## LECTURE 5: WEAK TABLEAUX

#### TRAVIS SCRIMSHAW

### 1. WEAK HORIZONTAL STRIPS

**Definition 1.1.** Let  $\tau$  and  $\kappa$  be (k+1)-cores. We say  $\kappa/\tau$  is a *weak horizontal strip* of size r if  $\kappa/\tau$  is a horizontal strip and there exists a saturated chain of length r

$$\tau \to_k \tau^{(1)} \to_k \tau^{(2)} \to_k \dots \to_k \tau^{(r)} = \kappa.$$

**Proposition 1.2** (k-bounded characterization). Let  $\tau \subseteq \kappa$  be (k + 1)-cores. Then  $\kappa/\tau$  is a weak horizontal strip if and only if  $P(\kappa)/P(\tau)$  is a horizontal strip and  $P(\kappa^t)/P(\tau^t)$  is a vertical strip.

**Definition 1.3.** An element  $w \in \widetilde{S}_n$  is cyclically decreasing if  $w = s_{i_1} \cdots s_{i_l}$  with no index repeated and j precedes j-1 modulo n when both are in the set  $\{i_1, \ldots, i_l\}$ .

**Example 1.4.** Let n = 6. Then  $w = s_3s_2s_0s_5 = s_0s_5s_3s_2$  is cyclically decreasing, however  $s_1s_2$  is not. In particular, we cannot use all generators such as  $s_5s_4s_3s_2s_1s_0$  since 0 does not precede 5 (recall modulo 6).

**Proposition 1.5.** Let  $\tau \subseteq \kappa$  be (k+1)-cores. Then  $\kappa/\tau$  is a weak horizontal strip if and only if  $\kappa = w\tau$  where w is a cyclically decreasing element.

*Proof sketch.* Take a core and add boxes of  $s_{i_j}$ . If this would be an element breaking the conditions of cyclically decreasing, then it would correspond to adding a box on top of a previously added box. Thus  $\kappa/\tau$  would not be a horizontal strip, noting that increasing in the weak order always corresponds to adding boxes.

#### 2. Pieri Rule to Tableaux

Recall that  $h_{\mu} = h_{\mu_1} \cdots h_{\mu_d} s_{\emptyset}$  and the Pieri rule is  $h_r s_{\lambda} = \sum_{\mu} s_{\mu}$  where the sum was over all partitions  $\mu$  such that  $\mu/\lambda$  is a horizontal *r*-strip. Now if we iteratively apply the Pieri rule, we note that we are building a semi-standard Young tableaux. Alternatively by the column strict condition, every semi-standard Young tableau of shape  $\lambda$  and weight  $\mu$  can be thought of a sequence of partitions  $(\lambda^{(i)})_i$  such that

$$\emptyset \subseteq \lambda^{(1)} \subseteq \lambda^{(2)} \subseteq \dots \subseteq \lambda^{(d)} = \lambda$$

where  $\lambda^{(i)}/\lambda^{(i-1)}$  is a horizontal  $\mu_i$ -strip. For example, consider



Now if we look all such semi-standard Young tableaux of a given shape  $\lambda \vdash |\mu|$ , we note that we get fillings of weight  $\mu$ . Therefore we can express  $h_{\mu} = \sum_{\lambda \vdash |\mu|} K_{\lambda\mu} s_{\lambda}$  recalling  $K_{\lambda\mu}$  is called a Kostka number and is the number of semi-standard Young

Date: October 15, 2012.

tableaux of shape  $\lambda$  and weight (content)  $\mu$ . Recall that  $K_{\lambda\mu} = 0$  unless  $\mu \leq \lambda$  ( $\lambda$  dominates  $\mu$  or  $\lambda$  is greater than  $\mu$  in the dominance order) and  $K_{\lambda\lambda} = 1$ .

