LECTURE 9: STRONG MARKED TABLEAUX

ALEXANDER LANG

Proposition 0.1 (LMMS). Let τ, κ be (k+1)-cores, $\tau \Rightarrow_k \kappa$, marking of κ/τ at diagonal j-1, i diagonal of the tail of the marked ribbon. Let $w = w_{\tau}$ and $u = u_{\kappa}$, then the following hold:

(1) $w^{-1}(i) \le 0 < w^{-1}(j)$

(2) $t_{ij}w = u$ (note that t_{ij} makes sense because the ribbon is the right length, otherwise the ribbon could be removed)

(3) the number of connected ribbons below the marked one is $(-w^{-1}(i) - a)/n$ where $a = w^{-1}(i) \mod n$

(4) the number of connected ribbons above the marked one is $(w^{-1}(j) - b)/n$ where $b = w^{-1}(j) \mod n$

Example 0.2. n = 3, $\tau = (5, 3, 1)$, $w = s_1 s_0 s_2 s_1 s_0$, and $w^{-1} = [4, -3, 5]$ (as an exercise, start with the empty partition and apply s_i actions according to w to get τ). Then $t_{-1,0} = t_{2,3} = t_{5,6} = s_2$. $\kappa = t_{-1,0}\tau = (6, 4, 2)$, and note that $\tau \Rightarrow_k \kappa$.

There are three ways of marking, by picking any of the three new boxes labeled with x. The highest has diagonal $-1 \leftrightarrow t_{-1,0}$, the next has diagonal $2 \leftrightarrow t_{2,3}$ and the last has diagonal $5 \leftrightarrow t_{5,6}$. Note that these are different ways of writing $t_{-1,0}$. If $j = 0, i = -1, t_{-1,0}$ then the number of connected components equals 1 + number below + number above $= 1 + (-w^{-1}(i) + w^{-1}(j) - a - b)/n = 1 + (6 + 2 - 0 - 2)/3 = 3.$

Definition 0.3. κ, τ (k+1)-cores, $\tau \subseteq \kappa$. κ/τ is a strong marked horizontal strip if there exists a sequence of partitions $\tau \Rightarrow_k \tau^{(1)} \Rightarrow_k \tau^{(2)} \Rightarrow_k \ldots \Rightarrow_k \tau^{(r)} = \kappa$ with markings c_1, \ldots, c_r where c_i is the diagonal of the head of the marked ribbon in $\tau^{(i)}/\tau^{(i-1)}$ and $c_1 < c_2 < \cdots < c_r$.

Example 0.4. k = 3,

is not a strong marked horizontal strip when all the boxes marked x are picked because $c_1 = -1$ and $c_2 = -2$. If you pick the box marked * it works because $c_1 = 1, c_2 = 2, c_3 = 3$.

Remark 0.5. $w, w' \in S_n \ \ell(w') = \ell(w) + 1$. w' covers w in weak (left) order iff there exists s_i s.t. $s_i w = w'$. w' covers w in strong (or Bruhat) order iff there exists t_{ij} s.t. $t_{ij}w = w'$.

Date: October 29, 2012.

1. Strong Marked Tableaux and the Monomial Expansion of K-Schur FUNCTIONS

Recall $F_{\lambda} = \sigma_{\lambda}^{(k)} = \sum_{\mu:\mu_1 \leq k} k_{\lambda,\mu}^{(k)} m_{\mu}$ where $k_{\lambda,\mu}^{(k)}$ is the k-Kostka matrix, which is equal to the number of weak k-tableaux of shape λ and content μ .

Example 1.1. Using k-bounded, $h_1\sigma_{321}^{(3)} = 2\sigma_{331}^{(3)} + \sigma_{322}^{(3)} + \sigma_{3211}^{(3)} + \sigma_{31111}^{(3)}$. Note that the multiplicities can be greater than 1 and $(3, 2, 1) \not\subseteq (3, 1, 1, 1, 1)$. However, if we use 4-cores we have

so we have containment as shown by the shading and we see the coefficients as the number of ribbons.

