Homework 7

due November 17, 2010

1. Rosen $6.3 \# 6$, pg. 236

Find the last digit of the decimal expansion of $7^{999,999}$.
2. Rosen 6.3 \#10, pg. 236

Show that $a^{\Phi(b)}+b^{\Phi(a)} \equiv 1(\bmod a b)$, if a and b are relatively prime positive integers.
3. Rosen 6.3 \#12, pg. 236

Show that the solutions to the simultaneous system of congruences

$$
\begin{aligned}
& x \equiv a_{1} \quad\left(\bmod m_{1}\right) \\
& x \equiv a_{2} \quad\left(\bmod m_{2}\right) \\
& \cdots \\
& x \equiv a_{r} \quad\left(\bmod m_{r}\right)
\end{aligned}
$$

where m_{j} are pairwise relatively prime, are given by

$$
x \equiv a_{1} M_{1}^{\Phi\left(m_{1}\right)}+\cdots+a_{r} M_{r}^{\Phi\left(m_{r}\right)} \quad(\bmod M)
$$

where $M=m_{1} m_{2} \cdots m_{r}$ and $M_{j}=M / m_{j}$ for $j=1,2, \ldots, r$.

4. Rosen $7.1 \# 8$, pg. 245

Show that there is no positive integer n such that $\Phi(n)=14$.
5. Rosen 7.1 \#22, pg. 246

Show that if m and k are positive integers, then $\Phi\left(m^{k}\right)=m^{k-1} \Phi(m)$.

6. Rosen 7.2 \#11, pg. 253

What is the product of the positive divisors of a positive integer n ?
7. Rosen 7.2 \#12, pg. 253

Show that the equation $\sigma(n)=k$ has at most a finite number of solutions when k is a positive integer.

