A Murnaghan-Nakayama Rule for k-Schur Functions

Anne Schilling (joint work with Jason Bandlow, Mike Zabrocki)

University of California, Davis
October 31, 2012

Outline

History

The Murnaghan-Nakayama rule

The affine Murnaghan-Nakayama rule

Non-commutative symmetric functions

The dual formulation

Early history - Representation theory

Theorem (Frobenius, 1900)
The map from class functions on S_{n} to symmetric functions given by

$$
f \mapsto \frac{1}{n!} \sum_{w \in S_{n}} f(w) p_{\lambda(w)}
$$

sends
(trace function on λ-irrep of S_{n}) $\mapsto s_{\lambda}$

Ferdinand
Frobenius

Early history - Representation theory

Theorem (Frobenius, 1900)
The map from class functions on S_{n} to symmetric functions given by

$$
f \mapsto \frac{1}{n!} \sum_{w \in S_{n}} f(w) p_{\lambda(w)}
$$

sends

(trace function on λ-irrep of S_{n}) $\mapsto s_{\lambda}$

Corollary

$$
s_{\lambda}=\sum_{\mu} \frac{1}{z_{\mu}} \chi_{\lambda}(\mu) p_{\mu} \quad p_{\mu}=\sum_{\lambda} \chi_{\lambda}(\mu) s_{\lambda}
$$

Early History - Combinatorics

Theorem (Littlewood-Richardson, 1934)

$$
p_{r} s_{\mu}=\sum_{\lambda}(-1)^{\mathrm{ht}(\lambda / \mu)} s_{\lambda}
$$

where the summation is over all λ such that
Dudley Littlewood
λ / μ is a border strip of size r.

Archibald
Richardson

Early History - Combinatorics

Theorem (Littlewood-Richardson, 1934)

$$
p_{r} s_{\mu}=\sum_{\lambda}(-1)^{\mathrm{ht}(\lambda / \mu)} s_{\lambda}
$$

where the summation is over all λ such that
Dudley Littlewood λ / μ is a border strip of size r.

Corollary
Iteration gives

$$
\chi_{\lambda}(\mu)=\sum_{T}(-1)^{\mathrm{ht}(T)}
$$

where the sum is over all border strip tableaux of shape λ and type μ.

Early History - Further work

- Francis Murnaghan (1937) On representations of the symmetric group

Early History - Further work

- Francis Murnaghan (1937) On representations of the symmetric group

- Tadasi Nakayama (1941) On some modular properties of irreducible representations of a symmetric group

Border Strips

A border strip of size r is a connected skew partition consisting of r boxes and containing no 2×2 squares.

Example

$(4,3,3) /(2,2)$ is a border strip of size 6 :

Border Strips

A border strip of size r is a connected skew partition consisting of r boxes and containing no 2×2 squares.

Example

$(4,3,3) /(2,2)$ is a border strip of size 6 :

Definition
ht $(\lambda / \mu)=\#$ vertical dominos in λ / μ

Border Strips

A border strip of size r is a connected skew partition consisting of r boxes and containing no 2×2 squares.

Example

$(4,3,3) /(2,2)$ is a border strip of size 6 :

Definition
ht $(\lambda / \mu)=\#$ vertical dominos in λ / μ

The Murnaghan-Nakayama rule

Theorem

$$
p_{r} s_{\mu}=\sum_{\lambda}(-1)^{h t(\lambda / \mu)} s_{\lambda}
$$

sum over all λ such that λ / μ a border strip of size r.

