MAT 115A

Fall 2010

Homework 5

due November 3, 2010

1. Rosen 4.1 #22, pg. 150

Show by mathematical induction that if n is a positive integer, then $4^n \equiv 1 + 3n \pmod{9}$.

2. Rosen 4.1 #24, pg. 150

Give a complete system of residues modulo 13 consisting entirely of odd integers.

3. Rosen 4.1 #28, pg. 150

Find the least positive residues modulo 47 of each of the following integer.

(a) 2^{32} (b) 2^{47} (c) 2^{200} .

4. Rosen 4.1 #35, pg. 152

Show that for every positive integer m there are infinitely many Fibonacci numbers f_n such that m divides f_n . (*Hint:* Show that the sequence of least positive residues modulo m of the Fibonacci numbers is a repeating sequence.)

5. Rosen 4.2 #2 (a)-(c), pg. 156

Find all solutions of each of the following linear congruences.

(a)
$$3x \equiv 2 \pmod{7}$$

(b) $6x \equiv 3 \pmod{9}$
(c) $17x \equiv 14 \pmod{21}$

6. Rosen 4.2 #15, pg. 157

Let p be an odd prime and k a positive integer. Show that the congruence $x^2 \equiv 1 \pmod{p^k}$ has exactly two incongruent solutions, namely $x \equiv \pm 1 \pmod{p^k}$.