LECTURE 9: STRONG MARKED TABLEAUX

ALEXANDER LANG

Proposition 0.1 (LMMS). Let τ, κ be ($k+1$)-cores, $\tau \Rightarrow_{k} \kappa$, marking of κ / τ at diagonal $j-1$, i diagonal of the tail of the marked ribbon. Let $w=w_{\tau}$ and $u=u_{\kappa}$, then the following hold:
(1) $w^{-1}(i) \leq 0<w^{-1}(j)$
(2) $t_{i j} w=u$ (note that $t_{i j}$ makes sense because the ribbon is the right length, otherwise the ribbon could be removed)
(3) the number of connected ribbons below the marked one is $\left(-w^{-1}(i)-a\right) / n$ where $a=w^{-1}(i) \bmod n$
(4) the number of connected ribbons above the marked one is $\left(w^{-1}(j)-b\right) / n$ where $b=w^{-1}(j) \bmod n$
Example 0.2. $n=3, \tau=(5,3,1), w=s_{1} s_{0} s_{2} s_{1} s_{0}$, and $w^{-1}=[4,-3,5]$ (as an exercise, start with the empty partition and apply s_{i} actions according to w to get $\tau)$. Then $t_{-1,0}=t_{2,3}=t_{5,6}=s_{2} . \kappa=t_{-1,0} \tau=(6,4,2)$, and note that $\tau \Rightarrow_{k} \kappa$.

\[

\]

There are three ways of marking, by picking any of the three new boxes labeled with x. The highest has diagonal $-1 \leftrightarrow t_{-1,0}$, the next has diagonal $2 \leftrightarrow t_{2,3}$ and the last has diagonal $5 \leftrightarrow t_{5,6}$. Note that these are different ways of writing $t_{-1,0}$. If $j=0, i=-1, t_{-1,0}$ then the number of connected components equals $1+$ number below + number above $=1+\left(-w^{-1}(i)+w^{-1}(j)-a-b\right) / n=$ $1+(6+2-0-2) / 3=3$.
Definition 0.3. $\kappa, \tau(\mathrm{k}+1)$-cores, $\tau \subseteq \kappa . \kappa / \tau$ is a strong marked horizontal strip if there exists a sequence of partitions $\tau \Rightarrow_{k} \tau^{(1)} \Rightarrow_{k} \tau^{(2)} \Rightarrow_{k} \ldots \Rightarrow_{k} \tau^{(r)}=\kappa$ with markings c_{1}, \ldots, c_{r} where c_{i} is the diagonal of the head of the marked ribbon in $\tau^{(i)} / \tau^{(i-1)}$ and $c_{1}<c_{2}<\cdots<c_{r}$.
Example 0.4. $k=3$,
is not a strong marked horizontal strip when all the boxes marked x are picked because $c_{1}=-1$ and $c_{2}=-2$. If you pick the box marked $*$ it works because $c_{1}=1, c_{2}=2, c_{3}=3$.
Remark 0.5. $w, w^{\prime} \in S_{n} \ell\left(w^{\prime}\right)=\ell(w)+1$. w^{\prime} covers w in weak (left) order iff there exists s_{i} s.t. $s_{i} w=w^{\prime}$. w^{\prime} covers w in strong (or Bruhat) order iff there exists $t_{i j}$ s.t. $t_{i j} w=w^{\prime}$.

[^0]
1. Strong Marked Tableaux and the Monomial Expansion of k-Schur

 FunctionsRecall $F_{\lambda}=\sigma_{\lambda}^{(k)}=\sum_{\mu: \mu_{1} \leq k} k_{\lambda, \mu}^{(k)} m_{\mu}$ where $k_{\lambda, \mu}^{(k)}$ is the k-Kostka matrix, which is equal to the number of weak k-tableaux of shape λ and content μ.
Example 1.1. Using k-bounded, $h_{1} \sigma_{321}^{(3)}=2 \sigma_{331}^{(3)}+\sigma_{322}^{(3)}+\sigma_{3211}^{(3)}+\sigma_{31111}^{(3)}$. Note that the multiplicities can be greater than 1 and $(3,2,1) \nsubseteq(3,1,1,1,1)$. However, if we use 4-cores we have

so we have containment as shown by the shading and we see the coefficients as the number of ribbons.

Theorem 1.2 (LLMS). λk-bounded,

$$
\begin{equation*}
h_{r} \sigma_{\lambda}^{(k)}=\sum_{\left(\kappa^{(*)}, c_{*}\right)} \sigma_{p\left(k^{(r)}\right)}^{(k)} \tag{1.1}
\end{equation*}
$$

where the sum is over all strong marked horizontal strips $\kappa^{(*)}=\left(c(\lambda)=\kappa^{(0)} \Rightarrow_{k}\right.$ $\left.\ldots \Rightarrow_{k} \kappa^{(r)}\right)$ with markings $c_{*}=\left(c_{1}<c_{2}<\ldots<c_{r}\right)$.