The Murnaghan-Nakayama rule

Theorem

$$
p_{r} s_{\mu}=\sum_{\lambda}(-1)^{h t(\lambda / \mu)} s_{\lambda}
$$

sum over all λ such that λ / μ a border strip of size r.
Example

$$
p_{3} s_{2,1}=
$$

The Murnaghan-Nakayama rule

Theorem

$$
p_{r} s_{\mu}=\sum_{\lambda}(-1)^{h t(\lambda / \mu)} s_{\lambda}
$$

sum over all λ such that λ / μ a border strip of size r.
Example

$$
p_{3} s_{2,1}=s_{2,1,1,1,1}
$$

The Murnaghan-Nakayama rule

Theorem

$$
p_{r} s_{\mu}=\sum_{\lambda}(-1)^{h t(\lambda / \mu)} s_{\lambda}
$$

sum over all λ such that λ / μ a border strip of size r.
Example

$$
p_{3} s_{2,1}=s_{2,1,1,1,1}-s_{2,2,2}
$$

The Murnaghan-Nakayama rule

Theorem

$$
p_{r} s_{\mu}=\sum_{\lambda}(-1)^{h t(\lambda / \mu)} s_{\lambda}
$$

sum over all λ such that λ / μ a border strip of size r.
Example

$$
p_{3} s_{2,1}=s_{2,1,1,1,1}-s_{2,2,2}-s_{3,3}
$$

The Murnaghan-Nakayama rule

Theorem

$$
p_{r} s_{\mu}=\sum_{\lambda}(-1)^{h t(\lambda / \mu)} s_{\lambda}
$$

sum over all λ such that λ / μ a border strip of size r.
Example

$$
p_{3} s_{2,1}=s_{2,1,1,1,1}-s_{2,2,2}-s_{3,3}+s_{5,1}
$$

Border strip tableaux

Definition

A border strip tableau of shape λ is a filling of λ satisfying:

- Restriction to any single entry is a border strip
- Restriction to first k entries is partition shape for every k

Type of a border strip tableau: (\# of boxes labelled $i)_{i}$ Height of a border strip tableau: sum of heights of border strips

Border strip tableaux

Definition

A border strip tableau of shape λ is a filling of λ satisfying:

- Restriction to any single entry is a border strip
- Restriction to first k entries is partition shape for every k

Type of a border strip tableau: (\# of boxes labelled i) ${ }_{i}$ Height of a border strip tableau: sum of heights of border strips

Example

Border strip tableaux

Definition

A border strip tableau of shape λ is a filling of λ satisfying:

- Restriction to any single entry is a border strip
- Restriction to first k entries is partition shape for every k

Type of a border strip tableau: (\# of boxes labelled $i)_{i}$ Height of a border strip tableau: sum of heights of border strips

Example

$$
\left.T=\begin{array}{|l|l|l|}
\hline 1 & 3 & 3 \\
\hline 1 & 2 & 3 \\
\hline & 1 & 3
\end{array}\right\} \quad \begin{aligned}
& \operatorname{type}(T)=(4,1,5) \\
& \hline
\end{aligned} \quad \operatorname{ht}(T)=2+0+2=4
$$

Border strip tableaux

Definition

A border strip tableau of shape λ is a filling of λ satisfying:

- Restriction to any single entry is a border strip
- Restriction to first k entries is partition shape for every k

Type of a border strip tableau: (\# of boxes labelled $i)_{i}$ Height of a border strip tableau: sum of heights of border strips

Example

$$
\left.T=\begin{array}{|l|l|l|}
\hline 1 & 3 & 3 \\
\hline 1 & 2 & 3 \\
\hline & 1 & 3
\end{array}\right\} \quad \begin{aligned}
& \operatorname{type}(T)=(4,1,5) \\
& \hline
\end{aligned} \quad \operatorname{ht}(T)=2+0+2=4
$$

Border strip tableaux

Definition

A border strip tableau of shape λ is a filling of λ satisfying:

- Restriction to any single entry is a border strip
- Restriction to first k entries is partition shape for every k

Type of a border strip tableau: (\# of boxes labelled $i)_{i}$ Height of a border strip tableau: sum of heights of border strips

Example

$$
T=\begin{array}{|l|l|l}
\hline 1 & 3 & 3 \\
\hline 1 & 2 & 3 \\
\hline & 1 & 3 \\
\hline & 3 & 3
\end{array} \quad \operatorname{type}(T)=(4,1,5)
$$

The affine Murnaghan-Nakayama rule

Theorem (Bandlow-S-Zabrocki, 2010)
For $r \leq k$,

$$
p_{r} s_{\mu}^{(k)}=\sum_{\lambda}(-1)^{h t(\lambda / \mu)} s_{\lambda}^{(k)}
$$

where the summation is over all λ such that λ / μ is a k-border strip of size r.

