LECTURE 7: THE CAUCHY IDENTITY

JASON OCHIAI

1. NONCOMMUTATIVE K-SCHUR FUNCTIONS

Definition 1.1. (Noncommutative k-Schur Function)

 $s_{\lambda}^{(k)} = \sum_{\mu:\mu_i \leq k} \gamma_{\lambda\mu} \not{h}_{\mu} \text{ where } \not{h}_r = \sum_{J \subsetneq I, |J|=r} A_j^{dec} \text{ and } \not{h}_{\mu} = \not{h}_{\mu_1} \not{h}_{\mu_2} \cdots$ Note that the notation for the k-Schur function is $s_{\lambda}^{(k)} = \sum_{\mu:\mu_i \leq k} \gamma_{\lambda\mu} h_{\mu}.$

Definition 1.2. (Affine Stanley Symmetric Function)

 $\mathcal{F}_w = \sum_{\alpha} \langle A_w, \not\!\!| _{\alpha_1} \not\!\!| _{\alpha_2} \cdots \rangle x^{\alpha}$ for all $w \in \tilde{S}_n$ where $\langle A_w, A_v \rangle = \delta_{wv}$. $\mathcal{F}_{\lambda} = \sigma_{\lambda}^{(k)}$, the dual k-Schur function, if w is an affine Grassmanian $w \leftrightarrow \lambda$ is k bounded partition.

2. Cauchy Identity

Let Λ be the ring of symmetric functions. $h_r = \sum_{\lambda \vdash r} m_\lambda$ $h_0 = m_\emptyset = 1$ $h_\lambda = h_{\lambda_1} h_{\lambda_2} \cdots$ where $\lambda = (\lambda_1, \lambda_2, \cdots) \in P$

Proposition 2.1. $\lambda \vdash r \ \alpha = (\alpha_1, \alpha_2, \cdots)$ is a weak composition of r. Then the coefficient $N_{\lambda\alpha}$ of x^{α} in $h_{\lambda} = \sum_{\mu \vdash r} N_{\lambda\mu}m_{\mu}$ is the number of matrices $A = (A_{ij}); i, j \geq 1$ with $(A_{ij}) \in \mathbb{N} \cup \{0\}$ such that $row(A) = \lambda$ and $col(A) = \alpha$.

Proof. Term x^{α} in $h_{\lambda} = h_{\lambda_1} h_{\lambda_2} \cdots$ is obtained by choosing $x_1^{\alpha_{i1}} x_2^{\alpha_{i2}} \cdots$ from each h_{λ_i} such that $\prod_i x_1^{\alpha_{i1}} x_2^{\alpha_{i2}} \cdots = x^{\alpha}$. This is equivalent to choosing a matrix $A = (A_{ij})$ with $A_{ij} \in \mathbb{N} \cup \{0\}$ with $row(A) = \lambda$ and $col(A) = \alpha$.

Proposition 2.2. $\prod_{i,j\geq 1} \frac{1}{1-x_i y_j} = \sum_{\lambda,\mu\in P} N_{\lambda\mu} m_{\lambda}(x) m_{\mu}(y) = \sum_{\lambda\in P} m_{\lambda}(x) h_{\lambda}(y).$

Proof. The right equality is clear from the previous proposition. So it is enough to prove the left equality. For each term of the product, we Taylor expand $\frac{1}{1-x_iy_j}$ into a geometric series to obtain a product of Taylor expansions. The monomial $x^{\alpha}y^{\beta}$ appearing in $\prod_{i,j\geq 1} \frac{1}{1-x_iy_j}$ corresponds to a matrix $A = (A_{ij}); i, j \geq 1$ with $(A_{ij}) \in \mathbb{N} \cup \{0\}$ such that $\prod_{i,j\geq 1} (x_iy_j)^{A_{ij}} = x^{row(A)}y^{col(A)} = x^{\alpha}y^{\beta}$.

Definition 2.3. Two bases $\{u_{\lambda}\}, \{v_{\lambda}\}$ of Λ are dual if $\langle u_{\lambda}, v_{\lambda} \rangle = \delta_{\lambda\mu}$

Proposition 2.4. $\{u_{\lambda}|\lambda \vdash r\}, \{v_{\lambda}|\lambda \vdash r\}$ are bases of Λ^r (graded piece of λ of degree r).

 $\{u_{\lambda}\}, \{v_{\lambda}\} \text{ are dual bases} \Leftrightarrow \sum_{\lambda \in P} u_{\lambda}(x)v_{\lambda}(y) = \prod_{i,j \ge 1} \frac{1}{1 - x_i y_j} = \sum_{\lambda \in P} m_{\lambda}(x)h_{\lambda}(y).$

Date: October 22, 2012.

Proof. Note that the last equality has been proven in the previous proposition.

