LECTURE 5: WEAK TABLEAUX

TRAVIS SCRIMSHAW

1. Weak Horizontal Strips

Definition 1.1. Let τ and κ be $(k+1)$-cores. We say κ / τ is a weak horizontal strip of size r if κ / τ is a horizontal strip and there exists a saturated chain of length r

$$
\tau \rightarrow_{k} \tau^{(1)} \rightarrow_{k} \tau^{(2)} \rightarrow_{k} \cdots \rightarrow_{k} \tau^{(r)}=\kappa
$$

Proposition 1.2 (k-bounded characterization). Let $\tau \subseteq \kappa$ be ($k+1$)-cores. Then κ / τ is a weak horizontal strip if and only if $P(\kappa) / P(\tau)$ is a horizontal strip and $P\left(\kappa^{t}\right) / P\left(\tau^{t}\right)$ is a vertical strip.
Definition 1.3. An element $w \in \widetilde{S}_{n}$ is cyclically decreasing if $w=s_{i_{1}} \cdots s_{i_{l}}$ with no index repeated and j precedes $j-1$ modulo n when both are in the set $\left\{i_{1}, \ldots, i_{l}\right\}$.

Example 1.4. Let $n=6$. Then $w=s_{3} s_{2} s_{0} s_{5}=s_{0} s_{5} s_{3} s_{2}$ is cyclically decreasing, however $s_{1} s_{2}$ is not. In particular, we cannot use all generators such as $s_{5} s_{4} s_{3} s_{2} s_{1} s_{0}$ since 0 does not precede 5 (recall modulo 6).
Proposition 1.5. Let $\tau \subseteq \kappa$ be $(k+1)$-cores. Then κ / τ is a weak horizontal strip if and only if $\kappa=w \tau$ where w is a cyclically decreasing element.

Proof sketch. Take a core and add boxes of $s_{i_{j}}$. If this would be an element breaking the conditions of cyclically decreasing, then it would correspond to adding a box on top of a previously added box. Thus κ / τ would not be a horizontal strip, noting that increasing in the weak order always corresponds to adding boxes.

2. Pieri Rule to Tableaux

Recall that $h_{\mu}=h_{\mu_{1}} \cdots h_{\mu_{d}} s_{\emptyset}$ and the Pieri rule is $h_{r} s_{\lambda}=\sum_{\mu} s_{\mu}$ where the sum was over all partitions μ such that μ / λ is a horizontal r-strip. Now if we iteratively apply the Pieri rule, we note that we are building a semi-standard Young tableaux. Alternatively by the column strict condition, every semi-standard Young tableau of shape λ and weight μ can be thought of a sequence of partitions $\left(\lambda^{(i)}\right)_{i}$ such that

$$
\emptyset \subseteq \lambda^{(1)} \subseteq \lambda^{(2)} \subseteq \cdots \subseteq \lambda^{(d)}=\lambda
$$

where $\lambda^{(i)} / \lambda^{(i-1)}$ is a horizontal μ_{i}-strip. For example, consider

Now if we look all such semi-standard Young tableaux of a given shape $\lambda \vdash|\mu|$, we note that we get fillings of weight μ. Therefore we can express $h_{\mu}=\sum_{\lambda \vdash|\mu|} K_{\lambda \mu} s_{\lambda}$ recalling $K_{\lambda \mu}$ is called a Kostka number and is the number of semi-standard Young

[^0]tableaux of shape λ and weight (content) μ. Recall that $K_{\lambda \mu}=0$ unless $\mu \unlhd \lambda(\lambda$ dominates μ or λ is greater than μ in the dominance order) and $K_{\lambda \lambda}=1$.