The affine Murnaghan-Nakayama rule

Theorem (Bandlow-S-Zabrocki, 2010)
For $r \leq k$,

$$
p_{r} s_{\mu}^{(k)}=\sum_{\lambda}(-1)^{\operatorname{ht}(\lambda / \mu)} s_{\lambda}^{(k)}
$$

where the summation is over all λ such that λ / μ is a k-border strip of size r.

Jason Bandlow

Mike Zabrocki

k-Schur functions

k-Schur functions were first introduced in 2000 by Luc Lapointe, Alain Lascoux and Jennifer Morse.

k-Schur functions

k-Schur functions were first introduced in 2000 by Luc Lapointe, Alain Lascoux and Jennifer Morse.

$$
s_{\lambda}^{(k)}(x ; t)=\sum_{T \in A_{\lambda}^{(k)}} t^{c h(T)} s_{s h(T)}
$$

k-Schur functions

Here we use the definition due to Lapointe and Morse in 2004:

$$
h_{r} s_{\lambda}^{(k)}(x)=\sum_{\mu} s_{\mu}^{(k)}(x) \quad \text { Pieri rule }
$$

where the sum is over those μ such that $\mathfrak{c}(\mu) / \mathfrak{c}(\lambda)$ is a horizontal strip.

Partitions and cores

k-bounded partitions: First part $\leq k$
$k+1$-cores: No hook length $=k+1$

Partitions and cores

k-bounded partitions: First part $\leq k$
$k+1$-cores: No hook length $=k+1$
Bijection: Slide rows with big hooks

Partitions and cores

k-bounded partitions: First part $\leq k$
$k+1$-cores: No hook length $=k+1$
Bijection: Slide rows with big hooks
Example
$k=3$

2	1			
3	2			
5	4			
	1			
6	5	$\quad \rightarrow$		
:---	:---			

Partitions and cores

k-bounded partitions: First part $\leq k$
$k+1$-cores: No hook length $=k+1$
Bijection: Slide rows with big hooks
Example
$k=3$

2	1
3	2
5	
5	4

2	1	
	2	
	5	2
	1	
	6	3

Partitions and cores

k-bounded partitions: First part $\leq k$
$k+1$-cores: No hook length $=k+1$
Bijection: Slide rows with big hooks
Example
$k=3$

2	1
3	2
5	4
	1
6	5

2	1			
	2			
		3	2	
		1		
		4	3	

Partitions and cores

k-bounded partitions: First part $\leq k$
$k+1$-cores: No hook length $=k+1$
Bijection: Slide rows with big hooks
Example
$k=3$

2	1
3	2
5	4
	1
6	5

2					
	2				
		3	2	1	
			4	3	1

Partitions and cores

k-bounded partitions: First part $\leq k$
$k+1$-cores: No hook length $=k+1$
Bijection: Slide rows with big hooks
Example
$k=3$

2	1
3	2
5	4
1	
6	5

Partitions and cores

k-bounded partitions: First part $\leq k$
$k+1$-cores: No hook length $=k+1$
Bijection: Slide rows with big hooks
Example
$k=3$

2	1
3	2
5	
5	4
1	
6	5

2	1					
3	2					
		3	2	1		

Partitions and cores

k-bounded partitions: First part $\leq k$
$k+1$-cores: No hook length $=k+1$
Bijection: Slide rows with big hooks
Example
$k=3$

