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Early history - Representation theory

Theorem (Frobenius, 1900)

The map from class functions on Sn to
symmetric functions given by

f 7→ 1

n!

∑
w∈Sn

f (w)pλ(w)

sends

( trace function on λ-irrep of Sn ) 7→ sλ

Corollary

sλ =
∑
µ

1

zµ
χλ(µ)pµ pµ =

∑
λ

χλ(µ)sλ

Ferdinand
Frobenius
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Early History - Combinatorics

Theorem (Littlewood-Richardson, 1934)

pr sµ =
∑
λ

(−1)ht(λ/µ)sλ

where the summation is over all λ such that
λ/µ is a border strip of size r .

Corollary

Iteration gives

χλ(µ) =
∑
T

(−1)ht(T )

where the sum is over all border strip tableaux
of shape λ and type µ.
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Early History - Further work

I Francis Murnaghan (1937) On representations of the
symmetric group

I Tadasi Nakayama (1941) On some modular properties of
irreducible representations of a symmetric group
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Border Strips

A border strip of size r is a connected skew partition consisting of
r boxes and containing no 2× 2 squares.

Example

(4, 3, 3)/(2, 2) is a border strip of size 6:

Definition

ht (λ/µ) = # vertical dominos in λ/µ

ht

  = 2
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The Murnaghan-Nakayama rule

Theorem

pr sµ =
∑
λ

(−1)ht(λ/µ)sλ

sum over all λ such that λ/µ a border strip of size r .

Example

p3s2,1 = s2,1,1,1,1 − s2,2,2 − s3,3 + s5,1

•
•
•

−

• •
•
−

• •
• + • • •
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Border strip tableaux

Definition
A border strip tableau of shape λ is a filling of λ satisfying:

I Restriction to any single entry is a border strip

I Restriction to first k entries is partition shape for every k

Type of a border strip tableau: (# of boxes labelled i)i

Height of a border strip tableau: sum of heights of border strips

Example
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ht(T ) = 2 + 0 + 2 = 4
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The affine Murnaghan-Nakayama rule

Theorem (Bandlow-S-Zabrocki, 2010)

For r ≤ k,

pr s(k)
µ =

∑
λ

(−1)ht(λ/µ)s
(k)
λ

where the summation is over all λ such that
λ/µ is a k-border strip of size r .

Jason Bandlow
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k-Schur functions

k-Schur functions were first introduced in 2000 by Luc Lapointe,
Alain Lascoux and Jennifer Morse.

hr s
(k)
λ (x) =

∑
µ

s(k)
µ (x) Pieri rule

where the sum is over those µ such that c(µ)/c(λ) is a horizontal
strip.
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k-Schur functions

Here we use the definition due to Lapointe and Morse in 2004:

hr s
(k)
λ (x) =

∑
µ

s(k)
µ (x) Pieri rule

where the sum is over those µ such that c(µ)/c(λ) is a horizontal
strip.



Partitions and cores

k-bounded partitions: First part ≤ k

k + 1-cores: No hook length = k + 1

Bijection: Slide rows with big hooks

Example

k = 3

2 1
3 2
5 4 1
6 5 2 →
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k-conjugate

The k-conjugate of a k-bounded partition λ is found by

λ→ c(λ)→ c(λ)′ → λ(k)

Example

k = 3
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3 2

3 2 1
3 2 1 →

1
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content
When k =∞, the content of a cell in a diagram is

(column index)− (row index)

Example

−3−2

−2−1

−1 0 1 2

0 1 2 3

For k <∞ we use the residue mod k + 1 of the associated core

Example

1 2
2 3
3 0 1 2 3
0 1 2 3 0 1 2 3



content
When k =∞, the content of a cell in a diagram is

(column index)− (row index)

Example

−3−2

−2−1

−1 0 1 2

0 1 2 3

For k <∞ we use the residue mod k + 1 of the associated core

Example

1 2
2 3
3 0 1 2 3
0 1 2 3 0 1 2 3



k-connected
A skew k + 1 core is k-connected if the residues form a proper
subinterval of the numbers {0, . . . , k}, considered on a circle.