Therefore if we consider the matrix  $(K_{\lambda\mu})_{\lambda\mu}$ , it is invertible (as a matrix). Also recall for the Hall inner product, we have

$$\langle h_{\lambda}, m_{\lambda} \rangle = \delta_{\lambda\mu} = \langle s_{\lambda}, s_{\mu} \rangle$$

Hence the Pieri rule defines  $s_{\lambda}$  since  $\langle h_{\mu}, s_{\lambda} \rangle = K_{\lambda\mu}$ . This also implies that

$$s_{\lambda} = \sum_{\mu} \langle s_{\lambda}, h_{\mu} \rangle m_{\mu} = \sum_{\mu \vdash |\lambda|} K_{\lambda \mu} m_{\mu}$$

# 3. WEAK TABLEAUX

Recall that  $\Lambda_{(k)} = \mathbb{Q}[h_1, \ldots, h_k]$  and  $\Lambda^{(k)} = \Lambda/\langle m_\lambda \mid \lambda_1 > k \rangle$  and the k-Pieri rule is  $h_r s^{(k)}_{\mu} = \sum_{\lambda} s^{(k)}_{\lambda}$  where we sum over all  $\lambda$  such that  $\lambda/\mu$  is a weak horizontal r-strip.

**Example 3.1.** Let k = 4 and consider  $h_{431} = h_1 h_3 h_4 s_{\emptyset}^{(4)}$ . Thus we have

$$h_1h_3s_{\underline{\Box}\underline{\Box}\underline{\Box}\underline{\Box}}^{(4)} = h_1s_{\underline{\Box}\underline{\Box}\underline{\Box}\underline{\Box}\underline{\Box}}^{(4)} = s_{\underline{\Box}\underline{\Box}\underline{\Box}\underline{\Box}\underline{\Box}}^{(4)} + s_{\underline{\Box}\underline{\Box}\underline{\Box}\underline{\Box}\underline{\Box}\underline{\Box}}^{(4)}$$

where the first equality corresponds to multiplying by  $s_3s_2s_1s_0$ , the second by  $s_1s_0s_4$ , and the last by  $s_3$  or  $s_2$  (hence two terms). In terms of tableaux, we have

where the entries are the residue and the last one we added either the 3 or the 2.

We now want an analogous definition of k-Schur functions in terms of monomial symmetric functions, so we need the notion of a weak tableau.

**Definition 3.2.** A weak tableau is a sequence of (k + 1)-cores  $\emptyset \subseteq \lambda^{(1)} \subseteq \cdots \subseteq \lambda^{(d)} = \lambda$  such that  $\lambda^{(i)}/\lambda^{(i-1)}$  is a weak horizontal strip. We say the same is  $\lambda$  and the weight (content) is  $\alpha$  where  $\alpha_i = |\lambda^{(i)}/\lambda^{(i-1)}|_{k+1}$ .

**Remark 3.3.** We note that  $\alpha_i$  does not record the number of *i*'s in the tableaux. Instead it records the number of distinct residues appearing in  $\lambda^{(i)}/\lambda^{(i-1)}$ .

**Example 3.4.** For  $h_{431}$  we had the tableaux



| 2 | 2 | 2 | 3 |   |   |   |   | P | 2 | 2 | 2 | 3 |  |
|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
| 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 |   | 1 | 1 | 1 | 1 |  |

Hence if  $\lambda$  is a (k + 1)-core and  $\alpha$  a tuple of non-negative integers such that  $\sum_i \alpha_i = |\lambda|_{k+1}$ , a weak tableaux of weight  $\alpha$  is a semi-standard filling of shape  $\lambda$  with letters  $1, 2, \ldots, d$  such that the collection of cells filled with *i* occupies  $\alpha_i$  distinct k + 1 residues.

Let  $K_{\lambda\mu}^{(k)}$  denote the number of weak tableaux of (k + 1)-core shape  $\lambda$  and kbounded weight  $\mu$ , and call  $K_{\lambda\mu}^{(k)}$  the k-Kostka numbers. In particular  $K_{\lambda\mu}^{(k)} = 1$  if  $P(\lambda) = \mu$  and  $K_{\lambda\mu}^{(k)} = 0$  if  $P(\lambda) \leq \mu$ . Thus we mostly have an analog of the results of Schur functions in that  $h_{\mu} = \sum_{\lambda} K_{\lambda\mu}^{(k)} s_{\lambda}^{(k)}$  and  $s_{\lambda}^{(k)}$  is a well-defined basis for  $\Lambda_{(k)}$ since the the k-Kostka matrix is invertible. However k-Schur functions no longer pair with themselves, so this leads us into dual k-Schur functions.

Using the action of  $s_i$  on (k + 1)-cores, we would add all boxes of residue *i* translates to *k*-bounded partitions by adding the top most box of residue *i*. Thus we could work with *k*-bounded partitions and our usual notion of weight is preserved.