LECTURE 7: THE CAUCHY IDENTITY

JASON OCHIAI

1. NONCOMMUTATIVE K-SCHUR FUNCTIONS

Definition 1.1. (Noncommutative k-Schur Function)
k
E\ ) = Z;L:Higk ’Y/\u%u where Ji, = ZJQI,\J\:T A?ec and %u = %#1%#2
Note that the notation for the k-Schur function is sg\k) = Zu:uiﬁk Yauhy-

Definition 1.2. (Affine Stanley Symmetric Function)
Fo =20 < Aps ooy -+ > x® for all w € S, where < Ay, Ay >= Gy
Fr = Ug\k), the dual k-Schur function, if w is an affine Grassmanian w <> X is k

bounded partition.

2. CAUCHY IDENTITY

Let A be the ring of symmetric functions.
R =35 T
hx = ha ha, -+ where A = (A, Ag,--+) € P

Proposition 2.1. A F r o = (a1,a9,--+) is a weak composition of r. Then
the coefficient Ny, of x® in hy = ZMH Nyumy, is the number of matrices A =
(Aij)ii,j > 1 with (A;j) € NU{0} such that row(A) = X and col(A) = a.

Proof. Term x“ in hy = hy,hy, -+ is obtained by choosing 27" x5 --- from each
hy, such that [[, 7" 25 --- = 2 This is equivalent to choosing a matrix A =
(A;;) with A;; € NU {0} with row(A) = X and col(A) = a. O

Proposition 2.2. [, ;5 ﬁ =2 uep Nopma(@)mu(y) = 3 cp ma(z)ha(y)-

Proof. The right equality is clear from the previous proposition. So it is enough
to prove the left equality. For each term of the product, we Taylor expand ﬁ
into a geometric series to obtain a product of Taylor expansions. The monomial
x%y” appearing in Hi’j>1 ﬁ corresponds to a matrix A = (A;;);4,7 > 1 with

(Ai;) € NU{0} such that HW.Zl(xiyj)Aii = grow(A)ycol(A) — poy B O
Definition 2.3. Two bases {uy}, {va} of A are dual if < uy, vy >= dxy

Proposition 2.4. {ux|A b r},{vs|A F r} are bases of A" (graded piece of \ of
degree T ).

{ur}, {va} are dual bases < Z)\ep ux(z)oa(y) = Hi,j21 % = erpmk(x)hA(y)-
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Proof. Note that the last equality has been proven in the previous proposition.
Write my = Zp COplp and by, =3 M0,
Then 5>\M =< m,\,hu >= Zp,u C)\pm“, < Up, Uy >
Let A,, =< u,, v, >. Fixed r, p and n are matrices indexed by P,. < I = (An".
Hence {ur},{va} aredual. @ A=T o T=('<T=(ns 0 =>2,0mMw

Now H1J>1m ZAerA( z)ha(y) = Z)\(Z Optip(2) (32, mawvw (v))
30 (5 o)y (@) () = {un}, o} are dual.  TT, 1oy Tt = e p un(@)ua(y).
(Il
Corollary 2.5. (Cauchy Identity) ], ;1 7=~ Myj =Y\ sa(@)sa(y)

Remark 2.6. By Robinson-Schensted-Knuth (RSK) bijection:
©: A+— UNSSYT (A o) x SSYT (A, B)
where A = { matrices A of nonnegative integer entries and finite support }
row(A) = « and col(A) =
SSYT = Semi Standard Young Tableau.

Remark 2.7. A is a self-dual Hopf-algebra under the Hall inner product since
<Af,g®h>=< f,gh > for f,g,h € A where A : A - A ® A is the coproduct.

3. K-SCHUR FUNCTIONS IN NIL-COXETER ALGEBRA
ers (k
Proposition 3.1. Za:aigk Hox® = Z/\:/\igk)’{/\ )}',\(:17)

Proof. sg\k) and F) are dual bases.
By the Cauchy Identity, >, sg\k)(y)]—} () =>", haly)z®. O
For affine Stanley symmetric functions:
Fu=4<Aupfia>2°=), < Aw,,s‘gk) > Fy(z) by previous proposition.
The coefficient of A,, in ,ég\k) equals the coefficient of F) in Fy,, w € S,

Theorem 3.2. (Lam) a,) =< Aw,,ég\k) >e NuU {0}

Deﬁnition 3.3. {sg\k)} forms a basis of Ay. Define sg\k)s,(f) =D i<k cil]fs(uk)

where cA is the k-Littlewood Richardson coefficient.

For skew affine Stanley symmetric functions:
w/v Z <Aw,%aA > @ ]: v—1
w = uv, l(w) =1l(u) + 1(v)

Proposition 3.4. (Coproduct) AF,, = Fu(X,Y) = 0w Ful(X)Fu(Y)

Proof. Fu(X) =3, 1<k Kq(ukﬁmu and Amy, = 37, 5-,, Ma ® mg where o, 3 are
partitions. B

Then AF, = Zu:m<k (k) ZaUB LMo @ mg = Zv,a,gK(k) Kl(fﬁ)ma ® mg

w/v,a

= Fuwio ®Fu =D pmw Fu ® Fy O



