LECTURE 7: K-SCHUR FUNCTIONS IN THE NILCOXETER ALGEBRA

ALEXANDER LANG

We recall the following definitions.

Definition 0.1. A k-Schur function is defined as $s_{\lambda}^{(k)} = \sum_{\mu:\mu_1 \leq k} \gamma_{\lambda\mu} h_{\mu}$.

Definition 0.2. A noncommutative k-Schur function is $\sharp_{\lambda}^{(k)} = \sum_{\mu:\mu_1 \leq k} \gamma_{\lambda\mu} \not{h}_{\mu}$, where

$$h_r = \sum_{J \subset I, |J| = r} A_J^{dec} \text{ and } h_\mu = h_{\mu_1} \cdots h_{\mu_m}.$$

Definition 0.3. The affine Stanley symmetric functions are $F_w = \sum_{\alpha \models n} \langle A_w, \not h_{\alpha_1} \not h_{\alpha_2} \cdots \rangle x^{\alpha}$

for $w \in \tilde{S}_n$ and $\langle A_w, A_v \rangle = \delta_{w,v}$.

If $w \in \tilde{S}_n/S_n$ (*w* an affine Grassmannian element), then $F_{\lambda} = \sigma_{\lambda}^{(k)}$ the dual k-Schur functions.

1. CAUCHY IDENTITY

A denotes the ring of symmetric functions. $h_r = \sum_{\lambda \vdash r} m_\lambda = \sum_{i_1 \le i_2 \le \cdots \le i_r} x_{i_1} x_{i_2} \cdots x_{i_r}$. $h_0 = m_{\emptyset} = 1, \ h_\lambda = h_{\lambda_1} h_{\lambda_2} \cdots$.

Proposition 1.1. Let $\lambda \vdash r$ and $\alpha = (\alpha_1, \alpha_2, \cdots)$ a weak composition of r (zeros are allowed). Then the coefficient $N_{\lambda\alpha}$ of x^{α} in h_{λ} ($h_{\lambda} = \sum_{\mu \vdash r} N_{\lambda\mu}m_{\mu}$) is the number of $\mathbb{Z}_{\leq 0}$ matrices $A = (a_{ij})_{i,j \geq 1}$ such that $row(A) = \lambda$ and $col(A) = \alpha$.

Proof. The term x^{α} in h_{λ} is obtained by choosing $x_1^{a_{i_1}} x_2^{a_{i_2}} \cdots$ from each h_{λ_i} such that $\prod_i x_1^{a_{i_1}} x_2^{a_{i_2}} \cdots = x^{\alpha}$. This is the same as choosing a matrix (a_{ij}) with $\operatorname{row}(A) = \lambda$ and $\operatorname{col}(A) = \alpha$.

Proposition 1.2.
$$\prod_{i,j\geq 1} \frac{1}{1-x_i y_j} = \sum_{\lambda,\mu\in P} N_{\lambda\mu} m_\lambda(x) m_\mu(y) = \sum_{\lambda\in P} m_\lambda(x) h_\lambda(y).$$

Proof. The monomial $x^{\alpha}y^{\beta}$ appearing in $\prod_{i,j\geq 1} \frac{1}{1-x_iy_j}$ corresponds to a non-negative integer matrix $A = (a_{ij})$ such that $\prod_{i,j\geq 1} (x_iy_j)^{a_{ij}} = x^{\alpha}y^{\beta}$, hence it is $N_{\lambda\mu}$. \Box

Date: October 22, 2012.

Definition 1.3. A pair of bases $\{u_{\lambda}\}, \{v_{\lambda}\}$ of Λ are dual if $\langle u_{\lambda}, v_{\lambda} \rangle = \delta_{\lambda \mu}$.

Proposition 1.4. If $\{u_{\lambda} | \lambda \vdash r\}$ and $\{v_{\lambda} | \lambda \vdash r\}$ are bases of Λ^r (graded piece of degree r), then $\{u_{\lambda} | \lambda \vdash r\}$ and $\{v_{\lambda} | \lambda \vdash r\}$ are dual bases iff

(1.1)
$$\sum_{\lambda \in P} u_{\lambda}(x)v_{\lambda}(y) = \prod_{i,j \ge 1} \frac{1}{1 - x_i y_j} = \sum_{\lambda \in P} m_{\lambda}(x)h_{\lambda}(y).$$

Proof. Write $m_{\lambda} = \sum_{\rho} \zeta_{\lambda_{\rho}} u_{\rho}, h_{\mu} = \sum_{\nu} \eta_{\mu_{\nu}} v_{\nu}$. Then

$$\delta_{\lambda\mu} = \langle m_{\lambda}, h_{\mu} \rangle = \sum_{\rho,\nu} \zeta_{\lambda\rho} \eta_{\mu\nu} \langle u_{\rho}, v_{\nu} \rangle = 1.1.$$

For fixed $r \zeta, \eta$ are matrices indexed by P_r (partitions of size r). Let $A_{\rho\nu} = \langle u_{\rho}, v_{\nu} \rangle$. Hence $1.1 \leftrightarrow I = \zeta A \eta^t$. Therefore $\{u_{\lambda} | \lambda \vdash r\}$ and $\{v_{\lambda} | \lambda \vdash r\}$ are dual iff A = Iand by 1.1 this is iff $I = \zeta \eta^t \leftrightarrow I = \zeta^t \eta \leftrightarrow \delta_{\rho\nu} = \sum_{\lambda} m_{\lambda}(x) h_{\lambda}(y)$. Therefore

