsjsisj·Λj

,

2Mwsisjsi·Λi
+Mw·Λj

,

Mwsisjsi·Λi
+Mw·Λi

+Mwsisj·Λj

)

,

Mwsj·Λj
+ 2Mwsi·Λi

+Mwsisj ·Λj
= min

(

2Mwsisjsi·Λi
+ 2Mw·Λj

,

2Mw·Λi
+ 2Mwsisj·Λj

,

Mw·Λj
+ 2Mwsi·Λi

+Mwsjsisj·Λj

)

.

We say that a collection M• =
(

Mγ

)

γ∈Γ
satisfies the tropical Plücker relations if it satisfies

the tropical Plücker relation at each (w, i, j).

A collection
(

Mγ

)

γ∈Γ
is called a BZ datum if:

(i) M• satisfies the tropical Plücker relations.
(ii) M• satisfies the non-degeneracy inequalities (8).
(iii) MΛi

= 0 for all i.

The coweight of a BZ datum is defined to be
∑

iMw0·Λi
w0 · α∨

i . This is the w0 vertex of the
corresponding pseudo-Weyl polytope P (M•).

Our main result, which will be proven is Sections 3 and 4, is the following characterization of MV
cycles and polytopes.

Theorem 2.5. Let M• be a BZ datum of coweight µ. Then A(M•) is an MV cycle of coweight µ,
and each MV cycle arises this way for a unique BZ datum M•.

Hence a pseudo-Weyl polytope P (M•) is an MV polytope if and only if M• is a BZ datum.

So BZ data M• are the good sets of values for the D•, namely the sets of values such that the
closure of the resulting level set A(M•) is an MV cycle.

In the case of G = SL3, it is possible to give a very explicit description of the BZ data and MV
polytopes. In this case we have Γ = {1, 2, 3, 12, 13, 23} where we identify 2 with (0, 1, 0) ∈ X∗(T ),
23 with (0, 1, 1), etc.

There is only one tropical Plücker relation (which occurs at (w = 1, i = 1, j = 2)),

(18) M2 +M13 = min{M1 +M23,M3 +M12}.
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Translated into the world of polytopes, we note that pseudo-Weyl polytopes for SL3 are hexagons
with every pair of opposite sides parallel and all sides meeting at 120◦. The above relation (18) shows
that a pseudo-Weyl polytope is an MV polytope if and only if the distance between the middle pair
of opposite sides is the maximum of the distances between the other two pairs of opposite sides.
Hence there are two possible forms for SL3 MV polytopes, depending on which distance achieves
this maximum. Here are example of each of the two kinds (where 0 marks the 1 vertex and µ marks
the w0 vertex ).

0

µ
µ

0

In the case of G = Sp4, there is again one tropical Plücker relation (which occurs at (w = 1, i =
1, j = 2)). Examining the possible cases in either (16) or (17) shows there there are the following
four possible types of polytopes.

µ

00

µ

µ

0

µ
0

The MV polytopes for SL3 and Sp4 appeared without proof in Anderson’s thesis [A1]. There
they were expressed as the Minkowski sums of certain “prime” MV polytopes. In [K] we explain
how to write MV polytopes (for all G) as Minkowski sums of finitely many “prime” MV polytopes.

Each tropical Plücker relation concerns the placement of the hyperplanes incident to a particular
2-face of the pseudo-Weyl polytope. Hence we see that if rank(G) > 2, then a pseudo-Weyl polytope
is an MV polytope if and only if all of its 2-faces are MV polytopes. So a pseudo-Weyl polytope is
an MV polytopes if and only if all of its 2-faces are rectangles (the MV polytopes for SL2 × SL2)
or one of the above types. More generally, this shows that any face of an MV polytope is an MV
polytope. In [K], we give an explanation of this phenomenom.

2.6. Lusztig data. Let i = (i1, . . . , im) be a reduced word for w0. Such an i gives a distinguished
path µ1, µsi1

, µsi1
si2
, . . . , µw0

through the 1-skeleton of the pseudo-Weyl polytope P = conv(µ•).

Let n1, . . . , nm be the sequence of lengths of the edges of this path. We call the vector (n1, . . . , nm)
the i-Lusztig datum of P. For MV polytopes, this is enough information to reconstruct the entire
polytope. This follows from [BZ1], but in the course of this paper we will reprove this result.

Theorem 2.6. The map

{MV polytopes} → N
m

P 7→ (n1, . . . , nm)

is a bijection.

Now, we can explain our strategy for the proof of the main theorem, Theorem 2.5. Fix a coweight
µ ≥ 0. For any i, we decompose X(µ) into a disjoint union according to i-Lusztig datum (Section
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3.2). We then prove (Theorem 3.2) that the closures of these pieces are the irreducible components
of X(µ).

Next, we consider the problem of how the different decompositions for different i overlap. The key
is to first consider reduced words i, i′ which differ by a d-move (Section 4.1). Using this knowledge,
we are able to prove that the MV cycles are as in Theorem 2.5.

2.7. Relation to the canonical basis. Let B denote Lusztig’s canonical basis for U∨
+ , the upper

triangular part of the quantized universal envelopping algebra of G∨. Lusztig showed that a choice
of reduced word i for w0 gives rise to a bijection B → Nm (see [BZ2] for more details). Following
Berenstein-Zelevinsky, we call the image of this bijection the i-Lusztig datum of the canonical
basis element.

