1. Rosen $3.3 \# 20$, pg. 95

Let $a_{1}, a_{2}, \ldots, a_{n}$ be integers not all equal to zero. Is it true that the greatest common divisor of these integers $\left(a_{1}, \ldots, a_{n}\right)$ is the least positive integer of the form $m_{1} a_{1}+m_{2} a_{2}+\cdots+m_{n} a_{n}$ where $m_{1}, \ldots, m_{n} \in \mathbb{Z}$? If so, prove it. If not, give a counterexample.

2. Rosen $3.5 \# 8$, pg. 117

Show that every positive integer can be written as the product of possibly a square and a square-free integer. A square-free integer is an integer that is not divisible by any perfect squares other than 1 .
3. Rosen $3.5 \# 19,22,23$, pg. 117

Let $\alpha=a+b \sqrt{-5}$ where $a, b \in \mathbb{Z}$. Define the norm of α, denoted $N(\alpha)$, as $N(\alpha)=a^{2}+5 b^{2}$.
(a) Show that if $\alpha=a+b \sqrt{-5}$ and $\beta=c+d \sqrt{-5}$, where $a, b, c, d \in \mathbb{Z}$, then $N(\alpha \beta)=N(\alpha) N(\beta)$.
(b) Show that the numbers $1+\sqrt{-5}$ and $1-\sqrt{-5}$ are prime numbers, that is, there are no numbers $\alpha=a+b \sqrt{-5}$ and $\beta=c+d \sqrt{-5}$ different from ± 1 such that $1 \pm \sqrt{-5}=\alpha \beta$.
(Hint: Use part (a)).
(c) Find two different factorizations of the number 21 into primes of the form $a+b \sqrt{-5}$, where a and b are integers.
4. Rosen $3.5 \# 45$, pg. 119

Show that $\sqrt{2}+\sqrt{3}$ is irrational.

