Vector Analysis - double integral

Plotting of functions in two variables

Let us plot the function $f(x, y)=x^{\wedge} 2+y^{\wedge} 2$.

```
x, y, z = var('x, y, z')
plot3d(x^2 + y^2, (x,-2,2), (y,-2,2))
```


Now we define this in the range $0<=\mathrm{x}<=4$ and $0<=\mathrm{y}<=2$ as we want, and save this plot as P :

```
P = plot3d(x^2 + y^2, (x,0,4), (y,0,2),opacity=0.7)
show (P)
```


Iterated integrals

Taking a particular slice for a fixed x (in this case $x=1$), we can demonstrate which areas we are summing successively when we evaluate a double integral by iterated integrals.

```
Q = implicit_plot3d(x-1, (x,0,4), (y,0,2),(z,0,8), color='green',opacity=0.7)
show (Q)
```


show $(P+Q)$

$R=$ implicit_plot $3 d(x-2,(x, 0,4),(y, 0,2),(z, 0,8)$, color='red', opacity=0.7) show ($P+Q+R$)

Similarly, we could keep y fixed and sum over integral in x :

```
Q = implicit_plot3d(y-1, (x,0,4),(y,0,2),(z,0,8), color='green',opacity=0.7)
R = implicit_plot3d(y-1.5, (x,0,4), (y,0,2), (z,0,8),color='red',opacity=0.7)
show (P+Q+R)
```


