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Abstract. We present a survey of our recent work on generalized triangle inequalities
in infinitesimal symmetric spaces, nonpositively curved symmetric spaces and Euclidean
buildings. We also explain how these results can be used to analyze some basic problems
of algebraic group theory including the problem of decomposition of tensor products of
irreducible representations of complex reductive Lie groups. Among the applications is a
generalization of the Saturation Theorem of Knutson and Tao to Lie groups other than
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1. Introduction

As we learn in school, given 3 positive numbers a, b, ¢ satisfying the familiar triangle
inequalities a < b + ¢, etc., one can construct a triangle in the Euclidean plane
whose side-lengths are a,b and ¢. A brief contemplation shows that the same
elementary geometry proof works in the hyperbolic plane and, more generally, in
all simply-connected complete nonpositively curved Riemannian manifolds.

At the first glance, it appears that this is all one can say about the triangle in-
equalities. Note however that in all negatively curved simply-connected symmetric
spaces, the metric length of a geodesic segment is a complete congruence invariant.
On the other hand, in higher rank symmetric spaces, the congruence classes of
oriented segments are parameterized by the Weyl chamber A. We will refer to
the parameter o(y) € A corresponding to an oriented segment ~y as its A-length.
The same notion of A-length can be defined in Euclidean buildings, where A is
the Weyl chamber for the finite Weyl group in the associated Fuclidean Coxeter
complex. In this survey we discuss our recent work appearing in a series of papers
with Bernhard Leeb and John Millson [KLM1, KLM2, KLM3, KM1, KM2]. It
originates with the following basic question:

*During the writing of this paper the author was partially supported by the NSF grant DMS-
04-05180.
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Question 1.1. Suppose that X is a nonpositively curved simply-connected symmet-
ric space or a Euclidean building. What restrictions on the triples (\, u,v) € A3
are necessary and sufficient for existence of an oriented geodesic triangle in X
whose A-side lengths are \, pu,v?

We will see how this question (and related problems) connects to the theory of
algebraic groups over real, complex and nonarchimedean valued fields as well as to
representation theory of complex reductive Lie groups.

Acknowledgments. I am grateful to all my collaborators for the joint work.
I am especially grateful to John Millson for our continuous collaboration in the
last 13 years.

2. Metric spaces modelled on Coxeter complexes

Let A be a (finite-dimensional) Euclidean space and W, s be a group of isometries
of A generated by reflections in a family of hyperplanes H C A (called walls). A
half-apartment is a closed half-space in A bounded by a wall. By choosing the
origin 0 € A and taking linear parts of the elements of W,z we obtain a group
W = Wy, fixing an origin o in A. We require W to be finite. Then W is a finite
Coxeter group and the group Woys is called an affine Coxeter (or Weyl) group.
The pair (A4, W,y¢) is called a Euclidean Coxeter complex. We let A C A denote
a fundamental domain of the reflection group W: it is a convex cone in A with
vertex at o. A point z € A is called special if its stabilizer in Wy is isomorphic
to W. It turns out that each Euclidean Coxeter complex has a special point; in
what follows we will always assume that o € A is special.

Example 2.1. Suppose that W is a finite Coxeter group and Wopy = W x V,
where V' is the full group of translations of A. Such affine Coxeter groups appear
naturally in the context of symmetric spaces. Another useful example to keep in
mind is given by W x Q(RY), where W is the finite Weyl group associated with a
root system R C V* and Q(RY) C V is the coroot lattice of R. In this case Wy is
discrete. Such examples appear in the context of Bruhat-Tits buildings associated
with groups G(K), where G is a reductive algebraic group and K is a field with
discrete valuation.

Let Z be a metric space. A geometric structure on Z modelled on the Euclidean
Coxeter complex (A, W, sr) consists of an atlas of isometric embeddings ¢ : A — Z
satisfying the following compatibility condition:

For any two charts ¢; and ¢5, the transition map ¢5 1o ¢, is the restriction
of an element of W yy.

The charts and their images, p(A) C Z, are called apartments. We will require
that any two points in Z lie in a common apartment. All W,s-invariant notions
introduced for the Coxeter complex (A, W,st), such as walls, special points, etc.,
carry over to geometries modelled on (A, Weyf).
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Thickness of a space X modelled on (A, Woys) is the cardinality of the set of
half-apartments adjacent to a wall in X. In all examples considered in this survey,
thickness will be independent of the wall in X. The space X is called thick if it
has thickness > 3.

Examples of geometric structures modelled on (A, Wy r) are provided by sim-
ply-connected symmetric spaces of nonpositive curvature (in which case W,z acts
transitively on A), Euclidean buildings and infinitesimal symmetric spaces p. The
latter is equal to the tangent space to a symmetric space, p = T,X. Apartments
in p correspond to Cartan subalgebras (i.e., the maximal abelian subalgebras) in
p, where g = p @ t is the Cartan decomposition of the Lie algebra g. Although, as
a metric space, p is nothing but a Euclidean space, its natural group of automor-
phisms is smaller than Isom(p), it is the Cartan motion group K X p.

Remark 2.2. Discrete Euclidean buildings (i.e. the ones with the discrete struc-
ture group W,z) can be thought of as both geometric and combinatorial objects.
From the combinatorial standpoint, one regards buildings as polysimplical com-
plezes. The distance between cells is then a certain W, ¢r-valued function, paths in
buildings are replaced by galleries, etc. Geometric viewpoint appears more pow-
erful as far as the problems raised in this paper are concerned. For one thing, one
can do analysis (rather than combinatorics) on such spaces. As another example,
one can stretch a piecewise-linear path in an apartment via a homothety while
there is no obvious stretching construction for galleries. Importance of stretching
will become apparent in Section 5.3.