(1.2)
$$\sum_{\lambda} \left(\sum_{\rho} \zeta_{\lambda\rho} \mu_{\rho}(x) \right) \left(\sum_{\nu} \eta_{\lambda\nu} v_{\nu}(y) \right) = \sum_{\rho\nu} \left(\sum_{\lambda} \zeta_{\lambda\rho} \eta_{\lambda\nu} \right) u_{\rho}(x) v_{\nu}(y)$$
which implies $\{u_{\lambda} \mid \lambda \vdash x\}$ and $\{v_{\lambda} \mid \lambda \vdash x\}$ are dual iff $\prod \frac{1}{1 - \sum_{\nu} u_{\lambda}(x) v_{\nu}(y)}$

which implies $\{u_{\lambda} | \lambda \vdash r\}$ and $\{v_{\lambda} | \lambda \vdash r\}$ are dual iff $\prod_{i,j \ge 1} \frac{1}{1 - x_i y_j} = \sum_{\lambda} u_{\lambda}(x) v_{\lambda}(y)$.

Corollary 1.5. Cauchy identity.

$$\prod_{i,j\geq 1} \frac{1}{1-x_i y_j} = \sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y).$$

Remark 1.6. This is related to RSK, which gives us a bijection between nonnegative integer matrices of finite support with $row(A) = \alpha$ and $col(B) = \beta$ and $\bigcup_{\lambda} SSYT(\lambda, \alpha) \times SSYT(\lambda, \beta)$

Remark 1.7. Λ is a self dual Hopf algebra, $\langle \Delta f, g \otimes h \rangle = \langle f, gh \rangle$.

2. K-Schur Functions in the Nilcoxeter Algebra

Recall that x commutes with nilcoxeter generators. Let α be a weak composition.

Proposition 2.1.
$$\sum_{\alpha:\alpha_i \leq k} \#_{\alpha} x^{\alpha} = \sum_{\lambda:\lambda_1 \leq k} \#_{\lambda}^{(k)} F_{\lambda}$$

Proof. $s_{\lambda}^{(k)}$ and F_{λ} are dual bases, so we have $\sum_{\lambda:\lambda_1 \leq k} s_{\lambda}^{(k)}(y)F_{\lambda}(x) = \sum_{\alpha} h_{\alpha}(y)x^{\alpha}$ inside $\Lambda_{(k)} \times \Lambda^{(k)}$. Then just lift to the noncommutative setting.

$$F_w = \sum_{\alpha} \langle A_w, \not{\!\!\!\!/}_{\alpha} \rangle x^{\alpha} \text{ and by the previous proposition this equals } \sum_{\lambda} \langle A_w, \not{\!\!\!\!\!/}_{\lambda}^{(k)} \rangle F_{\lambda}(x)$$

Let $a_{w\lambda} = \langle A_w, \not{\!\!\!\!/}_{\lambda}^{(k)} \rangle.$

Corollary 2.2. The coefficient of A_w in $\sharp_{\lambda}^{(k)}$ is equal to the coefficient of F_{λ} in F_w .

The following theorem was proved by Lam using geometry.

Theorem 2.3. $a_{w\lambda} \in \mathbb{Z}_{\geq 0}$.

Definition 2.4. $\{s_{\lambda}^{(k)}\}$ form a basis of $\Lambda_{(k)}$, define $s_{\lambda}^{(k)}s_{\mu}^{(k)} = \sum_{\nu:\nu_1 \leq k} c_{\lambda\mu}^{\nu,k}s_{\nu}^{(k)}$. The $c_{\lambda\mu}^{\nu,k}$ are called *k*-Littlewood-Richardson coefficients.

3. Skew Affine Stanley Symmetric Functions

$$F_{w/v} = \sum_{\alpha} \langle A_w, \not\!\!\! h_{\alpha} A_v \rangle x^{\alpha} = F_{wv^{-1}}, \text{ where } w = uv \text{ and } \ell(w) = \ell(u) + \ell(v)$$

Proposition 3.1. $\Delta F_w = F_w(x,y) = \sum_{uv=w:\ell(w)=\ell(u)+\ell(v)} F_u(x)F_v(y)$

Proof. Recall that $F_w(x) = \sum_{\mu:\mu_1 \leq k} k_{w\mu}^{(k)} m_{\mu}$. Then $\Delta m_{\mu} = \sum_{\alpha \cup \beta = \mu} m_{\alpha} \otimes m_{\beta}$ implies $\Delta F_w = \sum_{\mu:\mu_1 \leq k} k_{w\mu}^{(k)} \sum_{\alpha \cup \beta = \mu} m_{\alpha} \otimes m_{\beta} = \sum_{v,\alpha,\beta} k_{w/v,\alpha}^{(k)} k_{v,\beta}^{(k)} m_{\alpha} \otimes m_{\beta} = \sum_{v} F_{w/v} \otimes F_v = \sum_{uv=w} f_u \otimes F_v.$