By considering varying the choice of i, Berenstein-Zelevinsky [BZ2] discovered BZ data. Their
results can be expressed in our language as follows.

Theorem 2.7 ([BZ1, Theorem 4.3], [BZ2, Example 5.4]). There is a coweight preserving bijection

b 7→ P (b) between the canonical basis B and the set of MV polytopes. Under this bijection, the

i-Lusztig datum of b equals the i-Lusztig datum of P (b).

In other words to find the i-Lusztig datum of b, we can just look at the lengths of the edges in
P (b) along the path determined by i.

Proof. We adopt the notation of [BZ1]. Example 5.4 in [BZ2] gives a bijection between B and
{(tik) : tik ≥ 0 for all i, k} ⊂ L(Ztrop), where L denotes the Lusztig variety. This map records the
Lusztig datum of a canonical basis element with respect to each reduced word.

Theorem 4.3 in [BZ1] gives a bijection between L(Ztrop) and M(Ztrop), which is the set of all
collections M• satisfying the tropical Plücker relations and the normalization condition MΛi

= 0
for all i. The image of B under the composition of these two bijections is the subset of M(Ztrop)
satisfying the non-degeneracy inequalities (8). Hence we get a bijection from B to the set of BZ
data, which we have proven to be the same as the set of MV polytopes. The equality of the Lusztig
data is clear from the definitions.

�

2.8. Tensor product multiplicities. Recall that G∨ is the group with root datum dual to that
of G. In particular, the weight lattice of G∨ is X∗(T ).

Building on the work of Mirkovič-Vilonen, Anderson showed that MV polytopes could be used
to obtain a tensor product multiplicity formula for G∨ in terms of counting polytopes.

Theorem 2.8 ([A2, Theorem 1]). Let λ, µ, ν ∈ X∗(T )+. The tensor product multiplicity cνλµ of Vν

inside Vλ ⊗ Vµ is equal to the number of MV polytopes P such that

(i) P has coweight λ+ µ− ν,
(ii) P + ν − µ is contained in Wλ,

(iii) P + ν − µ is contained in −Wµ + ν.

Combining Theorem 2.8 with our Theorem 2.5, we immediately obtain the following result.

Theorem 2.9. The multiplicity cνλµ equals the number of BZ data satisfying:

(i) Mw0·Λi
= 〈λ+ µ− ν, w0 · Λi〉 for all i,

(ii) Mγ ≥ 〈µ− ν, γ〉 + 〈w0 · λ,Λi〉 for all chamber weight γ of level i,
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(iii) Mγ ≥ 〈µ, γ − Λi〉 for all chamber weights γ of level i.

Theorem 2.9 is very similar to Theorem 5.16 in [BZ2]. Both results compute tensor product
multiplicity by counting a certain subset of the BZ data. Once the notation is adjusted slightly,
it is easy to see that our result imposes stronger condition on the BZ data, so a priori counts
fewer BZ data. Since both theorems compute the same number, they must in fact be imposing the
same conditions on the BZ data. It would be interesting to find a direct combinatorial proof that
conditions (ii), (iii) above are equivalent to the conditions (3), (4) in [BZ2, Theorem 5.16]. We have
been able to do this in type An, Dn but not in general (see [K] for more details).

3. Lusztig data decomposition

3.1. Reduced words and paths. Fix a reduced word i = (i1, . . . , im) for an element w ∈ W . The
word i determines a sequence of distinct Weyl group elements wi

k := si1 · · ·sik
and distinct positive

coroots βi
k := wi

k−1 · α
∨
ik

. In particular, when w = w0, we get all the positive coroots this way.

We say that a chamber weight γ is an i-chamber weight if it is of the form wi
k · Λj for some

k, j. We write Γi for the set of all i-chamber weights. Let γi
k = wi

k ·Λik
.

Because of the relationship sj ·Λi = Λi for j 6= i, it is fairly easy to see that Γi consists of m+ r
elements: the γi

k and the fundamental weights (see [BZ1, Prop 2.9]).

It is worth keeping in mind the polytope combinatorics associated to this choice of reduced word.
Let Σ := W−ρ∨ be the −ρ∨-Weyl polytope. We will refer to this polytope as the permutahedron.
For each w ∈ W , it has a vertex w · −ρ∨ which we call the w vertex of Σ. For each w ∈ W and
i, j ∈ I, there is an edge connecting the w vertex and the wsi vertex. Understanding the faces of
the permutahedron is enough to understand the faces of any pseudo-Weyl polytope since there is a
map from the set of faces of the permutahedron onto the set of faces of any pseudo-Weyl polytope.

A reduced word i determines a distinguished path wi
0 = 1, wi

1 = si1 , w
i
2, . . . , w

i
m = w through the

1-skeleton of Σ. The kth leg of this path is the vector wi
k · ρ−wi

k−1 · ρ = βi
k. The i-chamber weights

are exactly those dual to hyperplanes incident to the vertices along this path.

Example 1. Consider G = SL3 . Let i = (1, 2, 1), then

wi
1 = 213, wi

2 = 231, wi
3 = 321,

and

βi
1 = (1,−1, 0), βi

2 = (1, 0,−1), βi
3 = (0, 1,−1).

Also,

γi
1 = 2, γi

2 = 23, γi
3 = 3,

where we write (0, 1, 0) as 2, (0, 1, 1) as 23, etc.

