Homework 6
due November 9, 2011 in class

Read: Artin 4.5, 5.1

1. Artin 4.5 .1 pg. 148

What is the matrix of the three-dimensional rotation through the angle θ about the axis e_{2} ?
2. Artin 4.5 .4 pg. 148
(a) Prove that O_{n} and $S O_{n}$ are subgroups of $G L_{n}(\mathbb{R})$, and determine the index of $S O_{n}$ in O_{n}.
(b) Is O_{2} isomorphic to the product group $S O_{2} \times\{ \pm I\}$? Is O_{3} isomorphic to $S O_{3} \times\{ \pm I\}$?
3. Artin 4.5 .6 pg. 149

Let A be a matrix in O_{3} whose determinant is -1 . Prove that -1 is an eigenvalue of A.
4. Artin 4.5.13 pg. 149

Prove that a rigid motion, as defined by (5.15), is bijective.
5. Artin 5.1.3 pg. 188

List all symmetries of the following figures.
(a) (1.4) (b) (1.5) (c) (1.6) (d) (1.7)
6. Artin 5.1.4 pg. 188

Let G be a finite group of rotations of the plane about the origin. Prove that G is cyclic.

