
LECTURE 7: THE CAUCHY IDENTITY

JASON OCHIAI

1. Noncommutative k-Schur Functions

Definition 1.1. (Noncommutative k-Schur Function)

�s
(k)
λ =

∑
µ:µi≤k γλµ�hµ where �hr =

∑
J(I,|J|=r A

dec
j and �hµ = �hµ1�hµ2

· · ·
Note that the notation for the k-Schur function is s

(k)
λ =

∑
µ:µi≤k γλµhµ.

Definition 1.2. (Affine Stanley Symmetric Function)

Fw =
∑
α < Aw, �hα1�hα2 · · · > xα for all w ∈ S̃n where < Aw, Av >= δwv.

Fλ = σ
(k)
λ , the dual k-Schur function, if w is an affine Grassmanian w ↔ λ is k

bounded partition.

2. Cauchy Identity

Let Λ be the ring of symmetric functions.
hr =

∑
λ`rmλ

h0 = m∅ = 1
hλ = hλ1

hλ2
· · · where λ = (λ1, λ2, · · · ) ∈ P

Proposition 2.1. λ ` r α = (α1, α2, · · · ) is a weak composition of r. Then
the coefficient Nλα of xα in hλ =

∑
µ`rNλµmµ is the number of matrices A =

(Aij); i, j ≥ 1 with (Aij) ∈ N ∪ {0} such that row(A) = λ and col(A) = α.

Proof. Term xα in hλ = hλ1
hλ2
· · · is obtained by choosing xαi1

1 xαi2
2 · · · from each

hλi such that
∏
i x

αi1
1 xαi2

2 · · · = xα. This is equivalent to choosing a matrix A =
(Aij) with Aij ∈ N ∪ {0} with row(A) = λ and col(A) = α. �

Proposition 2.2.
∏
i,j≥1

1
1−xiyj

=
∑
λ,µ∈P Nλµmλ(x)mµ(y) =

∑
λ∈P mλ(x)hλ(y).

Proof. The right equality is clear from the previous proposition. So it is enough
to prove the left equality. For each term of the product, we Taylor expand 1

1−xiyj

into a geometric series to obtain a product of Taylor expansions. The monomial
xαyβ appearing in

∏
i,j≥1

1
1−xiyj

corresponds to a matrix A = (Aij); i, j ≥ 1 with

(Aij) ∈ N ∪ {0} such that
∏
i,j≥1(xiyj)

Aij = xrow(A)ycol(A) = xαyβ . �

Definition 2.3. Two bases {uλ}, {vλ} of Λ are dual if < uλ, vλ >= δλµ

Proposition 2.4. {uλ|λ ` r}, {vλ|λ ` r} are bases of Λr (graded piece of λ of
degree r).
{uλ}, {vλ} are dual bases⇔

∑
λ∈P uλ(x)vλ(y) =

∏
i,j≥1

1
1−xiyj

=
∑
λ∈P mλ(x)hλ(y).
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Proof. Note that the last equality has been proven in the previous proposition.
Write mλ =

∑
ρ ζλρuρ and hµ =

∑
ν ηµνvν .

Then δλµ =< mλ, hµ >=
∑
ρ,ν ζλρηµν < uρ, vν >

Let Aρν =< uρ, vν >. Fixed r, ρ and η are matrices indexed by Pr. ⇔ I = ζAηt.
Hence {uλ}, {vλ} are dual. ⇔ A = I ⇔ I = ζηt ⇔ I = ζtη ⇔ δρν =

∑
λ ζλρηλν

Now
∏
i,j≥1

1
1−xiyj

=
∑
λ∈P mλ(x)hλ(y) =

∑
λ(
∑
ρ ζλρuρ(x))(

∑
ν ηλνvν(y))

=
∑
ρ,ν(

∑
λ ζλρηλν)uρ(x)vν(y)⇒{uλ}, {vλ} are dual. ⇔

∏
i,j≥1

1
1−xiyj

=
∑
λ∈P uλ(x)vλ(y).

�

Corollary 2.5. (Cauchy Identity)
∏
i,j≥1

1
1−xiyj

=
∑
λ sλ(x)sλ(y)

Remark 2.6. By Robinson-Schensted-Knuth (RSK) bijection:
ϕ : A ←→ ∪λSSY T (λ, α)× SSY T (λ, β)
where A = { matrices A of nonnegative integer entries and finite support }
row(A) = α and col(A) = β
SSYT = Semi Standard Young Tableau.

Remark 2.7. Λ is a self-dual Hopf-algebra under the Hall inner product since
< ∆f, g ⊗ h >=< f, gh > for f, g, h ∈ Λ where ∆ : Λ→ Λ⊗ Λ is the coproduct.

3. k-Schur Functions in nil-Coxeter algebra

Proposition 3.1.
∑
α:αi≤k �hαx

α =
∑
λ:λi≤k �s

(k)
λ Fλ(x)

Proof. s
(k)
λ and Fλ are dual bases.

By the Cauchy Identity,
∑
λ s

(k)
λ (y)Fλ(x) =

∑
α hα(y)xα. �

For affine Stanley symmetric functions:

Fw =
∑
α < Aw, �hα > xα =

∑
λ < Aw, �s

(k)
λ > Fλ(x) by previous proposition.

The coefficient of Aw in �s
(k)
λ equals the coefficient of Fλ in Fw, w ∈ S̃n.

Theorem 3.2. (Lam) awλ :=< Aw, �s
(k)
λ >∈ N ∪ {0}

Definition 3.3. {s(k)λ } forms a basis of Λ(k). Define s
(k)
λ s

(k)
µ =

∑
ν:νi≤k c

ν,k
λµ s

(k)
ν

where cν,kλµ is the k-Littlewood Richardson coefficient.

For skew affine Stanley symmetric functions:
Fw/v =

∑
α < Aw, �hαAv > xα = Fwv−1

w = uv, l(w) = l(u) + l(v)

Proposition 3.4. (Coproduct) ∆Fw = Fw(X,Y ) =
∑
uv=w Fu(X)Fv(Y )

Proof. Fw(X) =
∑
µ:µi≤kK

(k)
wµmµ and ∆mµ =

∑
α∪β=µmα ⊗mβ where α, β are

partitions.

Then ∆Fw =
∑
µ:µi≤kK

(k)
wµ

∑
α∪β=µmα ⊗ mβ =

∑
v,α,βK

(k)
w/v,αK

(k)
v,βmα ⊗ mβ

=
∑
v Fw/v ⊗Fv =

∑
uv=w Fu ⊗Fv �

2


