Permutations

Permutations

We can work with permutations in Sage:

```
p = Permutation([2,3,1,5,4])
p
```

$[2,3,1,5,4]$
There are several ways to represent permutations. The above presentation is one-line notation. Permutations can also be represented by their corresponding permutation matrix:

```
p.to_matrix()
```

 \(\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}\right]\)
 \(\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right]\)
 \(\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}\right]\)
 \(\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}\right]\)
 \(\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}\right]\)
 Or in cycle notation:

```
p.cycle_string()
    ' \((1,2,3)(4,5)\) '
```


Sign and inversions

We can count the number of inversions of a permutation:

p
$\quad[2,3,1,5,4]$
p .inversions()
$\quad[0,2],[1,2],[3,4]]$

The number of inversions tell us whether the permutation is even or odd:
p.is_even()

False

Reduced words

Every permutation can be written as a product of simple transposition which interchange two adjacent letters i and $i+1$. The reduced word tells you which simple transpositions occur in the product.

```
p.reduced_word()
```

[1, 2, 4]

```
p1 = Permutation([2,1,3,4,5])
p2 = Permutation([1,3,2,4,5])
p3 = Permutation([1,2,3,5,4])
p3*p2*p1
    [2, 3, 1, 5, 4]
```


Matrix representation

We can compose permutations. Unfortunately, in sage the left permutation is applied first (as we already saw when we looked at the reduced word).

```
p
    [2, 3, 1, 5, 4]
q = Permutation([2,5,4,3,1])
q*p
    [3, 4, 5, 1, 2]
```

The matrix of the composition of two permutations corresponds to the matrix product of the matrices for each permutation (again up to changing the order):

(q*p).to_matrix()
$\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}\right]$
$\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}\right]$
p.to_matrix()*q.to_matrix()
$\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}\right]$
$\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}\right]$
(q*p).to_matrix() == p.to_matrix()*q.to_matrix()
True