2	1
3	2
3	
5	4
1	
6	5

2	1						
3	2						
7	6	3	2	1			
	110	7	6	5	3	2	1

k-conjugate

The k-conjugate of a k-bounded partition λ is found by

$$
\lambda \rightarrow \mathfrak{c}(\lambda) \rightarrow \mathfrak{c}(\lambda)^{\prime} \rightarrow \lambda^{(k)}
$$

k-conjugate

The k-conjugate of a k-bounded partition λ is found by

$$
\lambda \rightarrow \mathfrak{c}(\lambda) \rightarrow \mathfrak{c}(\lambda)^{\prime} \rightarrow \lambda^{(k)}
$$

Example $k=3$

k-conjugate

The k-conjugate of a k-bounded partition λ is found by

$$
\lambda \rightarrow \mathfrak{c}(\lambda) \rightarrow \mathfrak{c}(\lambda)^{\prime} \rightarrow \lambda^{(k)}
$$

Example $k=3$

k-conjugate

The k-conjugate of a k-bounded partition λ is found by

$$
\lambda \rightarrow \mathfrak{c}(\lambda) \rightarrow \mathfrak{c}(\lambda)^{\prime} \rightarrow \lambda^{(k)}
$$

Example $k=3$

2	1					
3	2					
		3	2	1		

k-conjugate

The k-conjugate of a k-bounded partition λ is found by

$$
\lambda \rightarrow \mathfrak{c}(\lambda) \rightarrow \mathfrak{c}(\lambda)^{\prime} \rightarrow \lambda^{(k)}
$$

Example $k=3$

content

When $k=\infty$, the content of a cell in a diagram is
(column index) - (row index)

Example

\[

\]

content

When $k=\infty$, the content of a cell in a diagram is
(column index) - (row index)

Example

\[

\]

For $k<\infty$ we use the residue $\bmod k+1$ of the associated core Example

1	2						
2	3						
3	0	1	2	3			
0	1	2	3	0	1	2	3

k-connected

A skew $k+1$ core is k-connected if the residues form a proper subinterval of the numbers $\{0, \ldots, k\}$, considered on a circle.

k-connected

A skew $k+1$ core is k-connected if the residues form a proper subinterval of the numbers $\{0, \ldots, k\}$, considered on a circle.

Example

A 3-connected skew core:

0								
1	2							
2	3	0						
3	0	1	2	3	0			
0	1	2	3	0	1	2	3	0

k-connected

A skew $k+1$ core is k-connected if the residues form a proper subinterval of the numbers $\{0, \ldots, k\}$, considered on a circle.

Example

A 3-connected skew core:

k-connected

A skew $k+1$ core is k-connected if the residues form a proper subinterval of the numbers $\{0, \ldots, k\}$, considered on a circle.

Example

A 3-connected skew core:

A skew core which is not 3-connected:

0	0							
1	2							
2	3	0						
3	0	1	2	3	0			
0	1	2	3	0	1	2	3	0

k-connected

A skew $k+1$ core is k-connected if the residues form a proper subinterval of the numbers $\{0, \ldots, k\}$, considered on a circle.

Example

A 3-connected skew core:

A skew core which is not 3-connected:

k-border strips

The skew of two k-bounded partitions λ / μ is a k-border strip of size r if it satisfies the following conditions:

- (size) $|\lambda / \mu|=r$
- (containment) $\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
- (connectedness) $\mathfrak{c}(\lambda) / \mathfrak{c}(\mu)$ is k-connected
- (first ribbon condition) $\operatorname{ht}(\lambda / \mu)+\operatorname{ht}\left(\lambda^{(k)} / \mu^{(k)}\right)=r-1$
- (second ribbon condition) $\mathfrak{c}(\lambda) / \mathfrak{c}(\mu)$ contains no 2×2 squares

k-border strips

The skew of two k-bounded partitions λ / μ is a k-border strip of size r if it satisfies the following conditions:

