Homework 6 due November 9, 2011 in class

Read: Artin 4.5, 5.1

1. **Artin 4.5.1** pg. 148

What is the matrix of the three-dimensional rotation through the angle θ about the axis e_2 ?

2. **Artin 4.5.4** pg. 148

- (a) Prove that O_n and SO_n are subgroups of $GL_n(\mathbb{R})$, and determine the index of SO_n in O_n .
- (b) Is O_2 isomorphic to the product group $SO_2 \times \{\pm I\}$? Is O_3 isomorphic to $SO_3 \times \{\pm I\}$?

3. **Artin 4.5.6** pg. 149

Let A be a matrix in O_3 whose determinant is -1. Prove that -1 is an eigenvalue of A.

4. **Artin 4.5.13** pg. 149

Prove that a rigid motion, as defined by (5.15), is bijective.

5. **Artin 5.1.3** pg. 188

List all symmetries of the following figures.

(a) (1.4) (b) (1.5) (c) (1.6) (d) (1.7)

6. **Artin 5.1.4** pg. 188

Let G be a finite group of rotations of the plane about the origin. Prove that G is cyclic.