Write $m_{\lambda} = \sum_{\rho} \zeta_{\lambda\rho} u_{\rho}$ and $h_{\mu} = \sum_{\nu} \eta_{\mu\nu} v_{\nu}$. Then $\delta_{\lambda\mu} = \langle m_{\lambda}, h_{\mu} \rangle = \sum_{\rho,\nu} \zeta_{\lambda\rho} \eta_{\mu\nu} \langle u_{\rho}, v_{\nu} \rangle$ Let $A_{\rho\nu} = \langle u_{\rho}, v_{\nu} \rangle$. Fixed r, ρ and η are matrices indexed by P_{r} . $\Leftrightarrow I = \zeta A \eta^{t}$. Hence $\{u_{\lambda}\}, \{v_{\lambda}\}$ are dual. $\Leftrightarrow A = I \Leftrightarrow I = \zeta \eta^{t} \Leftrightarrow I = \zeta^{t} \eta \Leftrightarrow \delta_{\rho\nu} = \sum_{\lambda} \zeta_{\lambda\rho} \eta_{\lambda\nu}$ Now $\prod_{i,j\geq 1} \frac{1}{1-x_{i}y_{j}} = \sum_{\lambda\in P} m_{\lambda}(x)h_{\lambda}(y) = \sum_{\lambda} (\sum_{\rho} \zeta_{\lambda\rho}u_{\rho}(x))(\sum_{\nu} \eta_{\lambda\nu}v_{\nu}(y))$ $= \sum_{\rho,\nu} (\sum_{\lambda} \zeta_{\lambda\rho} \eta_{\lambda\nu})u_{\rho}(x)v_{\nu}(y) \Rightarrow \{u_{\lambda}\}, \{v_{\lambda}\}$ are dual. $\Leftrightarrow \prod_{i,j\geq 1} \frac{1}{1-x_{i}y_{j}} = \sum_{\lambda\in P} u_{\lambda}(x)v_{\lambda}(y)$.

Corollary 2.5. (Cauchy Identity) $\prod_{i,j\geq 1} \frac{1}{1-x_iy_j} = \sum_{\lambda} s_{\lambda}(x)s_{\lambda}(y)$

Remark 2.6. By Robinson-Schensted-Knuth (RSK) bijection: $\varphi : \mathcal{A} \longleftrightarrow \cup_{\lambda} SSYT(\lambda, \alpha) \times SSYT(\lambda, \beta)$ where $\mathcal{A} = \{$ matrices A of nonnegative integer entries and finite support $\}$ $row(A) = \alpha$ and $col(A) = \beta$ SSYT = Semi Standard Young Tableau.

Remark 2.7. Λ is a self-dual Hopf-algebra under the Hall inner product since $\langle \Delta f, g \otimes h \rangle = \langle f, gh \rangle$ for $f, g, h \in \Lambda$ where $\Delta : \Lambda \to \Lambda \otimes \Lambda$ is the coproduct.

3. K-Schur Functions in Nil-Coxeter Algebra

Proposition 3.1. $\sum_{\alpha:\alpha_i \leq k} \not h_{\alpha} x^{\alpha} = \sum_{\lambda:\lambda_i \leq k} \not s_{\lambda}^{(k)} \mathcal{F}_{\lambda}(x)$

Proof. $s_{\lambda}^{(k)}$ and \mathcal{F}_{λ} are dual bases.

By the Cauchy Identity, $\sum_{\lambda} s_{\lambda}^{(k)}(y) \mathcal{F}_{\lambda}(x) = \sum_{\alpha} h_{\alpha}(y) x^{\alpha}$.

For affine Stanley symmetric functions:

 $\mathcal{F}_w = \sum_{\alpha} \langle A_w, \not{h}_{\alpha} \rangle x^{\alpha} = \sum_{\lambda} \langle A_w, \not{s}_{\lambda}^{(k)} \rangle \mathcal{F}_{\lambda}(x) \text{ by previous proposition.}$ The coefficient of A_w in $\not{s}_{\lambda}^{(k)}$ equals the coefficient of \mathcal{F}_{λ} in $\mathcal{F}_w, w \in \tilde{S}_n$.

Theorem 3.2. (Lam) $a_{w\lambda} := \langle A_w, \not >_{\lambda}^{(k)} \rangle \in \mathbb{N} \cup \{0\}$

Definition 3.3. $\{s_{\lambda}^{(k)}\}$ forms a basis of $\Lambda_{(k)}$. Define $s_{\lambda}^{(k)}s_{\mu}^{(k)} = \sum_{\nu:\nu_i \leq k} c_{\lambda\mu}^{\nu,k}s_{\nu}^{(k)}$ where $c_{\lambda\mu}^{\nu,k}$ is the k-Littlewood Richardson coefficient.

For skew affine Stanley symmetric functions:

 $\mathcal{F}_{w/v} = \sum_{\alpha} \langle A_w, \not h_{\alpha} A_v \rangle x^{\alpha} = \mathcal{F}_{wv^{-1}}$ $w = uv, \ l(w) = l(u) + l(v)$

Proposition 3.4. (Coproduct) $\Delta \mathcal{F}_w = \mathcal{F}_w(X,Y) = \sum_{uv=w} \mathcal{F}_u(X)\mathcal{F}_v(Y)$

Proof. $\mathcal{F}_w(X) = \sum_{\mu:\mu_i \leq k} K_{w\mu}^{(k)} m_\mu$ and $\Delta m_\mu = \sum_{\alpha \cup \beta = \mu} m_\alpha \otimes m_\beta$ where α, β are partitions.

Then $\Delta \mathcal{F}_w = \sum_{\mu:\mu_i \leq k} K_{w\mu}^{(k)} \sum_{\alpha \cup \beta = \mu} m_\alpha \otimes m_\beta = \sum_{v,\alpha,\beta} K_{w/v,\alpha}^{(k)} K_{v,\beta}^{(k)} m_\alpha \otimes m_\beta$ = $\sum_v \mathcal{F}_{w/v} \otimes \mathcal{F}_v = \sum_{uv=w} \mathcal{F}_u \otimes \mathcal{F}_v$