Homework 2

due October 13, 2010

1. Rosen $3.1 \# 4$, pg. 74

Use the sieve of Eratosthenes or Sage to find all primes less than 200.

2. Rosen 3.1 \#5, pg. 74

Find all primes that are the difference of the fourth powers of two integers.
3. Rosen 3.1 \#11, pg. 74

Let $Q_{n}=p_{1} p_{2} \cdots p_{n}+1$, where $p_{1}, p_{2}, \ldots, p_{n}$ are the n smallest primes. Determine the smallest prime factor of Q_{n} for $n \leq 6$. Do you think that Q_{n} is prime infinitely often? (Note: This is an unresolved question.)

4. Rosen $3.2 \# 3$, pg. 86

Show that there are no "prime triplets", that is, primes $p, p+2$, and $p+4$, other than 3,5 , and 7 .
5. Rosen $3.2 \# 21$, pg. 87 (challenging!!)

A prime power is an integer of the form p^{n}, where p is prime and n is a positive integer greater than one. Find all pairs of prime powers that differ by 1 . Prove that your answer is correct.
6. Rosen $3.4 \# 2(a, b)$ and $\# 3(a, b)$, pg. 105

Use the Euclidean algorithm to find each of the following greatest common divisors:
(a) $(51,87)$
(b) $(105,300)$

For each pair, express the greatest common divisor of the integers as a linear combination of these integers.
7. Rosen $3.4 \# 19$, pg. 107

Let m and n be positive integers and let a be an integer greater than 1. Show that $\left(a^{m}-1, a^{n}-1\right)=a^{(m, n)}-1$.