Example

A 3-connected skew core:

0
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0
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2 3 0

A skew core which is not 3-connected:
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k-border strips
The skew of two k-bounded partitions λ/µ is a k-border strip of
size r if it satisfies the following conditions:

I (size) |λ/µ| = r
I (containment) µ ⊂ λ and µ(k) ⊂ λ(k)

I (connectedness) c(λ)/c(µ) is k-connected
I (first ribbon condition) ht(λ/µ) + ht

(
λ(k)/µ(k)

)
= r − 1

I (second ribbon condition) c(λ)/c(µ) contains no 2× 2 squares

Example

k = 3, r = 2

λ/µ =

•

•
λ(3)/µ(3) =

•
•

c(λ)/c(µ) =

2

2 3
2 3
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k-ribbons at ∞

At k =∞ the conditions

I (size) |λ/µ| = r

I (containment) µ ⊂ λ and µ(k) ⊂ λ(k)

I (connectedness) c(λ)/c(µ) is k-connected

I (first ribbon condition) ht(λ/µ) + ht
(
λ(k)/µ(k)

)
= r − 1

I (second ribbon condition) c(λ)/c(µ) contains no 2× 2 squares

Proposition

At k =∞ the first four conditions imply the fifth.
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The ribbon statistic at k =∞

Let λ/µ be connected of size r , and

ht (λ/µ) +ht
(
λ′/µ′

)
= #vert. dominos + #horiz. dominos = r−1

Then λ/µ is a ribbon

Example

• • •
• • •

•
•

(3 + 1) + (3 + 1) = 8 6= 7
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Recap for general k

Theorem (Bandlow-S-Zabrocki, 2010)

For r ≤ k,

pr s(k)
µ =

∑
λ

(−1)ht(λ/µ)s
(k)
λ

where the summation is over all λ such that λ/µ satifies

I (size) |λ/µ| = r

I (containment) µ ⊂ λ and µ(k) ⊂ λ(k)

I (connectedness) c(λ)/c(µ) is k-connected

I (first ribbon condition) ht(λ/µ) + ht
(
λ(k)/µ(k)

)
= r − 1

I (second ribbon condition) c(λ)/c(µ) is a ribbon

Conjecture

The first four conditions imply the fifth.

This has been verified for all k, r ≤ 11, all µ of size ≤ 12 and all λ
of size |µ|+ r .
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The non-commutative setting

Theorem (Fomin-Greene, 1998)

Any algebra with a linearly ordered set of
generators u1, . . . , un satisfying certain
relations contains a homomorphic image of Λ.

Example

The type A nilCoxeter algebra. Generators
s1, . . . , sn−1. Relations

I s2
i = 0

I si si+1si = si+1si si+1

I si sj = sjsi for |i − j | > 2.

Sergey Fomin

Curtis Greene



The affine nilCoxeter algebra

The affine nilCoxeter algebra Ak is the Z-algebra generated by
u0, . . . , uk with relations

I u2
i = 0 for all i ∈ [0, k]

I uiui+1ui = ui+1uiui+1 for all i ∈ [0, k]

I uiuj = ujui for all i , j with |i − j | > 1

All indices are taken modulo k + 1 in this definition.



A word in the affine nilCoxeter algebra is called cyclically
decreasing if

I its length is ≤ k

I each generator appears at most once

I if ui and ui−1 appear, then ui occurs first (as usual, the
indices should be taken mod k).

As elements of the nilCoxeter algebra, cyclically decreasing words
are completely determined by their support.

Example

k = 6

(u0u6)(u4u3u2) = (u4u3u2)(u0u6) = u4u0u3u6u2 = · · ·



Noncommutative h functions

For a subset S ⊂ [0, k], we write uS for the unique cyclically
decreasing nilCoxeter element with support S .
For r ≤ k we define

hr =
∑
|S |=r

uS

Theorem (Lam, 2005)

The elements {h1, . . . ,hk} commute and are
algebraically independent.

This immediately implies that the algebra
Q[h1, . . . ,hk ] ∼= Q[h1, . . . , hk ] where the latter functions are the
usual homogeneous symmetric functions.
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Noncommutative symmetric functions

We can now define non-commutative analogs of symmetric
functions by their relationship with the h basis.

r∑
i=0

(−1)ier−ihi = 0

pr = rhr −
r−1∑
i=1

pihr−i

sλ = det (hλi−i+j)

s
(k)
λ by the k-Pieri rule
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k-Pieri rule

The k-Pieri rule is

hrs
(k)
λ =

∑
µ

s(k)
µ

where the sum is over all k-bounded partitions µ such that µ/λ is
a horizontal strip of length r and µ(k)/λ(k) is a vertical strip of
length r . This can be re-written as

hrs
(k)
λ =

∑
|S |=r

s
(k)
uS ·λ



The action on cores

There is an action of Ak on k + 1-cores given by

ui · c =

{
0 no addable i-residue

c ∪ all addable i-residues otherwise

Example

k = 4

u2u0·

0
1 2
2 3 0
3 0 1 2 3 0
0 1 2 3 0 1 2 3 0 = u2·

3
0 1
1 2 3
2 3 0 1
3 0 1 2 3 0 1
0 1 2 3 0 1 2 3 0 1 = 0
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Multiplication rule

