Homework Set Seven: Permutations and more on Eigenvalues

Directions: Submit your solutions to the Calculational Exercises and the Proof-Writing Exercises separately at the beginning of lecture on Friday, November 16, 2007. The two problems sets will be graded by different persons.

Calculational Exercises

1. Let $A \in \mathbb{C}^{3 \times 3}$ be given by

$$
A=\left[\begin{array}{ccc}
1 & 0 & i \\
0 & 1 & 0 \\
-i & 0 & -1
\end{array}\right]
$$

(a) Calculate $\operatorname{det}(A)$.
(b) Find $\operatorname{det}\left(A^{4}\right)$.
2. (a) For each permutation $\pi \in \mathcal{S}_{3}$, compute the number of inversions in π, and classify π as being either an even or an odd permutation.
(b) Use your result from Part (a) to construct a formula for the determinant of a 3×3 matrix.

Proof-Writing Exercises

1. (a) Let $a, b, c, d \in \mathbb{F}$ and consider the system of equations given by

$$
\begin{align*}
& a x_{1}+b x_{2}=0 \tag{1}\\
& c x_{1}+d x_{2}=0 . \tag{2}
\end{align*}
$$

Note that $x_{1}=x_{2}=0$ is a solution for any choice of a, b, c, and d. Prove that this system of equations has a non-trivial solution if and only if $a d-b c=0$.
(b) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{F}^{2 \times 2}$, and recall that we can define a linear operator $T \in \mathcal{L}\left(\mathbb{F}^{2}\right)$ on \mathbb{F}^{2} by setting $T(v)=A v$ for each $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \in \mathbb{F}^{2}$.

Show that the eigenvalues for T are exactly the $\lambda \in \mathbb{F}$ for which $p(\lambda)=0$, where $p(z)=(a-z)(d-z)-b c$.

Hint: Write the eigenvalue equation $A v=\lambda v$ as $(A-\lambda I) v=0$ and use the first part.
2. Prove or give a counterexample: For any $n \geq 1$ and $A, B \in \mathbb{R}^{n \times n}$, one has

$$
\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)
$$