An important example of a symmetric space to keep in mind is Sym,, the
space of positive-definite symmetric n X n matrices with real coefficients. Then
Sym, = GL(n,R)/O(n) and the Weyl group of this space is the permutation
group Sy,.

Similarly, one defines metric spaces modelled on spherical Coxeter complexes.
The most important examples of such spaces are spherical buildings.

For a metric space Z modelled on (A, W,s¢), we define the A-valued distance
function

dan 1 Zx 7 = A

as follows:

Given points z,y € Z, find an apartment ¢ : A - A’ C Z whose image
contains x and y. Then consider the vector ¢~ !(v) in A with the tip y and
tail z and project this vector to the Weyl chamber A via the quotient map
A— A/W = A.

Clearly, this definition is independent of the choice of an apartment ¢(A) containing
z,y.

Example 2.3. If Z = Sym,,, then da(z,y) is the set of eigenvalues of the matrix
x 1y, counted with multiplicity and arranged in the decreasing order.
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Given the notion of A-valued distance between points in Z we can also define
the A-length for piecewise-geodesic paths p in Z by taking the sum of the A-lengths
of the geodesic subsegments of p.

Observe that the A-distance function da is not (in general) symmetric, however

dA(xay) = (dA(ya:L.))*7

where the vector v* = wo(—v) is contragredient to the vector v. (Here wq is the
longest element of W.)

It follows from the Cartan decomposition that in the case when Z is a (non-
positively curved) symmetric space or an infinitesimal symmetric space, then da
is a complete congruence invariant of an oriented geodesic segment Ty C Z:

There exists an automorphism g € Aut(Z) which carries Z171 to Tzys if and
only if da(z1,41) = da(z2,y2)-

The situation in the case of Euclidean buildings is more subtle, we will return to
this in Section 4.

Definition 2.4. Given a space X modelled on an affine Coxeter complex, we let
D, (X) denote the collection of tuples (A1,...,A\p,) € A™ such that there exists an
oriented geodesic polygon in X with the A-side lengths Ay, ..., A,

Thus Question 1.1 in the introduction is asking for a description of Ds(X) for
the given space X.

3. Generalized triangle inequalities

Suppose that X is either a nonpositively curved simply-connected symmetric space,
an infinitesimal symmetric space or a thick Euclidean building, modelled on

(A, Wayss). A priori, D, (X) is just a subset in A™. The following theorem estab-
lishes basic structural properties of this set.

Theorem 3.1 ([KLM1], [KLM2]). 1. D,(X) is a convex homogeneous polyhedral
cone.

2. Dp(X) depends only on the pair (A, W) and nothing else, not even the type
of the space X (i.e., whether this is an infinitesimal symmetric space, symmetric
space or a building).

Corollary 3.2. 1. Ifp = T,X, where X is a nonpositively curved symmetric
space, then Dp(p) = Dp(X).

2. Suppose that G is a split reductive algebraic group, G1 = G(C),G> = G(R)
and K; C G; are mazimal compact subgroups, i = 1,2. Then

D, (G1/K1) = Dp(G2/K>).
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Since D, (X) is a convex homogeneous cone, it is defined by a system of homo-
geneous linear inequalities which we will refer to as generalized triangle inequalities.
Theorem 3.1 reduces the computation of these inequalities to the case of symmetric
spaces. Since, clearly, D,(X x R™) = D,(X) x R™, it suffices to consider spaces
X = G/K, so that the identity component G of Isom(X) is semisimple. One of
the main results of [KLM1] is a description of D, (X) in terms of the Schubert
calculus in the Grassmannians associated to complex and real Lie groups G (i.e.,
the quotients G/P where P is a maximal parabolic subgroup of G).

The Tits boundary Oris X of X is a spherical building modelled on a spherical
Coxeter complex (S, W) with spherical Weyl chamber A,,, C S. It is formed by
equivalence classes of geodesic rays in X; the metric on 075X is given by the Tits
angle Zits, see for instance [Ba]. We identify S with an apartment in Or;s X . Let
A denote the Weyl chamber of X. We identify Agpp with OrusA.

Let B be the stabilizer of A,py, in G. For each vertex ¢ of Or;s X one defines the
generalized Grassmannian Grass¢ = G¢ = G/P. (Here P is the maximal parabolic
subgroup of G stabilizing ¢.) It is a compact homogeneous space stratified into
B-orbits called Schubert cells. Every Schubert cell is of the form C;, = Bn for a
unique vertex n € W¢ C S© of the spherical Coxeter complex. The closures C,,
are called Schubert cycles. They are unions of Schubert cells and represent well
defined elements in the homology H.(Grass¢,Zs).

For each vertex ¢ of A,p, and each n-tuple 7= (M1, --.,7mn) of vertices in W (¢
consider the following homogeneous linear inequality for £ € A™:
Zfz’ i <0 (*C;;;)
K3

Here we identify the n;’s with unit vectors in A.

Let I7,(G) be the set consisting of all data (C, ;;) such that the intersection of
the Schubert classes [Cy,],...,[Cy,.] in Hi(Grass¢,Z2) equals [pt].

Theorem 3.3 ([KLM1]). D,(X) C A™ consists of all solutions £ to the system of
inequalities (*C‘W) where ((, 7_7>) runs through I7,(QG).

Remark 3.4. This system of inequalities depends on the Schubert calculus for
the generalized Grassmannians G/P associated to the group G.