A corollary of the k-Pieri rule is that if f is any non-commutative
symmetric function of the form

f =
∑
u

cuu

then

fs
(k)
λ =

∑
u

cus
(k)
u·λ



Hook words

Fomin and Greene define a hook word in the context of an algebra
with a totally ordered set of generators to be a word of the form

ua1 · · · uar ub1 · · · ubs

where
a1 > a2 > · · · > ar > b1 ≤ b2 ≤ · · · ≤ bs

To extend this notion to Ak which has a cyclically ordered set of
generators, we only consider words whose support is a proper
subset of [0, · · · , k].



Hook words

There is a canonical order on any proper subset of [0, k] given by
thinking of the smallest (in integer order) element which does not
appear as the smallest element of the circle.

Example

For {0, 1, 3, 4, 6} ⊂ [0, 6], we have the order

2 < 3 < 4 < 5 < 6 < 0 < 1

Hook words in Ak have (support = proper subset) and form

ua1 · · · uar ub1 · · · ubs

where
a1 > a2 > · · · > ar > b1 < b2 < · · · < bs

Hook word representations are unique; therefore the number of
ascents in a hook word is well-defined as s − 1.
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The non-commutative rule

Theorem (Bandlow-S-Zabrocki, 2010)

prs
(k)
µ =

∑
w

(−1)asc(w)s
(k)
w ·µ

where the sum is over all words in the affine nilCoxeter algebra
satisfying

I (size) len(w) = r

I (containment) w · µ 6= 0

I (connectedness) w is a k-connected word

I (ribbon condition) w is a hook word



Comparison between characterizations

Characterize the image of the map (w → w · µ = λ):

conditions on words: conditions on shapes:

I (size)
len(w) = r

I (size)
|λ/µ| = r

I (containment)
w · µ 6= 0

I (containment)
µ ⊂ λ and µ(k) ⊂ λ(k)

I (connectedness)
w is a k-connected
word

I (connectedness)
c(λ)/c(µ) is k-connected

I (ribbon condition)
w is a hook word

I (first ribbon condition)
ht(λ/µ) + ht

(
λ(k)/µ(k)

)
= r − 1

I (second ribbon condition)
c(λ)/c(µ) is a ribbon
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Iteration

Iterating the rule

pr s
(k)
λ =

∑
µ

(−1)ht(µ/λ)s(k)
µ

gives

pλ =
∑
T

(−1)ht(T )s
(k)
sh(T ) =

∑
µ

χ̄
(k)
λ (µ)s(k)

µ

where the sum is over all k-ribbon tableaux, defined analogously to
the classical case.



Duality

In the classical case, the inner product immediately gives

pλ =
∑
µ

χλ(µ)sµ ⇐⇒ sµ =
∑
λ

1

zλ
χλ(µ)pλ

In the affine case we have

pλ =
∑
µ

χ̄
(k)
λ (µ)s(k)

µ ⇐⇒ S(k)
µ =

∑
λ

1

zλ
χ̄

(k)
λ pλ

We would like the inverse matrix

s
(k)
λ =

∑
µ

1

zµ
χ

(k)
λ (µ)pµ
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Conceptual reasons

Λ ring of symmetric functions
Pk set of partitions {λ | λ1 ≤ k}

Λ(k) := C〈hλ | λ ∈ Pk〉 = C〈eλ | λ ∈ Pk〉 = C〈pλ | λ ∈ Pk〉

Λ(k) := C〈mλ | λ ∈ Pk〉

k-Schur functions {s(k)
λ | λ ∈ Pk} form basis of Λ(k)

(Schubert class of cohomology of affine Grassmannian H∗(Gr))

dual k-Schur functions {S(k)
λ | λ ∈ P

k} form basis of Λ(k)

(Schubert class of homology of affine Grassmannian H∗(Gr))
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Back to Frobenius

For V any Sn representation, we can find the
decomposition into irreducible submodules
with ∑

µ

1

zµ
χV (µ)pµ =

∑
λ

cλsλ

So finding

s
(k)
λ =

∑
µ

1

zµ
χ

(k)
λ (µ)pµ

would potentially allow one to verify that a
given representation had a character equal to
k-Schur functions.

Full paper available at arXiv:1004.8886
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