Homework 6

due November 10, 2010

1. Rosen $4.3 \# 7$, pg. 164

A troop of 17 monkeys store their bananas in 11 piles of equal size with a twelfth pile of 6 left over. When they divide the bananas into 17 equal groups, none remain. What is the smallest number of bananas they can have?

2. Rosen 4.3 \#15, pg. 165

Show that the system of congruences

$$
\begin{aligned}
& x \equiv a_{1} \quad\left(\bmod m_{1}\right) \\
& x \equiv a_{2} \quad\left(\bmod m_{2}\right)
\end{aligned}
$$

has a solution if and only if $\left(m_{1}, m_{2}\right) \mid\left(a_{1}-a_{2}\right)$ (note that we are not assuming here that m_{1} and m_{2} are relatively prime!). Show that when there is a solution, it is unique modulo [m_{1}, m_{2}]. (Hint: Write the first congruence as $x=a_{1}+k m_{1}$ where k is an integer, and then insert this expression for x into the second congruence).

3. Rosen $6.1 \# 9$, pg. 221

What is the remainder when 5^{100} is divided by 7 ?
4. Rosen 6.1 \#34, pg. 222

Show that if p is a prime and $0<k<p$, then $(p-k)!(k-1)!\equiv(-1)^{k}(\bmod p)$.
5. Rosen $6.1 \# 40,41$, pg. 222

Using the fact that p divides the binomial coefficient $\binom{p}{k}$ when $0<k<p$, show that if a, b are integers then $(a+b)^{p} \equiv a^{p}+b^{p}(\bmod p)$. Use this to prove Fermat's little theorem.

6. Rosen $6.2 \# 2$, pg. 231

Show that 45 is a pseudoprime to the bases 17 and 19 .
7. Rosen 6.2 \#20, pg. 232 (challenging!)

Show that if n is a Carmichael number then n is square-free.