Typically, the system of inequalities in Theorem 3.3 is redundant. If G is a
complez Lie group one can use the complex structure to obtain a smaller system of
inequalities. In this case, the homogeneous spaces Grass; are complex manifolds
and the Schubert cycles are complex subvarieties and hence represent classes in
integral homology. Let Iz(G) C Iz,(G) be the subset consisting of all data ((, H)
such that the intersection of the Schubert classes [C'y, ], . .,[Cy.] in Hi(Grass¢,7)
equals [pt].

The following analogue of Theorem 3.3 was proven independently and by com-
pletely different methods in [BS] and in [KLM1]:

Theorem 3.5 (Stability inequalities). D,(X) consists of all solutions £ to the
system of inequalities (*4'7;) where (, 7_7>) runs through Iz(G).
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As we will see in the next section, these inequalities generalize the system of
inequalities used by Klyachko in [Kly1] to solve Weyl’s problem on eigenvalues of
sums of Hermitian matrices.

It was proven by Knutson, Tao and Woodward [KTW] that in the case G =
SL(n,C) the system of inequalities appearing in Theorem 3.5 is irredundant; on
the other hand, for the root systems By, G2, Bs, C3 this system is still redundant,
see [KLM1] for the rank 2 computations and [KuLM] for the rank 3 computations.
P. Belkale and S. Kumar in [BK] deformed the product structure on H,(Grass¢)
to make a smaller system of inequalities defining D, (X), which is irredundant
for all root systems of rank < 3. Conjecturally, the new system of inequalities is
irredundant for all root systems.

4. Algebraic problems

Let F be either the field R or C, and let K be a nonarchimedean valued field with
discrete valuation ring O and the value group Z. For simplicity, let us consider
here only split reductive group G over Q, we refer the reader to [KLM3] for the
discussion in the general case. Below we consider the following four algebraic
problems, labeled by linear algebra interpretation in the case when G = GL(n).
We refer the reader to Fulton’s survey [Fu] for the detailed discussion of these linear
algebra problems. We note here only that Problem Q1 in the case G = GL(n,C)
is asking for the restrictions on eigenvalues of sums of Hermitian n X n matrices A
and B, provided that the eigenvalues of A and B are given.

e Q1. Eigenvalues of a sum. Set G := G(F), let K be a maximal compact
subgroup of G. Let g be the Lie algebra of G, and let g = £+ p be its Cartan
decomposition. Give necessary and sufficient conditions on A, y, v € p/Ad(K)
in order that there exist elements A, B, C' € p whose projections to p/Ad(K)
are A, u and v, respectively, so that

A+B+C=0.

e Q2. Singular values of a product. Let G and K be the same as above.
Give necessary and sufficient conditions on A\, u,v € K\G/K in order that
there exist elements A, B,C' € G whose projections to K\G/K are A, u and
v, respectively, so that

ABC =1.

¢ Q3. Invariant factors of a product. Set G := G(K) and K := G(O).
Give necessary and sufficient conditions on A, u,v € K\G/K in order that
there exist elements A, B,C' € G whose projections to K\G/K are A\, u and
v, respectively, so that

ABC =1.
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¢ Q4. Decomposing tensor products. Let G" be the Langlands dual group
of G. Give necessary and sufficient conditions on highest weights A, u, v of
irreducible representations Vy, V,,, V,, of G¥ := G¥(C) so that

eV, eV,)% 0.

Notation 4.1. Throughout this paper we will denote by Sol(Qi,G) the set of
triples (A, p, ») which are solutions of Problem Qi for the group G.

Remark 4.2. Assuming that the field K is local (and hence its residue field is a
finite field of order ¢) we can reformulate the condition that (A, u,v) € Sol(Q3,G)
as

mxu (V*) 7é 07
where m’s are the structure constants of the spherical Hecke ring associated with
the group G = G(K). We will discuss the geometric meaning of the constants m
in the end of this section.

It turns out that the first three algebraic problems are closely related to the ge-
ometric problems discussed in the previous section. Consider for instance Problem
Q2. Let X = G/K be the corresponding nonpositively curved symmetric space;
the group G acts on X by left multiplication, preserving the function da. Let
0 € X be the point stabilized by K. We identify A with the double coset K\G/K.

Given elements A, B,C € G we define the polygonal chain in X with the (four)
vertices

0,z = A(0),y = AB(0),z = ABC(0).

Since G preserves the A-distance, we conclude that
dA(O,ZL') = )\,dA(.CL',y) =K, dA(y,Z) =V

where A, B, C project to the vectors A, u, v in A. If ABC = 1, the polygonal chain
yields a geodesic triangle in X; conversely, if z = o then, by multiplying C' by an
element of K if necessary, we get ABC' = 1. Therefore

D3(X) = Sol(Q2,G), for the symmetric space X = G/K.
The same arguments work for the infinitesimal symmetric space X' = T, X:
D;(X") = S0l(Q1,G).
The situation in the case of Problem Q3 is more subtle. It is easy to see that
Sol(Q3,G) C D3(X),

where X is the (discrete) Bruhat-Tits building corresponding to the group G.
There are two straightforward restrictions on the elements of Sol(Q3,G) C D3(X):
O1. Sol(Q3,G) C L2, where L is the cocharacter lattice of a maximal torus
in G.
02. For each triple o = (A, u,v) € Sol(Q3,G) we have

T(o):=A+pu+veQRY).
We let A C L3 denote the set of triples o satisfying T'(¢) € Q(RV). Then
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Theorem 4.3 ([KLM3]). 1. (A, u,v) € Sol(Q3,G) if and only if there exists a
geodesic triangle 7 C X whose vertices are special points of X and whose A-side
lengths are A\, u, v.

2. “Conversely”, if o € D3(X) N A then there exists a geodesic triangle T C X
whose vertices are vertices of X and whose A-side lengths are A\, p, v.