Therefore if we consider the matrix $\left(K_{\lambda \mu}\right)_{\lambda \mu}$, it is invertible (as a matrix). Also recall for the Hall inner product, we have

$$
\left\langle h_{\lambda}, m_{\lambda}\right\rangle=\delta_{\lambda \mu}=\left\langle s_{\lambda}, s_{\mu}\right\rangle .
$$

Hence the Pieri rule defines s_{λ} since $\left\langle h_{\mu}, s_{\lambda}\right\rangle=K_{\lambda \mu}$. This also implies that

$$
s_{\lambda}=\sum_{\mu}\left\langle s_{\lambda}, h_{\mu}\right\rangle m_{\mu}=\sum_{\mu \vdash|\lambda|} K_{\lambda \mu} m_{\mu} .
$$

3. Weak Tableaux

Recall that $\Lambda_{(k)}=\mathbb{Q}\left[h_{1}, \ldots, h_{k}\right]$ and $\Lambda^{(k)}=\Lambda /\left\langle m_{\lambda} \mid \lambda_{1}>k\right\rangle$ and the k-Pieri rule is $h_{r} s_{\mu}^{(k)}=\sum_{\lambda} s_{\lambda}^{(k)}$ where we sum over all λ such that λ / μ is a weak horizontal r-strip.

Example 3.1. Let $k=4$ and consider $h_{431}=h_{1} h_{3} h_{4} s_{\emptyset}^{(4)}$. Thus we have

$$
h_{1} h_{3} s_{\square}^{(4)}=h_{1} s_{\sharp}^{(4)}=s_{\sharp}^{(4)}+s_{\sharp \square}^{(4)}
$$

where the first equality corresponds to multiplying by $s_{3} s_{2} s_{1} s_{0}$, the second by $s_{1} s_{0} s_{4}$, and the last by s_{3} or s_{2} (hence two terms). In terms of tableaux, we have
where the entries are the residue and the last one we added either the 3 or the 2 .
We now want an analogous definition of k-Schur functions in terms of monomial symmetric functions, so we need the notion of a weak tableau.
Definition 3.2. A weak tableau is a sequence of $(k+1)$-cores $\emptyset \subseteq \lambda^{(1)} \subseteq \cdots \subseteq$ $\lambda^{(d)}=\lambda$ such that $\lambda^{(i)} / \lambda^{(i-1)}$ is a weak horizontal strip. We say the same is λ and the weight (content) is α where $\alpha_{i}=\left|\lambda^{(i)} / \lambda^{(i-1)}\right|_{k+1}$.

Remark 3.3. We note that α_{i} does not record the number of i 's in the tableaux. Instead it records the number of distinct residues appearing in $\lambda^{(i)} / \lambda^{(i-1)}$.

Example 3.4. For h_{431} we had the tableaux

3											
2	2	2									
1	1	1	1	2	2	2	\xrightarrow{P}	3			
:---	:---	:---	:---								
2	2	2									
1	1	1	1								

2	2	2	3									
1	1	1	1	2	2	2	3	\xrightarrow{P}	2	2	2	3
:---	:---	:---	:---	:---								
1	1	1	1									

Hence if λ is a $(k+1)$-core and α a tuple of non-negative integers such that $\sum_{i} \alpha_{i}=|\lambda|_{k+1}$, a weak tableaux of weight α is a semi-standard filling of shape λ with letters $1,2, \ldots, d$ such that the collection of cells filled with i occupies α_{i} distinct $k+1$ residues.

Let $K_{\lambda \mu}^{(k)}$ denote the number of weak tableaux of $(k+1)$-core shape λ and k bounded weight μ, and call $K_{\lambda \mu}^{(k)}$ the k-Kostka numbers. In particular $K_{\lambda \mu}^{(k)}=1$ if $P(\lambda)=\mu$ and $K_{\lambda \mu}^{(k)}=0$ if $P(\lambda) \unlhd \mu$. Thus we mostly have an analog of the results of Schur functions in that $h_{\mu}=\sum_{\lambda} K_{\lambda \mu}^{(k)} s_{\lambda}^{(k)}$ and $s_{\lambda}^{(k)}$ is a well-defined basis for $\Lambda_{(k)}$ since the the k-Kostka matrix is invertible. However k-Schur functions no longer pair with themselves, so this leads us into dual k-Schur functions.

Using the action of s_{i} on $(k+1)$-cores, we would add all boxes of residue i translates to k-bounded partitions by adding the top most box of residue i. Thus we could work with k-bounded partitions and our usual notion of weight is preserved.

[^0]: Date: October 15, 2012.