- (size) $|\lambda / \mu|=r$
- (containment) $\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
- (connectedness) $\mathfrak{c}(\lambda) / \mathfrak{c}(\mu)$ is k-connected
- (first ribbon condition) $\operatorname{ht}(\lambda / \mu)+h t\left(\lambda^{(k)} / \mu^{(k)}\right)=r-1$
- (second ribbon condition) $\mathfrak{c}(\lambda) / \mathfrak{c}(\mu)$ contains no 2×2 squares

Example
$k=3, r=2$

$\lambda^{(3)} / \mu^{(3)}$
$\mu^{(3)}$
$=$

k-ribbons at ∞

At $k=\infty$ the conditions

- (size) $|\lambda / \mu|=r$
- (containment) $\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
- (connectedness) $\mathfrak{c}(\lambda) / \mathfrak{c}(\mu)$ is k-connected
- (first ribbon condition) $\operatorname{ht}(\lambda / \mu)+h t\left(\lambda^{(k)} / \mu^{(k)}\right)=r-1$
- (second ribbon condition) $\mathfrak{c}(\lambda) / \mathfrak{c}(\mu)$ contains no 2×2 squares

k-ribbons at ∞

At $k=\infty$ the conditions become

- (size) $|\lambda / \mu|=r$
- (containment) $\mu \subset \lambda$
- (connectedness) λ / μ is connected
- (first ribbon condition) $h t(\lambda / \mu)+\operatorname{ht}\left(\lambda^{\prime} / \mu^{\prime}\right)=r-1$
- (second ribbon condition) λ / μ contains no 2×2 squares

k-ribbons at ∞

At $k=\infty$ the conditions become

- (size) $|\lambda / \mu|=r$
- (containment) $\mu \subset \lambda$
- (connectedness) λ / μ is connected
- (first ribbon condition) $h t(\lambda / \mu)+h t\left(\lambda^{\prime} / \mu^{\prime}\right)=r-1$
- (second ribbon condition) λ / μ contains no 2×2 squares

Proposition
At $k=\infty$ the first four conditions imply the fifth.

The ribbon statistic at $k=\infty$

Let λ / μ be connected of size r, and
ht $(\lambda / \mu)+$ ht $\left(\lambda^{\prime} / \mu^{\prime}\right)=$ \#vert. dominos + \#horiz. dominos $=r-1$
Then λ / μ is a ribbon

The ribbon statistic at $k=\infty$

Let λ / μ be connected of size r, and
ht $(\lambda / \mu)+$ ht $\left(\lambda^{\prime} / \mu^{\prime}\right)=$ \#vert. dominos + \#horiz. dominos $=r-1$
Then λ / μ is a ribbon
Example

$$
3+3=6
$$

The ribbon statistic at $k=\infty$

Let λ / μ be connected of size r, and
ht $(\lambda / \mu)+\operatorname{ht}\left(\lambda^{\prime} / \mu^{\prime}\right)=$ \#vert. dominos + \#horiz. dominos $=r-1$
Then λ / μ is a ribbon
Example

$$
(3+1)+(3+1)=8 \neq 7
$$

Recap for general k

Theorem (Bandlow-S-Zabrocki, 2010)
For $r \leq k$,

$$
p_{r} s_{\mu}^{(k)}=\sum_{\lambda}(-1)^{\mathrm{ht}(\lambda / \mu)} s_{\lambda}^{(k)}
$$

where the summation is over all λ such that λ / μ satifies

- (size) $|\lambda / \mu|=r$
- (containment) $\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
- (connectedness) $\mathfrak{c}(\lambda) / \mathfrak{c}(\mu)$ is k-connected
- (first ribbon condition) $\operatorname{ht}(\lambda / \mu)+h t\left(\lambda^{(k)} / \mu^{(k)}\right)=r-1$
- (second ribbon condition) $\mathfrak{c}(\lambda) / \mathfrak{c}(\mu)$ is a ribbon