Note that the vertices of the triangle 7 in Part 2 of this theorem need not
be special vertices of X, unless the root system R is of type A when all vertices
of X are special. The latter is ultimately responsible for the equivalence of all 4
algebraic problems in the case of G = GL(n).

The basic reason why one should not expect the equality

Sol(Q3,G) = D5(X) N A

in general, is lack of homogeneity of Euclidean buildings X: The A-valued distance
function is not a complete congruence invariant of pairs of points in X. One can
remedy this by introducing the refined distance function d,.z(x,y) between points
z,y € X. The new distance function takes values in A x A/W,zs (see [KLM2]).

Theorem 4.1 (Transfer Theorem, [KLM2]). Suppose that X, X' are thick Eu-
clidean buildings modelled on the same Euclidean Coxeter complex (A, Wyyzs). Then
for each geodesic polygon [z1, ..., Tn, Tnt1 = 1] C X there exists a geodesic polygon
(%}, ..., 2,2, = x1] C X' so that

dTef($i7mi+1) = dTef(x;,-’L';_i_l),i = ]., ey M.

Corollary 4.4 ([KLM3]). Sol(Q3,G) is independent of the field K: If K, K' are
nonarchimedean valued fields with the valuation group 7, then

Sol(Q3,G(K)) = Sol(Q3,G(K')).

Relation to representation theory. First notice that the Langlands dual
group GV = G(C) appears naturally in the context of problems Q3 and Q4:
The character lattice of a maximal torus in GV is the cocharacter lattice of the
corresponding maximal torus in G.

The following theorem was originally proven in [KLM3] via Satake correspon-
dence; new proofs were given by Tom Haines in [Hal] and in the work with John
Millson [KM1] (along the same lines one can give yet another proof using the
results of S. Gaussent and P. Littelmann [GL]).

Theorem 4.5. Sol(Q4,GV) C Sol(Q3,G).
Thus we can summarize the above results and Theorem 3.1 as:

Theorem 4.2.

D3(X) = S0l(Q1,G(C)) = S0l(Q1,G(R))
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= 50l(Q2,G(C)) = Sol(Q2,G(R))
D Sol(Q3,G(K)) D Sol(Q4,GY(C)),
where X = G(C)/K.
Remark 4.6. Different proofs of the equalities
Sol(Q1,G(F)) = Sol(Q2, G(F))

were given (in case F = C) for classical groups by A. Klyachko [Kly2], for all
complex Lie groups by A. Alexeev, E. Meinrenken, C. Woodward [AMW] and for
all real groups by S. Evens, J.-H. Lu [EL].

To which extent can the last two inclusions in Theorem 4.2 be reversed?
The restrictions O1, O2 provide necessary conditions for triples (\, i, ») to belong
to Sol(Qi, @), i = 3,4. The natural question is if they are also sufficient. On the
negative side:

Theorem 4.3 ([KLM3]). 1. In the case of the groups Sp(4) and G the inclusion
Sol(Q2,G(R)) N A D Sol(Q3,G(K)) is proper.

2. For all non-simply laced groups the inclusion
S0l(Q3,G(K)) D Sol(Q4,G7(0)
18 proper.

It turns out however that one can reverse both inclusions at the expense of
multiplication by a saturation factor. Let 6 be the highest root of the root system
R (associated with the group G)). Then we have the expansion

£
0= E m;o;
i=1

where the a;’s are the simple roots in R (corresponding to the chamber A).

Definition 4.7. Define the saturation factor kg to be the least common multiple
of my,...,my.

Below are the values of kg for the irreducible root systems.

Root system R Group G kr
Ay SL({+1),GL((+1) | 1
By, SO(2¢+1) 2
C Sp(2¢) 2
D, SO(2¢0) 2
Go G 6
Fy G 12
Eg G 6
Er G 12
Eg G 60
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Theorem 4.4. 1.
Sol(Q2,G(R)) NkrA C Sol(Q3,G(K))

(See [KLM3].)
2.
kg - Sol(Q3,G(K)) C Sol(Q4,G"(C)).

Moreover, if at least one of the weights A\, u,v is a sum of minuscule dominant
weights, then

(A, 1, v) € Sol(Q3,G(K)) <> (X, p,v) € Sol(Q4,G(C)).

(See [KM1].)
3. Therefore
-D3(X) N k??A C SOl(Q47QV(C))7

where X is the symmetric space of G(F).

In particular, in the case when G has type Ay (e.g. G = SL(£ + 1)) we obtain
a new proof of the Saturation Theorem of A. Knutson and T. Tao [KT] (another
proof of this theorem was given by H. Derksen and J. Whyman in [DW]):

Theorem 4.5. The semigroup ¥ := Sol(Q4,SL({ + 1,C)) is saturated, i.e., a
triple o = (A, u,v) € A belongs to X if and only if there exists N € N so that No
belongs to X.

Proof. Since the cone D3(X) is homogeneous, the semigroup D3(X) N A is clearly
saturated. However, according to Part 3 of Theorem 4.4, ¥ = D3(X) N A in our
case. O

Remark 4.8. The equality
Sol(Q3,GL(¢,C)) = Sol(Q4,GL(¢,C))

was known since the 1960-s, see [K1, K2]. However these proofs do not generalize
to other root systems.