The fundamental weights 1, 12 are also i-chamber weights, so in fact every chamber weight is a
i-chamber weight except for 13.

In Figure 1, we show the permutahedron for SL3 along with the distinguished path corresponding
to i and the hyperplanes defined by each chamber weight.

3.2. The decomposition. With these considerations in mind, we proceed to discuss the decompo-
sition according to Lusztig data. Fix a reduced word i for w0 and a coweight µ ≥ 0.

Let n• ∈ Nm. We say that n• is an i-Lusztig datum of coweight µ if µ =
∑

k nkβ
i
k. For such n•,

let Pi(n•) be the collection of pseudo-Weyl polytopes P = conv(µ•), such that for all k, the length
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Figure 1. The permutahedron for SL3 .

of the edge from µwi

k−1

to µwi

k
is nk (i.e. P has i-Lusztig datum n•). Note that if P ∈ P(n•), then

µw0
=

∑

k nkβ
i
k = µ is the coweight of the i-Lusztig datum of P .

Example 2. Continuing as in Example 1, we see that there are three pseudo-Weyl polytopes with
i-Lusztig datum (2,1,1):

2

1

1

2

1

1

2

1

1

0

µ

0

µ

0

µ

Let Ai(n•) := {L ∈ X(µ) : P (L) ∈ Pi(n•)}. Since each pseudo-Weyl polytope has some i-Lusztig
datum, we immediately have the following decomposition of X(µ) into locally closed subsets.

Proposition 3.1.

X(µ) =
⊔

Ai(n•)

where the union is over all i-Lusztig data n• of coweight µ.

Fix an i-Lusztig datum n• of coweight µ. Let µk =
∑k

l=1 nlβ
i
l . Suppose that P is a pseudo-Weyl

polytope with i-Lusztig datum n•. Then the wi
k vertices of P are at position µk. So if L ∈ Ai(n•),

then L lies in a GGMS stratum A(ν•) with νwi

k
= µk. This shows that

Ai(n•) =
⋂

k

Sµk

wi

k

.

Let Mγi

k
= 〈µk, γ

i
k〉. Then by the length formula (10), we see that

(

Mγ

)

γ∈Γi
is the unique solution

to the system of equations

(19)
nk = −Mwi

k−1
·Λik

−Mwi

k
·Λik

−
∑

j 6=i

ajiMwi

k
·Λj

for all k,

MΛi
= 0 for all i.
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This system is upper triangular (note that each Mγi

k
shows up for the first time in the equation

with nk on the left hand side) and so such a solution is unique.

By Lemma 2.4 it follows that

(20) Ai(n•) = {L ∈ Gr : Dγ(L) = Mγ for all i-chamber weights γ}.

Example 3. Continuing as in Example 1, we see that in this case

µ1 = (n1,−n1, 0), µ2 = (n1 + n2,−n1,−n2), µ3 = (n1 + n2, n3 − n1,−n2 − n3),

n1 = −M2 , n2 = −M23 +M2, n3 = −M2 −M3 +M23.

The goal of this section is to prove the following result.

Theorem 3.2. For each i-Lusztig data of coweight µ, Ai(n•) is an irreducible component of X(µ).

Moreover each component of X(µ) appears exactly once this way.

The following elementary algebraic geometry lemma will prove quite useful.

Lemma 3.3. Let X be a reducible algebraic set with n components. Suppose that X = ⊔Ck is a

decomposition of X into n irreducible locally closed subvarieties. Then C1, . . . , Cn are the distinct

irreducible components of X.

Proof. Let A1, . . . , An denote the irreducible components of X . Let Bi = Ci. Then X = ∪Bi , so

Aj =
⋃

Aj ∩Bi.

Since Aj is irreducible and each Aj ∩ Bi is closed, Aj = Aj ∩ Bi for some i. So Aj ⊂ Bi. By
similar reasoning, there exists k such that Bi ⊂ Ak. Hence Aj ⊂ Bi ⊂ Ak. Since the Aj are the
components, each listed once, j = k and so Aj = Bi. Continuing this argument shows that there
exists a map σ of {1, . . . , n} to {1, . . . , n} such that Aj = Bσ(j). This map is injective since the Aj

are distinct. Hence it is bijective as desired. �

The number of i-Lusztig data of coweight µ is kpf(µ) which equals the number of components of

X(µ). So prove Theorem 3.2, it suffices to show that Ai(n•) is irreducible for each Lusztig datum
n•. To prove this, we will use another basic algebraic geometry fact, that the image of an irreducible
variety is irreducible. Hence our goal is to construct a surjective map from an irreducible variety
onto Ai(n•). To that end, it will be necessary to examine certain parametrizations of N introduced
by Lusztig and Berenstein-Fomin-Zelevinsky.

3.3. Parametrizations of N . Fix w ∈ W . Following Berenstein-Zelevinsky [BZ1], we will define
the twist automorphism ηw : N ∩B−wB− → N ∩B−wB−. First, let x 7→ xT be the involutive Lie
algebra anti-automorphism of g given by

eT
i = fi, fT

i = ei, hT
i = hi,

where ei, fi, hi denote the standard Chevalley generators of g. We use the same notation g 7→ gT

for the corresponding involutive anti-automorphism of G.

For y ∈ N ∩B−wB−, we define ηw(y) to be the unique element in the intersection N ∩B−wy
T .

