
Permutations
Permutations
We can work with permutations in Sage:

p = Permutation([2,3,1,5,4])
p 

       [2, 3, 1, 5, 4]

There are several ways to represent permutations. The above presentation is one-line notation. Permutations
can also be represented by their corresponding permutation matrix:

p.to_matrix() 

       

[0 0 1 0 0]
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 0 0 1]
[0 0 0 1 0]

Or in cycle notation:

p.cycle_string() 

       '(1,2,3)(4,5)'

Sign and inversions

We can count the number of inversions of a permutation:

p 

       [2, 3, 1, 5, 4]
p.inversions() 

       [[0, 2], [1, 2], [3, 4]]

The number of inversions tell us whether the permutation is even or odd:

p.is_even() 

       False

Reduced words

Every permutation can be written as a product of simple transposition which interchange two adjacent letters
i and i+1. The reduced word tells you which simple transpositions occur in the product.



p.reduced_word() 

       [1, 2, 4]
p1 = Permutation([2,1,3,4,5])
p2 = Permutation([1,3,2,4,5])
p3 = Permutation([1,2,3,5,4])
p3*p2*p1 

       [2, 3, 1, 5, 4]

Matrix representation

We can compose permutations. Unfortunately, in sage the left permutation is applied first (as we already saw
when we looked at the reduced word).

p 

       [2, 3, 1, 5, 4]
q = Permutation([2,5,4,3,1])
q*p 

       [3, 4, 5, 1, 2]

The matrix of the composition of two permutations corresponds to the matrix product of the matrices for
each permutation (again up to changing the order): 

(q*p).to_matrix() 

       

[0 0 0 1 0]
[0 0 0 0 1]
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]

p.to_matrix()*q.to_matrix() 

       

[0 0 0 1 0]
[0 0 0 0 1]
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]

(q*p).to_matrix() == p.to_matrix()*q.to_matrix() 

       True