Except for the case of the root system of type A, the constants which appear
in Theorem 4.4 are (conjecturally) not optimal:

Conjecture 4.9 ([KM1, KM2]). 1.
D3(X) N kA C Sol(Q4,GY(C)),

where k = 1 in the case when the root system R is simply laced and k = 2 otherwise.
2. Suppose that all three dominant weights A\, p,v are regular, i.e., belong to
the interior of the chamber A. Then

A\, v) € D3(X)NA < (A u,v) € Sol(Q4,GY(C)).
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This conjecture holds for the rank 2 simple Lie groups (see [KM2]); it is also
supported by some computational experiments.
A less ambitious form of Conjecture 4.9 is

Conjecture 4.10 (S. Kumar). If Sol(Q4,G" (C)) # D3(X)NL3, then there exists
a triple
()‘7/“7 V) € D3(X) N L’ \ SOl(Q47QV((C))>

so that ot least one of the vectors A\, u, v is non-singular.

Counting triangles. Let X be a Bruhat-Tits building of thickness ¢ + 1 < oo,
i.e., ¢+1 is the number of half-apartments adjacent to each wall in X. Equivalently,
g is the number of elements in the residue field of K. Our goal is to relate the
number of geodesic triangles in X with the given A-side lengths to the dimensions
of the space of GV-invariants

N (0) = dim(Vy ® V, @ V).

Let o € X be a special point, for instance, the unique point stabilized by G(O).
Let f(g) := mx,u,»(0) denote the number of oriented geodesic triangles [0, z,y] in
X with the A-side lengths A\, u,v € P(RY) N A.

Remark 4.11. The Hecke ring structure constant my ,(v*) is the number of
geodesic triangles as above for which the vertex y is fixed.

Given the root system R and the set RT of positive roots (determined by A),
let p denote the half-sum of the positive roots.

Theorem 4.6 ([KLM3)). f(q) is a polynomial function of q of degree < g'P-Atrtv)
so that
£(@) = 1w (0)g P ) 4 lower order terms.

5. Geometry behind the proofs

5.1. Weighted Busemann functions and stability. Let X be a
symmetric space of nonpositive curvature or a Euclidean building. Recall that the
ideal boundary B = Or;;sX has the structure of a spherical building, the metric
on B is denoted by Zr;s. Given a Weyl chamber A in X, we get a spherical Weyl
chamber Agpp = 0ooA C Orits X. We will identify A, with the unit vectors in
A. We have a canonical projection 8 : Orits X — Agpp.

Take a collection of weights mq,...,m, > 0 and define a finite measure space
(Z /nZ,v) where the measure v on Z /nZis given by v(i) = m;. An n-tuple of ideal
points ({1, ..., &) € B™ together with (Z /nZ,v) determine a weighted configuration
at infinity, which is a map

’(ﬁ : (Z/nZ, I/) — 8TitsX-
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The type 7(¥) = (11,...,7) € A™ of the weighted configuration v is given by
7i = m; - 0(&). Let u = 9. (v) be the pushed forward measure on B. We define
the slope of a measure p on B with finite total mass |u| as

slope,(n) = — /B cos Zrits(§,m) du(§)-

To see where the slope function comes from, consider the p-weighted Busemann
function on X

M@zé%@@@

where b : X — R is the Busemann function on X corresponding to the point £ €
OritsX. We normalize all Busemann functions to vanish at a certain point o € X.
The function b, is a convex |u|-Lipschitz function on X which is asymptotically
linear along each geodesic ray p =on in X. Then

i D(0(®)

" t—oo t

slope,, (1)
is the asymptotic slope of b, in the direction of 7.

Remark 5.1. Weighted Busemann functions are a powerful tool for studying
asymptotic geometry of nonpositively curved spaces, see for instance [BCG].

In what follows we will consider only measures p with finite support.

Definition 5.2 (Stability). A measure y on B is called semistable if slope, (1) > 0
and stable if slope,(n) > 0 for all € B.

There is a refinement of the notion of semistability motivated by the corre-
sponding concept in geometric invariant theory.

Definition 5.3 (Nice semistability). A measure g on B (with finite support) is
called nice semistable if p is semistable and {slope,, = 0} is a subbuilding or empty.
In particular, stable measures are nice semistable.

A weighted configuration ¢ on B is called stable, semistable or nice semistable,
respectively, if the corresponding measure 1,v has this property.

For our purposes, nice semistability is a useful concept in the case of symmetric
spaces and infinitesimal symmetric spaces only. We note however that for these
spaces, existence of a semistable configuration ¥ on 915X implies existence of a
nice semistable configuration on Or;;s X , which has the same type as ¢, see [KLM1].

Example 5.4. Let B be a 0-dimensional spherical building. Then a measure p on
B is stable iff it contains no atoms of mass > %|u|, semistable iff it contains no
atoms of mass > %| ul|, and nice semistable iff it is either stable or consists of two
atoms of equal mass.
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Suppose now that G is a reductive complex Lie group, K C G is a maximal
compact subgroup, X = G/K is the associated symmetric space. Then the spaces
of weighted configurations in 015X of the given type 7 € A™ can be identified
with products

F=Fx..xF,

where F}’s are smooth complex algebraic varieties (generalized flag varieties) on
which the group G acts transitively. Hence G acts on F' diagonally.

In case X is the symmetric space associated to a complex Lie group, the no-
tions of stability (semistability, etc.) introduced above coincide with correspond-
ing notions from symplectic geometry, and, in the case when 7;’s are fundamental
weights, they also coincide with the concepts of stability (semistability, etc.) used
in Geometric Invariant Theory, see [KLM1].

Define the subset A” (B) C A™ counsisting of those n-tuples 7 € A™ for which
there exists a weighted semistable configuration on B of type 7. One of the central
results of [KLM1] is

Theorem 5.1. A" (B) is a convex homogeneous cone defined by the linear in-
equalities (x o7 ).