See [BZ1] for proof that this function is well-defined.

For each i ∈ I, we have the ith map ψi of SL2 into G. Then define xi : C → N by

xi(a) = ψi

(

[

1 a
0 1

]

)

.
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Let i be a reduced word for w. Following [BZ1, FZ], we define regular maps xi and yi from (C×)m

to N ,

xi(b1, . . . , bm) = xim
(bm) · · ·xi1(b1),

yi(b1, . . . , bm) = η−1
w−1(xi(b1, . . . , bm)).

Berenstein-Fomin-Zelevinsky established the following result, which they call the Chamber

Ansatz, which provides an inverse for y.

Theorem 3.4. Let y = yi(b1, . . . , bm). Then

(21) bk =
1

∆wi

k−1
·Λik

(y)∆wi

k
·Λik

(y)

∏

j 6=ik

∆wi

k
·Λj

(y)−aj,ik for all k.

Conversely, ∆γ(y) is a monomial in the bk whenever γ is a i-chamber weight.

Moreover, if w = w0, then yi is a biregular isomorphism onto {g ∈ N : ∆γ(g) 6= 0 for all

i-chamber weights γ}.

Proof. The first part of this theorem is exactly Theorem 1.4 in [BZ1] and Theorem 2.19 in [FZ],
except we have switched the order of the reduced word.

The system (21) is the same as the system (19), except it is written multiplicatively instead of
additively. We have already observed that (19) is invertible, hence so is (21) and so ∆γ(y) is a
monomial in the bk. The explicit form of this monomial is given in Thoerem 4.3 in [BZ1].

To prove the last statement, let U = {y ∈ N : ∆γ(y) 6= 0 for all i-chamber weights γ}. The first
half of the theorem provides a map U → (C×)m which is a left inverse to yi. Hence yi is injective.

So it suffices to show that yi is surjective. Let y ∈ U and determine bk from y by (21). Let
y′ = yi(b•). By the above observations, the generalized minors ∆γ take the same values on y, y′ for
each i-chamber weight γ. But by the results of [BZ1], every function on N is a rational function of
the ∆γ for γ an i-chamber weight. Hence every function on N takes the same values on y′ and y.
Since N is affine, this shows that y′ = y and so yi is surjective. �

Example 4. We continue from Example 3. In this case:

xi(b1, b2, b3) =





1 b1 + b3 b2b3
0 1 b2
0 0 1



 and yi(b1, b2, b3) =





1 1
b1

1
b2b3

0 1 b1+b3

b2b3

0 0 1



 .

So

b1 =
1

∆2(y)
, b2 =

∆2(y)

∆23(y)
, b3 =

∆23(y)

∆2(y)∆3(y)

as in Theorem 3.4.

Note that the map yi is a map of varieties over C. By the formal loop space functor, there
is a corresponding map of ind-schemes over C, Km → N(K). Moreover, the obvious analogue of
Theorem 3.4 holds in this setting.
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3.4. Mapping onto the MV cycles. Fix a reduced word i for w0. Let n• be a Lusztig datum of
coweight µ. Let Mγ be determined from the n• by (19).

Let

B(n•) := {(b1, . . . , bm) ∈ Km : val(bk) = nk for all k}.

The goal of the rest of this section is to prove the following theorem.

Theorem 3.5. If b• ∈ B(n•), then [yi(b•)] ∈ Ai(n•). Moreover, each L ∈ Ai(n•) has a representa-

tive of the form yi(b•) for some b• ∈ B(n•). Hence the restriction of yi to B(n•) combined with the

surjection G(K) to Gr provides a surjective morphism B(n•) → Ai(n•).

Note that B(n•) is irreducible, since it is isomorphic to a product of m copies of C× times m
copies of O. Hence by the remarks following Lemma 3.3, proving Theorem 3.5 will complete proof
of Theorem 3.2.

As a first step towards Theorem 3.5, we establish the following lemma.

Lemma 3.6. Let b• ∈ Km. Let y = yi(b•).

Then b• ∈ B(n•) if and only if val(∆γ(y)) = Mγ for all i-chamber weights γ.

Proof. By Theorem 3.4, we see that

(22) val(bk) = − val(∆wi

k−1
·Λik

(y)) − val(∆wi

k
·Λik

(y)) −
∑

j 6=ik

val(∆wi

k
·Λj

(y))

for all k. Also since y ∈ N(K), ∆Λi
(y) = 1 and so val(∆Λi

(y)) = 0 for all i.

This is the same system of equations as (19), with val(bk) instead of nk and val(∆γ(y)) instead
of Mγ . Since (19) is an invertible linear system, this shows that val(bk) = nk for all k if and only if
val(∆γ(y)) = Mγ for all i-chamber weights γ. �

3.5. Off-minors. To complete the proof of Theorem 3.5, we will need a further investigation of
relation between the function Dγ and the valuation of ∆γ .

Let U be a finite-dimensional vector space over C. Earlier, we defined a function val : U⊗K → Z.
Note that if u ∈ U ⊗K, then

val(u) = min
ξ∈U⋆

val(〈u, ξ〉),

where on the right, val denotes the usual valuation map on K. In fact, it is enough to take the min
over a basis for U⋆.

Let us apply the above result to our situation. We see that if γ is a chamber weight of level i,
then

(23) Dγ([y]) = val(y · vγ) = min
ξ∈V ⋆

Λi

val(〈y · vγ , ξ〉).