Recap for general k

Theorem (Bandlow-S-Zabrocki, 2010)
For $r \leq k$,

$$
p_{r} s_{\mu}^{(k)}=\sum_{\lambda}(-1)^{h \mathrm{tt}(\lambda / \mu)} s_{\lambda}^{(k)}
$$

where the summation is over all λ such that λ / μ satifies

- (size) $|\lambda / \mu|=r$
- (containment) $\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
- (connectedness) $\mathfrak{c}(\lambda) / \mathfrak{c}(\mu)$ is k-connected
- (first ribbon condition) $\operatorname{ht}(\lambda / \mu)+h t\left(\lambda^{(k)} / \mu^{(k)}\right)=r-1$
- (second ribbon condition) $\mathfrak{c}(\lambda) / \mathfrak{c}(\mu)$ is a ribbon

Conjecture

The first four conditions imply the fifth.

Recap for general k

Theorem (Bandlow-S-Zabrocki, 2010)
For $r \leq k$,

$$
p_{r} s_{\mu}^{(k)}=\sum_{\lambda}(-1)^{h \mathrm{tt}(\lambda / \mu)} s_{\lambda}^{(k)}
$$

where the summation is over all λ such that λ / μ satifies

- (size) $|\lambda / \mu|=r$
- (containment) $\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
- (connectedness) $\mathfrak{c}(\lambda) / \mathfrak{c}(\mu)$ is k-connected
- (first ribbon condition) $\operatorname{ht}(\lambda / \mu)+h t\left(\lambda^{(k)} / \mu^{(k)}\right)=r-1$
- (second ribbon condition) $\mathfrak{c}(\lambda) / \mathfrak{c}(\mu)$ is a ribbon

Conjecture

The first four conditions imply the fifth.
This has been verified for all $k, r \leq 11$, all μ of size ≤ 12 and all λ of size $|\mu|+r$.

The non-commutative setting

Sergey Fomin

Theorem (Fomin-Greene, 1998)
Any algebra with a linearly ordered set of generators u_{1}, \ldots, u_{n} satisfying certain relations contains a homomorphic image of Λ.

Example

The type A nilCoxeter algebra. Generators s_{1}, \ldots, s_{n-1}. Relations

- $s_{i}^{2}=0$
- $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$
- $s_{i} s_{j}=s_{j} s_{i}$ for $|i-j|>2$.

Curtis Greene

The affine nilCoxeter algebra

The affine nilCoxeter algebra A_{k} is the \mathbb{Z}-algebra generated by u_{0}, \ldots, u_{k} with relations

- $u_{i}^{2}=0$ for all $i \in[0, k]$
- $u_{i} u_{i+1} u_{i}=u_{i+1} u_{i} u_{i+1}$ for all $i \in[0, k]$
- $u_{i} u_{j}=u_{j} u_{i}$ for all i, j with $|i-j|>1$

All indices are taken modulo $k+1$ in this definition.

A word in the affine nilCoxeter algebra is called cyclically decreasing if

- its length is $\leq k$
- each generator appears at most once
- if u_{i} and u_{i-1} appear, then u_{i} occurs first (as usual, the indices should be taken $\bmod k$).
As elements of the nilCoxeter algebra, cyclically decreasing words are completely determined by their support.
Example
$k=6$

$$
\left(u_{0} u_{6}\right)\left(u_{4} u_{3} u_{2}\right)=\left(u_{4} u_{3} u_{2}\right)\left(u_{0} u_{6}\right)=u_{4} u_{0} u_{3} u_{6} u_{2}=\cdots
$$

Noncommutative h functions

For a subset $S \subset[0, k]$, we write u_{S} for the unique cyclically decreasing nilCoxeter element with support S.
For $r \leq k$ we define

$$
\mathbf{h}_{r}=\sum_{|S|=r} u_{S}
$$

Noncommutative h functions

For a subset $S \subset[0, k]$, we write u_{S} for the unique cyclically decreasing nilCoxeter element with support S.
For $r \leq k$ we define

$$
\mathbf{h}_{r}=\sum_{|S|=r} u_{S}
$$

Theorem (Lam, 2005)
The elements $\left\{\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}\right\}$ commute and are algebraically independent.