This theorem generalizes the results of A. Klyachko [Klyl] (in the case of
GL(n)) and A. Berenstein and R. Sjamaar [BS] in the case of complex semisimple
Lie groups.

5.2. Gauss maps and associated dynamical systems. We now
relate polygons in X (where X is an infinitesimal symmetric space, a nonpositively
curved symmetric space or a Euclidean building) and weighted configurations on
the ideal boundary B of X, which plays a key role in [KLM1] and [KLMZ2].

Consider a (closed) polygon P = [z1,%2,...%,] in X, i.e., a map Z/nZ — X.
The distances m; = d(z;, z;+1) determine a finite measure v on Z /nZ by v(i) = m;.
The polygon P gives rise to a collection Gauss(P) of Gauss maps

V1 Z /0T — Origs X (1)

by assigning to ¢ an ideal point &; € 975X so that the geodesic ray z;&; (originating
at z; and asymptotic to &;) passes through ;1.

Remark 5.5. This construction, in the case of the hyperbolic plane, appears in
the letter of Gauss to Wolfgang Bolyai, [G]. I am grateful to Domingo Toledo for
this observation.

Taking into account the measure v, we view the maps ¢ : (Z /nZ,v) = Orits X
as weighted configurations of points on dr;sX. Note that if X is a symmetric
space and the m;’s are all non-zero, there is a unique Gauss map. On the other
hand, if X is a Euclidean building then there are, in general, infinitely many Gauss
maps. However, the corresponding weighted configurations are of the same type,
i.e., they project to the same weighted configuration on Agpp,.

The following crucial observation explains why the notion of semistability is
important for studying closed polygons.
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Lemma 5.6 ([KLM1], [KLM2]). For each Gauss map 1 the push forward measure
B = Y. is semistable. If X is a symmetric space or an infinitesimal symmetric
space then the measure u is nice semistable.

Polygons in infinitesimal symmetric spaces X’. Let X' = T,X be the
infinitesimal symmetric space. Then

Theorem 5.2 ([KLM1]). 1. v is nice semistable iff the corresponding weighted
Busemann function b, attains its minimum on X, iff b, has a critical point in X.
2. Suppose that b, attains its minimum at the origin o € X. Identify the ideal
points & with the unit vectors &; in the tangent space X' = T, X wvia the exponential
map.
Then the gradient of b, at o satisfies

0= Vo(b“) = Zngz
i=1

Thus, in Part 2 of the above theorem, we obtain a closed polygon in the in-
finitesimal symmetric space X’ whose A-side lengths are m;6(&;).

Corollary 5.7. A", (OrysX) = Dp(X').

Polygons in nonpositively curved symmetric spaces and buildings. Our
goal is to “invert Gauss maps”, i.e., given a semistable weighted configuration
¥ : (Z/n,v) —» B, we would like to find a closed geodesic n-gon P so that
1 € Gauss(P). The polygons P correspond to the fixed points of a certain dy-
namical system. For £ € Oy, X and t > 0, define the map ¢ := ¢¢; : X — X by
sending z to the point at distance ¢ from z on the geodesic ray z€. Since X is non-
positively curved, the map ¢ is 1-Lipschitz. Then, given a weighted configuration
¥ : (Z/nZ,v) — Orits X with non-zero total mass, define the map

=0,: X > X

as the composition
Perimn © 0 Peyumy -

The fixed points of ® are the first vertices of closed polygons P = [z1,...,Z,] s0O
that 1 € Gauss(P). Since the map ® is 1-Lipschitz, and the space X is complete
and has nonpositive curvature, the map ¢ has a fixed point if and only if the
dynamical system (®%);cy has a bounded orbit, see [KLM2]. Of course, in general,
there is no reason to expect that (®%);cx has a bounded orbit: For instance, if the
support of the measure p = ¥, (v) is a single point, all orbits are unbounded.

Problem 5.8. Suppose that X is a CAT(0) metric space and the weighted config-
uration 1 is nice semistable. Is it true that (9*);cn has a bounded orbit?

Although we do not know an answer to this problem in general, we have:
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Theorem 5.3. 1. Suppose that X is a nonpositively curved simply-connected
symmetric space. Then 1) is mice semistable if and only if (®);en has a bounded
orbit, see [KLM1].

2. Suppose that X is a Fuclidean building. Then 1 is semistable if and only
if (®");en has a bounded orbit. This was proven for locally compact buildings in
the original version of [KLM2], for 1-vertex buildings in [KLM2] and by Andreas

Balser [B] in the general case.

Corollary 5.9 ([KLM1, KLM2]). Suppose that X is a symmetric space of non-
positive curvature or a Euclidean building. Then D,(X) = A7 (Orits X).

Now we can explain Part 2 of Theorem 3.1. For instance, let X = T,(X;),i =
1, 2 be infinitesimal symmetric spaces. Then
Dn(le) = Dn(le) = A?s(aTitin)ai =12
see Corollaries 5.7 and 5.9. Let Y; denote the 1-vertex Euclidean building which is
the Euclidean cone over the spherical building Or;sX;, i = 1,2. Then, OrysY; =
OritsX; and hence, according to Corollary 5.7,

DH(Y;) = A?s(aTitSX’i)7i = 172
Finally, according to the Transfer Theorem 4.1,
Dy(Y1) = Dp(Ya),

since these buildings are modelled on the same Euclidean Coxeter complex (A, W),
where W is the finite Weyl group of X;,i = 1,2. By combining these equalities we
obtain

Dn(X{) = Dn(X3). O

5.3. Relation to representation theory. We now explain the connec-
tion of geodesic triangles in Euclidean buildings to the representation theory which
appears in [KM1]. The key instrument here is Littelmann’s path model. Given a
thick Euclidean building X modelled on (A, W,sr) (and associated with a nonar-
chimedean Lie group G = G(K)) and a special point 0 € X, we define the projection

f:X = A f(z) =da(o,x).