In particular, ξ = v−Λi
shows up on the right hand side and so val(∆γ(y)) appears in the min (see

(14)). We would like to show that the minimum is attained there when y = yi(b•) and b• ∈ B(n•).

Using a Bruhat decomposition of G(K) it is possible to show that we need to take only extremal
weight vectors ξ in the min above. However, we will not need this.

We call 〈y · vγ , ξ〉 an off-minor of y. In the case G = SLn it is the minor of y using γ as the set
of columns and ξ as the set of rows (where we identify the usual basis for V ⋆

Λi
with i element subsets

of {1, . . . , n}).
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The following lemma is a generalization of Lemma 3.1.3 from [BFZ], which dealt with the case
G = SLn.

Lemma 3.7. Let w ∈W . Let ξ ∈ V ⋆
Λi

. Let x ∈ N ∩B−w
−1B− and y = ηw−1(x). Then

〈y · vw·Λi
, ξ〉

∆w·Λi
(y)

=
〈xT · vΛi

, ξ〉

〈vΛi
, v−Λi

〉

Proof. Since x = ηw−1(y), there exists p ∈ N− and d ∈ T such that pdx = w−1yT . Note that

w−1 = wT (since si
−1 = si

T by an SL2 calculation). Hence, y = xTdT pTw−1, and so

(24) 〈y · vw·Λi
, ξ〉 = 〈xTdT pTw−1 · vw·Λi

, ξ〉 = Λi(rd)〈x
T · vΛi

, ξ〉,

where r = w−1w ∈ T .

Similarly,

(25) 〈y · vw·Λi
, v−Λi

〉 = Λi(rd)〈x
T · vΛi

, v−Λi
〉 = Λi(rd)〈vΛi

, (xT )−1 · v−Λi
〉 = Λi(rd)〈vΛi

, v−Λi
〉

since xT ∈ N−, so (xT )−1 ∈ N− and hence (xT )−1 · v−Λi
= v−Λi

.

Taking the ratio of (24) and (25) gives the desired result. �

This result allows us to express certain off-minors of y in terms of x. To express them all, we will
also need the following lemma from Berenstein-Zelevinsky.

Lemma 3.8 ([BZ1, Proposition 5.4]). Let i be a reduced word for w0, let 1 ≤ k ≤ m, let w = wi
k,

and let y = yi(b1, . . . , bm). Then y admits a factorization y = y′y′′ where y′ = y(i1,...,ik)(b1, . . . , bk),

and y′′ ∈ wNw−1.

These last two lemmas combine in the following result describing the off minors.

Proposition 3.9. Let i be a reduced word for w0, let ξ ∈ V ⋆
Λi

, and let γ be an i-chamber weight of

level i. Let y = yi(b1, . . . , bm). Then

〈y · vγ , ξ〉

∆γ(y)

is a polynomial in the bk.

Proof. Since γ is an i-chamber weight, γ = wi
k ·Λi for some k. Let w = wi

k. By the previous lemma,
y = y′y′′, where y′ = y(i1,...,ik)(b1, . . . , bk) and y′′ ∈ wNw−1.

Then y · vγ = y′y′′ · vγ = y′ · vγ since γ = w · Λi and y′′ ∈ wNw−1.

So

〈y · vγ , ξ〉

∆γ(y)
=

〈y′ · vγ , ξ〉

∆γ(y′)
=

〈x′T · vΛi
, ξ〉

〈vΛi
, v−Λi

〉
,

where x′ = x(i1,...,ik)(b1, . . . bk). The first equality is by the above analysis and the second is by
Lemma 3.7.

Any regular function of x′
T

is a polynomial in the bk (since the extension of x(i1,...,ik) to C
k is

regular) and so the result follows. �

We are now ready to prove Theorem 3.5.
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Proof of Theorem 3.5. First, we will show that if b• ∈ B(n•), then [yi(b•)] ∈ Ai(n•).

Fix b• ∈ B(n•) and let y = yi(b•).

By (20), [y] ∈ Ai(n•) if Dγ([y]) = Mγ for all i-chamber weights γ.

By Lemma 3.6, val(∆γ(y)) = Mγ . So to prove that [y] ∈ Ai(n•), it suffices to show that
val(∆γ(y)) = Dγ([y]).

By (23), it suffices to show that val(〈y · vγ , ξ〉) ≥ val(∆γ(y)) for any ξ ∈ V ⋆
Λi

. By Proposition 3.9,

〈y · vγ , ξ〉

∆γ(y)
= P (b1, . . . , bm)

for some polynomial P . But val(bk) = nk ≥ 0 for all k, so val(P (b1, . . . , bm)) ≥ 0. Hence val(〈y ·
vγ , ξ〉) − val(∆γ(y)) ≥ 0 as desired.

So we conclude that [y] ∈ Ai(n•), as desired.

Next, we need to check that if L ∈ Ai(n•), then L = [yi(b•)] for some b• ∈ B(n•). Suppose we
know that there exists y ∈ N(K) such that L = [y] and val(∆γ(y)) = Dγ(L) for all γ. Then if γ
is a i-chamber weight, by (20) Dγ(L) = Mγ , so val(∆γ(y)) = Mγ . In particular, ∆γ(y) is non-zero
for all i-chamber weights γ. Hence by Theorem 3.4, there exist (b1, . . . , bm) ∈ (K×)m such that
y = yi(b1, . . . , bm). By Lemma 3.6, we see that bk ∈ B(n•) as desired. Hence this completes the
proof of the theorem.