Definition 1.3. A strong marked tableaux of shape $\lambda \vdash m$ (k-bounded) and content $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \alpha_{1}+\ldots+\alpha_{d}=m$ is a sequence $\kappa^{(0)} \Rightarrow_{k} \kappa^{(1)} \Rightarrow_{k} \ldots \Rightarrow_{k}$ $\kappa^{(m)}=c(\lambda)$ and markings $c_{*}=\left(c_{1}, \ldots, c_{m}\right)$ s.t. $\left(\kappa^{(v)}, \ldots, \kappa^{\left(v+\alpha_{r}\right)}\right)$ with markings $\left(c_{v+1}, \ldots, c_{v+\alpha_{r}}\right) v=\alpha_{1}+\ldots+\alpha_{r-1}$ is a strong marked horizontal strip $\forall 1 \leq r \leq d$.

Remark 1.4. Strong marked covers correspond to left multiplicatin by $t_{i j}$.

$$
t_{i_{a+b} j_{a+b}} \cdots t_{i_{a+1} j_{a+1}} t_{i_{a} j_{a}}
$$

is a strong marked horizontal strip if $j_{a}<j_{a+1}<\cdots<j_{a+b}$.
Definition 1.5. $\mathbf{K}_{\lambda \mu}^{(k)}$ equals the number of strong marked tableaux of shape λ and weight μ.

In the weak case $h_{\mu}=\cdots h_{\mu_{2}} h_{\mu_{1}} s_{\emptyset}$ and you do the Pieri rule on each piece. Now $h_{\mu}=\cdots h_{\mu_{2}} h_{\mu_{1}} \sigma_{\emptyset}^{(k)}=\sum_{\lambda: \lambda_{1} \leq k} \mathbf{K}_{\lambda \mu}^{(k)} \sigma_{\lambda}^{(k)},\left\langle s_{\lambda}^{(k)}, h_{\mu}\right\rangle=\mathbf{K}_{\lambda \mu}^{(k)}$, and $s_{\lambda}^{(k)}=\sum_{\mu: \mu_{1} \leq k} \mathbf{K}_{\lambda \mu}^{(k)} m_{\mu}$.

2. Littlewood-Richardson Rule

$s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu} . c_{\lambda \mu}^{\nu}$ is the Littlewood-Richardson coefficient and equals the number of skew tableaux of shape ν / λ and weight μ s.t. the row reading word is a reverse lattice word.

Example 2.1. $\lambda=21, \mu=321, \nu=432$ then $\nu / \lambda=$| 2 | 3 | |
| :--- | :--- | :--- |
| 1 | 2 | |
| | 1 | 1 |
| | | 1 |\quad is valid.

A row reading word goes from top to bottom and left to right: 231211 . A reverse lattice word has weakly more 1 entries than 2 entries, weakly more 2 entries than 3 entries ... at each step reading from right to left (the weight needs to be a partition).

1	2		
	1	3	
	1	2	

Remark 2.2. Reverse lattice words correspond to highest weight crystal elements.

3. Crystals

Crystal elements are tableaux (or words) over an alphabet $\{1,2, \ldots, n\}$ (in this section n has no relation to k). For these crystal elements we have Kashiwara operators f_{i}, e_{i}, s_{i} for $1 \leq i<n$. In terms of words they act as follows. First successively bracket $i+1$ and $i(i+1 \rightarrow[, i \rightarrow])$ and ignore all paired $i, i+1$ as well as all $j \neq i, i+1$. What will remain is $i^{a}(i+1)^{b}$. Then

$$
\begin{align*}
& e_{i}\left(i^{a}(i+1)^{b}\right)= \begin{cases}i^{a+1}(i+1)^{b-1} & b>0 \\
0 & b=0\end{cases} \tag{3.1}\\
& f_{i}\left(i^{a}(i+1)^{b}\right)= \begin{cases}i^{a-1}(i+1)^{b+1} & a>0 \\
0 & a=0\end{cases} \tag{3.2}\\
& s_{i}\left(i^{a}(i+1)^{b}\right)=i^{b}(i+1)^{a} \tag{3.3}
\end{align*}
$$

Example 3.1. For the alphabet $\{1,2,3\}, 211 \leftrightarrow$| 2 | |
| :--- | :--- |
| 1 | 1 | . The crystal graph has $w \xrightarrow{i} w^{\prime}$ if $w^{\prime}=f_{i} w . e_{i}(211)=0$ for all i so 211 is called highest weight.

[^0]: Date: October 29, 2012.