This projection restricts to an isometry on each alcove a C X. Moreover, f
preserves the A-length of piecewise-geodesic paths in X. Given a geodesic triangle
[0,z,y] C X, we obtain a broken triangle

f(lo,z,y)) c A

which has two geodesic sides of (z), f(y)o and a broken side p = f(ZTy). The
A-lengths of the above paths are A\ = da(o,z),v = da(y,0) and pu = da(z,y)
respectively. One of the main results of [KM1] is an intrinsic description of the
piecewise-geodesic paths p which appear as the result of the above construction.
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They turn out to be closely related to LS paths introduced by Peter Littelmann in
[Li].

The LS paths are defined by two axioms: The first one requires existence of a
certain chain between the tangent vectors p’ (), p!, (t) to the path p at each break-
point p(t). The second axiom is a maximality condition for such a chain. This
axiom is vacuously true if p(¢) is a special point of (A4, W,yss). In [KM1] we define
Hecke paths p in A as piecewise-geodesic paths satisfying the 1-st of Littelmann’s
axioms. Below are the precise definitions.

Let (A, W,ys) be a Euclidean Coxeter complex with V' the vector space under-
lying A; let W' C Wyys be the stabilizer of a point in A. By looking at the linear
parts of the elements of W', we identify W’ with a subgroup

Z(WI) cWcC Waff,

where W is the stabilizer of the origin in W,;. Let A C V be a Weyl chamber
of W. Then a W'-chain in V' from ng € V to n,, € V is a sequence of pairwise
distinct vectors

105 -+ NMm € |4

so that for each ¢ there exists a reflection 7; € I(W') which sends 7; to 1;41 and
whose fixed-point set separates n; from A.

Axiom 1. A piecewise-linear path p: I — A is a Hecke path if for each t € T
there is a W, f7 p(¢)-chain from p’ () to p/ (t).
Here and below W4t , is the stabilizer of z in Wy ¢y.

Axiom 2. A path p satisfies the mazimality property if for each p(t) the above
Wayt,2-chain can be found which is a mazimal W -chain from p' (t) to p!, (t).

Definition 5.10. A path p in A is said to be an LS path if it satisfies Axioms 1
and 2.

Here maximality is understood in the set-theoretic sense.

Theorem 5.4 ([KM1]). A path p in A is the projection (under f) of a geodesic
path in X if and only if p is a Hecke path.

Remark 5.11. An analogous result was independently proven in [GL] by Littel-
mann and Gaussent in the context of folded galleries.

On the other hand, Littelmann proved in [Li] the following fundamental

Theorem 5.5.
dim((Va ® V, @ V,,)")

is the number of polygons P C A, each of which which is the concatenation of the
paths o\, p,v*o, where p is an LS path of the A-length p.
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Given this we immediately see that
Sol(Q4,GY) C Sol(Q3,G),

since each LS path is also a Hecke path.

The converse relation is not as clear, since Hecke paths in general are not LS
paths (maximality axiom may fail). Nevertheless, suppose for a moment that p
is an integer multiple of a fundamental coweight w;. Then the geodesic segment
Ty (having special end-points and A-length u) crosses walls of X only at vertices
of X. Therefore, each break-point p(t) of the path p = f(Zy) is a vertex of the
Coxeter complex (A, Wysr). One can easily see from the definition of the constant
kr (Definition 4.7) that for each vertex v of (4, Woyr),

krv is a special vertex of (A, W,ys).

Therefore, the rescaled path kg - p satisfies the 2-nd Axiom of an LS path, while
the 1-st Axiom is preserved by integer scalings. Hence kg - p is an LS path and
thus, by Littelmann’s Theorem

(Vierr ® Vi ® VkRu)GV #0.

This establishes Part 2 of Theorem 4.4 provided that the coweight p is a mul-
tiple of some fundamental coweight. The general case is more subtle, we refer the
reader to [KM1] for the details.

6. Other developments

Restriction problems. The Restriction Problem is, in a sense, even more fun-
damental for the representation theory than the tensor product decomposition
problem:

eV, eV,)%#£0

if and only if the restriction of the product representation of G x G x G to the
diagonal G C G x G x G has a nonzero invariant vector.

Problem 6.1 (Restriction Problem). Let H C G be a complex reductive subgroup
in a complex reductive group G. Given an irreducible representation V, of G,
decompose its restriction V,|H into irreducible factors.

Considerable progress on the general restriction problem and its infinitesimal
geometric analogue (determining the projection of a cotangent orbit in the dual of
the Lie algebra of a compact group to the dual of the Lie algebra of a subgroup)
was made in [BS]. However it appears very difficult to prove saturation results in
this generality. Below are two major obstacles in extending the results of [KLMI,
KLM2, KLM3, KM1] to the general restriction problem:

1. Given a subbuilding ¥ C X in a Euclidean building X, there do not seem
to be natural 1-Lipschitz retractions X — Y. The nearest-point projection does
not appear to be a good choice.
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2. There is (at present) no analogue of Littelmann’s path model for the general
restriction problem: Littelmann’s solution in [Li] of the restriction problem applies
only to Levi subgroups.

It turns out, however, that the entire analysis of the generalized triangle in-
equality problems as well as the corresponding algebra problems Q1-Q4 outlined
above, can be extended to the restriction problem in the case of Levi subgroups
H C @. This generalization is carried out in the joint work with John Millson and
Tom Haines [HKM]. Geodesic polygons are replaced with ideal geodesic polygons,
for their infinite sides, the A-valued distance function is replaced with A-valued
Busemann function, etc.