So now we will prove the existence of y as above. Since A(n•) ⊂ S0
1 , L has a representative

g ∈ N(K). Let h ∈ N(C). So [h−1g] = [g] = L. We would like to find h such that val(∆γ(h−1g)) =
Dγ(L) for all chamber weights γ.

Let γ be a chamber weight of level i and let d = Dγ([g]). Let u1, . . . , uN be a basis for VΛi
with

dual basis u⋆
1, . . . , u

⋆
N for V ⋆

Λi
.

Then

∆γ(h−1g) = 〈h−1g · vγ , v−Λi
〉 = 〈g · vγ , h · v−Λi

〉.

Now h · v−Λi
=

∑

s csu
⋆
s for some cs ∈ C. Hence

∆γ(h−1g) =
∑

s

cs〈g · vγ , u
⋆
s〉.

Let ps be the coefficient of td in 〈g · vγ , u
⋆
s〉. Since d = Dγ([g]) = mins val(〈g · vγ , u

⋆
s〉), we see

that ps is nonzero for some s. Extracting the coefficient of td from the above equation shows that
val(∆γ(h−1g)) = d if and only if

∑

s pscs 6= 0.

Now, cs(h) = 〈us, h·v−Λi
〉. So finding h, such that val(∆γ(h−1g)) = Dγ(L) for all chamber weights

γ, is equivalent to finding h such that none of the corresponding linear forms
∑

s pscs vanish. It
is well known that the ring of functions on N is an integral domain, is generated by the functions
cs, and that all relations are quadratic in these matrix coefficients. Hence the product of the linear
forms

∑

s pscs does not vanish identically on N . So we can choose h as desired.

Thus, we can choose a representative y ∈ N(K) for L such that val(∆γ(y)) = Dγ(L) for all γ. �

4. Piecing together

Thanks to Theorem 3.2, we now have a decomposition of X(µ) for each i-chamber weight. To
complete the proof of Theorem 2.5, it will be necessary to understand how these different decompo-
sitions fit together. In this section, a reduced word will always mean a reduced word for w0.
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i’

j

k

j

i

w

wk+d

i

i

j

i

Figure 2. Two reduced words related by a 3-move.

4.1. Local picture. Two reduced words i, i′ are said to be related by a d-move involving i, j,
starting at position k, if

i = (. . . , ik, i, j, i, . . . , ik+d+1, . . . ),

i′ = (. . . , ik, j, i, j, . . . , ik+d+1, . . . ),

where d is the order of sisj .

Recall that reduced words correspond to paths from the 1 vertex to the w0 vertex of the permu-

tahedron. If i, i′ are related as above, then wi
l = wi′

l , for l /∈ {k+1, . . . , k+ d− 1}. So the two paths
agree for the first k vertices and then agree again at vertex k + d and later. Moreover, the wi

l and

wi′

l vertices for l ∈ {k, . . . , k + d} all lie on the same 2-face of the permutahedron. Namely, they lie
on the 2-face which contains w vertex and is dual to the chamber weights w · Λp for p 6= i, j, where
w = wi

k. This 2-face will be a 2d-gon (see Figure 2).

Following Lusztig, Berenstein-Zelevinsky studied the relationship between yi and yi′ .

Proposition 4.1 ([BZ1, Theorem 3.1]). Let i, i′ be as above. Suppose that yi(b•) = yi′(b
′
•).

For l /∈ {k + 1, . . . , k+ d}, bl = b′l. For other l we have the following case by case formulas.

(i) If aij = 0, so d = 2. Then

b′k+1 = bk+2, b
′
k+2 = bk+1.

(ii) If aij = aji = −1, so d = 3. Then

(26)
b′k+1 =

bk+2bk+3

π
, b′k+2 = bk+1 + bk+3, b

′
k+3 =

bk+1bk+2

π
,

where π = bk+1 + bk+3.

(iii) If aij = −1, aji = −2, so d = 4 . Then

(27)
b′k+1 =

bk+2bk+3bk+4

π1
, b′k+2 =

π2
1

π2
, b′k+3 =

π2

π1
, b′k+4 =

bk+1b
2
k+2bk+3

π2
,

where π1 = bk+1bk+2 + (bk+1 + bk+3)bk+4, π2 = bk+1(bk+2 + bk+4)
2 + bk+3b

2
k+4.
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(iv) If aij = −2, aji = −1, so d = 4. Then

(28)
b′k+1 =

bk+2b
2
k+3bk+4

π2
, b′k+2 =

π2

π1
, b′k+3 =

π2
1

π2
, b′k+4 =

bk+1bk+2bk+3

π1
,

where π1 = bk+1bk+2 + (bk+1 + bk+3)bk+4, π2 = b2k+1bk+2 + (bk+1 + bk+3)
2bk+4.

Conversely, suppose that b• ∈ (C×)m is such that the denominators in the above expressions do

not vanish. Define b′• by the above expressions. Then yi(b•) = yi′(b
′
•).

The first part of this proposition is directly from [BZ1]. The last statement follows from the same
reasoning as in our proof of the second statement of Theorem 3.4.

Note that this proposition holds over K as well.