Noncommutative h functions

For a subset $S \subset[0, k]$, we write u_{S} for the unique cyclically decreasing nilCoxeter element with support S.
For $r \leq k$ we define

$$
\mathbf{h}_{r}=\sum_{|S|=r} u_{S}
$$

Theorem (Lam, 2005)
The elements $\left\{\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}\right\}$ commute and are algebraically independent.

This immediately implies that the algebra $\mathbb{Q}\left[\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}\right] \cong \mathbb{Q}\left[h_{1}, \ldots, h_{k}\right]$ where the latter functions are the usual homogeneous symmetric functions.

Noncommutative symmetric functions

We can now define non-commutative analogs of symmetric functions by their relationship with the \mathbf{h} basis.

Noncommutative symmetric functions

We can now define non-commutative analogs of symmetric functions by their relationship with the \mathbf{h} basis.

$$
\sum_{i=0}^{r}(-1)^{i} \mathbf{e}_{r-i} \mathbf{h}_{i}=0
$$

Noncommutative symmetric functions

We can now define non-commutative analogs of symmetric functions by their relationship with the \mathbf{h} basis.

$$
\begin{gathered}
\sum_{i=0}^{r}(-1)^{i} \mathbf{e}_{r-i} \mathbf{h}_{i}=0 \\
\mathbf{p}_{r}=r \mathbf{h}_{r}-\sum_{i=1}^{r-1} \mathbf{p}_{i} \mathbf{h}_{r-i}
\end{gathered}
$$

Noncommutative symmetric functions

We can now define non-commutative analogs of symmetric functions by their relationship with the \mathbf{h} basis.

$$
\begin{gathered}
\sum_{i=0}^{r}(-1)^{i} \mathbf{e}_{r-i} \mathbf{h}_{i}=0 \\
\mathbf{p}_{r}=r \mathbf{h}_{r}-\sum_{i=1}^{r-1} \mathbf{p}_{i} \mathbf{h}_{r-i} \\
\mathbf{s}_{\lambda}=\operatorname{det}\left(\mathbf{h}_{\lambda_{i}-i+j}\right)
\end{gathered}
$$

Noncommutative symmetric functions

We can now define non-commutative analogs of symmetric functions by their relationship with the \mathbf{h} basis.

$$
\begin{gathered}
\sum_{i=0}^{r}(-1)^{i} \mathbf{e}_{r-i} \mathbf{h}_{i}=0 \\
\mathbf{p}_{r}=r \mathbf{h}_{r}-\sum_{i=1}^{r-1} \mathbf{p}_{i} \mathbf{h}_{r-i} \\
\mathbf{s}_{\lambda}=\operatorname{det}\left(\mathbf{h}_{\lambda_{i}-i+j}\right)
\end{gathered}
$$

$\mathbf{s}_{\lambda}^{(k)}$ by the k-Pieri rule

k-Pieri rule

The k-Pieri rule is

$$
\mathbf{h}_{r} \mathbf{s}_{\lambda}^{(k)}=\sum_{\mu} \mathbf{s}_{\mu}^{(k)}
$$

where the sum is over all k-bounded partitions μ such that μ / λ is a horizontal strip of length r and $\mu^{(k)} / \lambda^{(k)}$ is a vertical strip of length r. This can be re-written as

$$
\mathbf{h}_{r} \mathbf{s}_{\lambda}^{(k)}=\sum_{|S|=r} \mathbf{s}_{u_{S} \cdot \lambda}^{(k)}
$$

The action on cores

There is an action of A_{k} on $k+1$-cores given by

$$
u_{i} \cdot c= \begin{cases}0 & \text { no addable } i \text {-residue } \\ c \cup \text { all addable } i \text {-residues } & \text { otherwise }\end{cases}
$$