For instance, we obtain a generalization of the Saturation Theorem 4.4 de-
scribed below.

Let G be a complex reductive Lie group, L be the character lattice of its
maximal torus, Q(R) be its root lattice. Let M C G be a Levi subgroup; let
A C Ay be the Weyl chambers of G and M. Set

L:={(\p) €LxL:A+pu" €QR")}

Let kg denote the saturation factor for the root system R of the group G, see
Definition 4.7. Then there exists a convex polyhedral cone D(M,G) C Ay X A so
that:

Theorem 6.1 ([HKM]). 1. If A\, 1 are dominant weights of M and G respectively
so that
V\ C VH|M

then (\,p) € LN D(M,QG).
2. If (\,p) € LN D(M, Q) then for k = k%:

Via C Vk“|M.

Remark 6.2. In the case R = Ay, kg = 1, and hence the above result is the ana-
logue of the Knutson-Tao saturation theorem and in fact implies their saturation
theorem.

Problem 6.3. Prove an analogue of Theorem 6.1 for arbitrary reductive subgroups

H of G with constant k% replaced by a suitable number k computable in terms of
G and H.

Note that even the case of G = SL(n,C) is extremely interesting in view of
possible applications to P#NP, see [MS1, MS2].

Structure of the sets Sol(Qi). Despite the description of the convex cone
Sol(Q1,G) via the linear inequalities (x 4-77')’ its structure remains somewhat mys-

terious. The case understood best is when G = SL(n,C).
1. For SL(n,C) there exists a procedure for computing the inequalities (* g-ﬁ’)

by induction on the rank: This procedure was first conjectured by R. Horn in
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the 1960-s; it was proven in a combination of works by A. Klyachko [Klyl] and
A. Knutson and T. Tao [KT]. An alternative proof was later given by P. Belkale
[Be2].

Problem 6.4. Generalize Horn’s recursion formula to groups other than SL(n,C).

Such a generalization would give a more practical algorithm for computation
of Sol(Q1,G) than the generalized Schubert calculus.
2. While the facets of the cone Sol(Q1,G) are given by the inequalities (x 4’77')’

the edges of this cone have not been described, except in the SL(n) case, see
[KTW, Be4].

3. Concerning Problems Q3 and Q4 one can reasonably ask “what a compu-
tation of the sets Sol(Q3), Sol(Q4) might mean?”

The following theorem was proven by C. Laskowski in [La] for Problem Q3 and
in [KM2] for Problem Q4:

Theorem 6.2. For each G, the set Sol(Qi,G) (i = 3,4) is a finite union of
elementary sets.

The notion of an elementary subset of L? comes from logic: It is a set given by
a finite collection of linear inequalities (with integer coefficients) and congruences.
Therefore one can interpret Problems Q3, Q4 as

Problem 6.5. Find the inequalities and congruences in the description of Sol(Q3)
and Sol(Q4) as unions of elementary sets.

An example of such description is given in [KM2] for Sol(Q4,G), G = Sp(4,C),
G = G2. Note that for these groups, Sol(Qi, G),i = 3,4, are not elementary sets
themselves.

Note that if Conjecture 4.9 holds, then for each simply-laced group G the sets
Sol(Q3), Sol(Q4) are elementary and are both equal to

Ds(X)N L3,

where X = G(C)/K.

Quantum product problems. Throughout this paper we restricted our at-
tention only to noncompact Lie groups and nonpositively curved spaces. However
Problem Q2 has a straightforward generalization in the case of compact Lie groups.

Let K be a maximal compact subgroup in a complex semisimple Lie group
G. Then an alcove a of the associated affine Weyl group parameterizes conjugacy
classes in K. The following is an analogue of Problem Q2:

Problem 6.6. Find necessary and sufficient conditions on elements \, 4, v € a in
order that there exist elements A, B,C € K whose projections to a are \, . and v,
respectively, so that ABC = 1.



20 Michael Kapovich

This problem was solved independently by S. Agnihotri and C. Woodward [AW]
and P. Belkale ([AW], [Bel]) in the case K = U(n). This solution was generalized
to all simple groups G by C. Teleman and C. Woodward in [TW]. The solution is
given in a form of nonhomogeneous linear inequalities analogous to (* C'ﬂ)’ where
Schubert calculus is replaced with quantum Schubert calculus. An analoghe of Horn
recurrence formula for this problem was established by P. Belkale in [Be3].

Problem 6.7. 1. Solve the analogue of Problem 1.1 for compact symmetric spaces.
2. Is there an analogue of Problem Q3 in the setting of compact groups?

In the context of compact Lie groups, Problem Q4 generalizes to the problem
about product structure of the fusion ring Ry(G) at level £, which is a certain
quotient of the representation ring of the group G. For the elements ch(V}),
ch(Vy,), ch(V,) of the ring R¢(G) consider the decomposition of the triple product:

ch(VA) - ch(Vyy) - ch(Vy)) = Y in e (8)ch(Vs).
[

Problem 6.8. Give necessary and sufficient conditions on A, u,v in order that

fixpme(0) # 0.

P. Belkale proved in [Be3] an analogue of the Knutson-Tao saturation theorem
for Problem 6.8, thereby establishing equivalence between Problem 6.8 and the
multiplicative Problem 6.6:

Theorem 6.3. For A\, u,v so that \+pu+v € Q(R)
A(NX,Nu, Nv,Nt) # 0, for some N € N

if and only if

/fL(AJ /’l/’ VJ Z) # 0'
Conjecture 6.9 (C. Woodward). The above saturation theorem holds for all
simply-laced groups.
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