Let n• be an i-Lusztig datum of coweight µ.

Proposition 4.2. There exists a non-empty open subset U of B(n•) such that for each b• ∈ U ,

there exists b′• ∈ Km such that yi(b•) = yi′(b
′
•) and the following formulas holds for n′

l := val(b′l).

(i) If aij = 0, so d = 2. Then

n′
k+1 = nk+2, n

′
k+2 = nk+1.

(ii) If aij = aji = −1, so d = 3. Then

(29)
n′

k+1 = nk+2 + nk+3 − p, n′
k+2 = p, n′

k+3 = nk+1 + nk+2 − p,

where p = min(nk+1, nk+3).

(iii) If aij = −1, aji = −2 , so d = 4. Then

(30)

n′
k+1 = nk+2 + nk+3 + nk+4 − p1, n

′
k+2 = 2p1 − p2,

n′
k+3 = p2 − p1, n

′
k+4 = nk+1 + 2nk+2 + nk+3 − p2

where p1 = min(nk+1 + nk+2, nk+1 + nk+4, nk+3 + nk+4),

p2 = min(nk+1 + 2nk+2, nk+1 + 2nk+4, nk+3 + 2nk+4).

(iv) If aij = −2, aji = −1 , so d = 4. Then

(31)

n′
k+1 = nk+2 + 2nk+3 + nk+4 − p2, n

′
k+2 = p2 − p1,

n′
k+3 = 2p1 − p2, n

′
k+4 = nk+1 + nk+2 + nk+3 − p1

where p1 = min(nk+1 + nk+2, nk+1 + nk+4, nk+3 + nk+4),

p2 = min(2nk+1 + nk+2, 2nk+1 + nk+4, 2nk+3 + nk+4).

Proof. If aij = 0 then the result holds with U = B(n•).

Suppose that aij = aji = −1. Let

U := {b• ∈ B(n•) : b0k+1 + b0k+3 6= 0},

where b0l is the coefficient tnl in bl.

If b• ∈ U , then let b′•, π be determined from b• by (26). Since π = bk+1 + bk+3, val(π) = p as
the leading terms of bk+1 and bk+3 don’t cancel. In particular, the denominator π doesn’t vanish.
Hence if b′• is given by (26), then by Proposition 4.1, yi′(b

′
•) = yi(b•). Moreover, the valuation of

the b′l are given by (29), since val(π) = p.

The other cases follow similarly. �
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Now, we transport our results from G(K) to Gr. Let n′
• be the sequence of integers obtained

from the n• by the formulas in Proposition 4.2. It is easy to see that n′
• is an i′-Lusztig datum of

coweight µ.

Theorem 4.3. The intersection Ai(n•) ∩Ai′(n′
•) is open and dense in Ai(n•).

Proof. Let U be the non-empty open subset of B(n•) from Proposition 4.2. Since the map from
B(n•) to Ai(n•) is surjective (Theorem 3.5), the set Y = {[yi(b•)] : b• ∈ U} is dense in Ai(n•). By
Proposition 4.1, if L ∈ Y , then L has a representative yi′(b

′
•) for b′• ∈ B(n′

•). Hence by Theorem

3.5, Y ⊂ Ai′(n′
•). Hence the interesection is dense. Also, it is locally closed, hence it is open. �

The reader familiar with parametrizations of the canonical basis will notice that we have proven
that the transformation between i, i′-Lusztig data for MV cycles matches the transformation between
i, i′-Lusztig data for the canonical basis (see Theorem 5.2 in [BZ2]). Hence from this stage, we could
apply the machinery of [BZ2] to prove our main theorem. However in our case, there is a simpler,
more geometric approach available which we will now explain.

Note that the tropical Plücker relation (15), (16), (17) at (w = wi
k, i, j) only involves Mγ for γ

an i or i′-chamber weight. This observation leads to the following result.

Proposition 4.4. Let L ∈ Ai(n•) ∩ Ai′(n′
•). Then the collection

(

Mγ := Dγ(L)
)

γ∈Γi∪Γi′
satisfies

the tropical Plücker relation at (w, i, j).

Proof. If L ∈ Ai(n•) ∩ Ai′(n′
•), then we know Dγ(L) for γ an i or i′-chamber weight. Since these

are the only chamber weights which show up in the tropical Plücker relation, we just need to make
a simple computation to check that the relation between n• and n′

• in Proposition 4.2 matches the
tropical Plücker relation at (w, i, j).

The case d = 2 is trivial because there is no tropical Plücker relation (in fact, in this case Γi = Γi′).

Consider the case aij = aji = −1. Then by the length formula (19),

n′
k+2 = −Mw·Λi

−Mwsjsi·Λi
+Mwsj·Λj

−
∑

l6=i,j

aliMw·Λl
,

nk+1 = −Mw·Λi
−Mwsi·Λi

+Mw·Λj
−

∑

l6=i,j

aliMw·Λl
,

nk+3 = −Mwsi·Λi
−Mwsjsi·Λi

+Mwsisj·Λj
−

∑

l6=i,j

aliMw·Λl
.

By (29), n′
k+2 = min(nk+1, nk+3). Substituting the above expressing into this equation gives

−Mw·Λi
−Mwsjsi·Λi

+Mwsj·Λj
= min(−Mw·Λi

−Mwsi·Λi
+Mw·Λj

,−Mwsi·Λi
−Mwsjsi·Λi

+Mwsisj·Λj
)

which is equivalent to the tropical Plücker relation (15).