Theorem 1.2 (LLMS). λ k-bounded,

(1.1)
$$h_r \sigma_{\lambda}^{(k)} = \sum_{(\kappa^{(*)}, c_*)} \sigma_{p(k^{(r)})}^{(k)}$$

where the sum is over all strong marked horizontal strips $\kappa^{(*)} = (c(\lambda) = \kappa^{(0)} \Rightarrow_k c_k)$ $\ldots \Rightarrow_k \kappa^{(r)}$ with markings $c_* = (c_1 < c_2 < \ldots < c_r).$

Definition 1.3. A strong marked tableaux of shape $\lambda \vdash m$ (k-bounded) and content $\alpha = (\alpha_1, \ldots, \alpha_d) \alpha_1 + \ldots + \alpha_d = m$ is a sequence $\kappa^{(0)} \Rightarrow_k \kappa^{(1)} \Rightarrow_k \ldots \Rightarrow_k \kappa^{(m)} = c(\lambda)$ and markings $c_* = (c_1, \ldots, c_m)$ s.t. $(\kappa^{(v)}, \ldots, \kappa^{(v+\alpha_r)})$ with markings $(c_{v+1},\ldots,c_{v+\alpha_r})$ $v = \alpha_1 + \ldots + \alpha_{r-1}$ is a strong marked horizontal strip $\forall 1 \leq r \leq d$.

Remark 1.4. Strong marked covers correspond to left multiplication by t_{ij} .

 $t_{i_{a+b}j_{a+b}}\cdots t_{i_{a+1}j_{a+1}}t_{i_aj_a}$

is a strong marked horizontal strip if $j_a < j_{a+1} < \cdots < j_{a+b}$.

Definition 1.5. $\mathbf{K}_{\lambda\mu}^{(k)}$ equals the number of strong marked tableaux of shape λ and weight μ .

In the weak case
$$h_{\mu} = \cdots h_{\mu_2} h_{\mu_1} s_{\emptyset}$$
 and you do the Pieri rule on each piece. Now $h_{\mu} = \cdots h_{\mu_2} h_{\mu_1} \sigma_{\emptyset}^{(k)} = \sum_{\lambda:\lambda_1 \le k} \mathbf{K}_{\lambda\mu}^{(k)} \sigma_{\lambda}^{(k)}, \langle s_{\lambda}^{(k)}, h_{\mu} \rangle = \mathbf{K}_{\lambda\mu}^{(k)}, \text{ and } s_{\lambda}^{(k)} = \sum_{\mu:\mu_1 \le k} \mathbf{K}_{\lambda\mu}^{(k)} m_{\mu}.$

2. LITTLEWOOD-RICHARDSON RULE

 $s_{\lambda}s_{\mu} = \sum c_{\lambda\mu}^{\nu}s_{\nu}$. $c_{\lambda\mu}^{\nu}$ is the Littlewood-Richardson coefficient and equals the number of skew tableaux of shape ν/λ and weight μ s.t. the row reading word is a reverse lattice word.

Example 2.1. $\lambda = 21, \mu = 321, \nu = 432$ then $\nu/\lambda = \frac{2 3}{1 2}$ is valid.

A row reading word goes from top to bottom and left to right: 23 12 11. A reverse lattice word has weakly more 1 entries than 2 entries, weakly more 2 entries than 3 entries ... at each step reading from right to left (the weight needs to be a partition).

first number is 2.

Remark 2.2. Reverse lattice words correspond to highest weight crystal elements.

3. Crystals

Crystal elements are tableaux (or words) over an alphabet $\{1, 2, \ldots, n\}$ (in this section n has no relation to k). For these crystal elements we have Kashiwara operators f_i, e_i, s_i for $1 \leq i < n$. In terms of words they act as follows. First successively bracket i + 1 and i $(i + 1 \rightarrow [, i \rightarrow])$ and ignore all paired i, i + 1 as well as all $j \neq i, i + 1$. What will remain is $i^a(i + 1)^b$. Then

(3.1)
$$e_i(i^a(i+1)^b) = \begin{cases} i^{a+1}(i+1)^{b-1} & b > 0\\ 0 & b = 0 \end{cases}$$

(3.2)
$$f_i(i^a(i+1)^b) = \begin{cases} i^{a-1}(i+1)^{b+1} & a > 0\\ 0 & a = 0 \end{cases}$$

(3.3)
$$s_i(i^a(i+1)^b) = i^b(i+1)^a$$

Example 3.1. For the alphabet $\{1, 2, 3\}$, $211 \leftrightarrow \boxed{2}$. The crystal graph has $w \xrightarrow{i} w'$ if $w' = f_i w$. $e_i(211) = 0$ for all i so 211 is called highest weight.