The other cases are similar. �

It is easy to see that the converse of this Proposition holds, but we will not need this.

4.2. Global picture. We are now ready to prove the main theorem. Let µ ≥ 0 be a coweight.

Let i, i′ be two reduced words related by a d-move involving i, j, starting at position k. Let
L ∈ X(µ) and let n•, n

′
• be the i, i′-Lusztig data of P (L). So L ∈ Ai(n•) ∩Ai′(n′

•). We say that L
is i, i′-generic if n• and n′

• are related as in Proposition 4.2. By Proposition 4.4, if L is i, i′-generic,
then D•(L) satisfies the tropical Plücker relation at (wi

k, i, j).
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We say that L ∈ X(µ) is generic if L is i, i′-generic for every pair of reduced words i, i′ related
by a d-move.

If w ∈ W, i, j ∈ I are such that wsi > w and wsj > w, then there exist a pair of reduced words

i, i′ related by a d-move starting at position k, involving i, j such that wi
k = w. Visually, for any

2-face in the permutahedron, there exist reduced words i, i′ such that this 2-face is the transition
between them. Hence if L is generic, then D•(L) satisfies all the tropical Plücker relations.

Proof of Theorem 2.5. Let µ ≥ 0 be a coweight and let M• be a BZ datum of coweight µ.

Let i be a reduced word for w0. Let n• be the i-Lusztig datum corresponding to M• under (19).

We claim that {L ∈ Ai(n•) : L is generic } is dense in Ai(n•).

To prove this, for any reduced word j and any j-Lusztig datum m•, define Aj

k(m•) recursively by

Aj
0(m•) := Aj(m•) and

Aj

k(m•) := Aj

k−1(m•) ∩
⋂

j′

Aj′

k−1(m
′
•),

where the intersection is over all reduced words j′ which are related to j by a d-move and where m′
•

is the j′-Lusztig datum corresponding to m• under Proposition 4.2.

We claim that for each k, Aj
k(m•) is open dense in Aj

k−1(m•) and in each Aj′

k−1(m
′
•) whenever

j and j′ are related by a d-move and m• and m′
• are related as in Proposition 4.2. We proceed by

induction.

By Theorem 4.3, Aj(m•) ∩ Aj′(m′
•) is open dense in Aj(m•) and Aj′(m′

•). So Aj
1(m•) is the

intersection of subsets of Aj(m•) which are open dense in Aj(m•) and hence it is open dense in

Aj(m•). This also shows that Aj
1(m•) is open dense in Aj(m•)∩Aj′(m′

•) and hence in Aj′(m′
•). This

establishes the base case.

By the inductive hypothesis, Aj
k(m•) and Aj′

k (m′
•) are each open dense in each of Aj

k−1(m•) and

Aj′

k−1(m
′
•). Hence Aj

k(m•)∩A
j′

k (m′
•) is open dense in Aj

k−1(m•)∩A
j′

k−1(m•) and so Aj
k(m•)∩A

j′

k (m′
•)

is open dense in Aj
k(m•) and in Aj

k(m′
•). From here, the inductive step follows the same reasoning

as the base case.

In these arguments, we are repeatedly using the fact that if U ⊂ V ⊂ X and if U is open dense
in X, then U is open dense in V .

Now, specialize to j = i, m• = n•. Let j, j′ be two reduced words which are related by a d-move
and such that j is connected to i by less than k d-moves. Suppose that L ∈ Ai

k(n•), then by induction
on k, we see that L is j, j′-generic. Hence if k is larger than the largest number of d-moves needed
to connect any two reduced words, then Ai

k(n•) ⊂ {L ∈ Ai(n•) : L is generic }. By a chain of dense
inclusions, we see that Ai

k(n•) is dense in Ai(n•) and hence {L ∈ Ai(n•) : L is generic } is dense is
Ai(n•).

If L ∈ Ai(n•) is generic, then D•(L) and M• both obey the tropical Plücker relations. Moreover,
they have the same values whenever γ is an i-chamber weight. Suppose that i′ is another reduced
word, related to i by a d-move involving i, j starting at position k. Then since both obey the tropical
Plücker relation for (wi

k, i, j), we see that Dγ(L) = Mγ whenever γ is a i′-chamber weight as well.
Continuing this argument (and using the fact that any reduced word is connected to i by a sequence
of d-moves), we see that Dγ(L) = Mγ for all chamber weights γ. So L ∈ A(M•).

Hence we see that

{L ∈ Ai(n•) : L is generic } = A(M•) = Ai(n•).
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By Theorem 3.2, Ai(n•) is a component of X(µ), so A(M•) is a component. So A(M•) is an MV
cycle of coweight µ.

Conversely, if Z is a component of X(µ), then Z = Ai(n•) for some n• by Theorem 3.2. Let

L ∈ Ai(n•) be generic. By the above analysis Z = A(M•). Since L is generic, (Mγ = Dγ(L)) satisfies
the tropical Plücker relations. Also P (L) = P (M•) is a pseudo-Weyl polytope, so M• satisfies the
non-degeneracy inequalities. Finally, MΛi

= 0 for all i, since L ∈ X(µ) ⊂ S0
1 . Hence M• is a BZ

datum. So all MV cycles are of the desired form.

�
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