Example
$k=4$

The action on cores

There is an action of A_{k} on $k+1$-cores given by

$$
u_{i} \cdot c= \begin{cases}0 & \text { no addable } i \text {-residue } \\ c \cup \text { all addable } i \text {-residues } & \text { otherwise }\end{cases}
$$

Example
$k=4$

	1	2						
	2	3						
	3	0	1	2	3			
$u_{2} u_{0}$.	0	1	,	3	0	1	2	3

The action on cores

There is an action of A_{k} on $k+1$-cores given by

$$
u_{i} \cdot c= \begin{cases}0 & \text { no addable } i \text {-residue } \\ c \cup \text { all addable } i \text {-residues } & \text { otherwise }\end{cases}
$$

Example
$k=4$

The action on cores

There is an action of A_{k} on $k+1$-cores given by

$$
u_{i} \cdot c= \begin{cases}0 & \text { no addable } i \text {-residue } \\ c \cup \text { all addable } i \text {-residues } & \text { otherwise }\end{cases}
$$

Example
$k=4$

The action on cores

There is an action of A_{k} on $k+1$-cores given by

$$
u_{i} \cdot c= \begin{cases}0 & \text { no addable } i \text {-residue } \\ c \cup \text { all addable } i \text {-residues } & \text { otherwise }\end{cases}
$$

Example
$k=4$

The action on cores

There is an action of A_{k} on $k+1$-cores given by

$$
u_{i} \cdot c= \begin{cases}0 & \text { no addable } i \text {-residue } \\ c \cup \text { all addable } i \text {-residues } & \text { otherwise }\end{cases}
$$

Example
$k=4$

Multiplication rule

A corollary of the k-Pieri rule is that if \mathbf{f} is any non-commutative symmetric function of the form

$$
\mathbf{f}=\sum_{u} c_{u} u
$$

then

$$
\mathbf{f s}_{\lambda}^{(k)}=\sum_{u} c_{u} \mathbf{s}_{u \cdot \lambda}^{(k)}
$$

Hook words

Fomin and Greene define a hook word in the context of an algebra with a totally ordered set of generators to be a word of the form

$$
u_{a_{1}} \cdots u_{a_{r}} u_{b_{1}} \cdots u_{b_{s}}
$$

where

$$
a_{1}>a_{2}>\cdots>a_{r}>b_{1} \leq b_{2} \leq \cdots \leq b_{s}
$$

To extend this notion to A_{k} which has a cyclically ordered set of generators, we only consider words whose support is a proper subset of $[0, \cdots, k]$.

Hook words

There is a canonical order on any proper subset of $[0, k]$ given by thinking of the smallest (in integer order) element which does not appear as the smallest element of the circle.

Hook words

There is a canonical order on any proper subset of $[0, k]$ given by thinking of the smallest (in integer order) element which does not appear as the smallest element of the circle.

Example

For $\{0,1,3,4,6\} \subset[0,6]$, we have the order

$$
2<3<4<5<6<0<1
$$

Hook words in A_{k} have (support $=$ proper subset) and form

$$
u_{a_{1}} \cdots u_{a_{r}} u_{b_{1}} \cdots u_{b_{s}}
$$

where

$$
a_{1}>a_{2}>\cdots>a_{r}>b_{1}<b_{2}<\cdots<b_{s}
$$

Hook words

There is a canonical order on any proper subset of $[0, k]$ given by thinking of the smallest (in integer order) element which does not appear as the smallest element of the circle.
Example
For $\{0,1,3,4,6\} \subset[0,6]$, we have the order

$$
2<3<4<5<6<0<1
$$

Hook words in A_{k} have (support $=$ proper subset) and form

$$
u_{a_{1}} \cdots u_{a_{r}} u_{b_{1}} \cdots u_{b_{s}}
$$

where

$$
a_{1}>a_{2}>\cdots>a_{r}>b_{1}<b_{2}<\cdots<b_{s}
$$

Hook word representations are unique; therefore the number of ascents in a hook word is well-defined as $s-1$.

The non-commutative rule

Theorem (Bandlow-S-Zabrocki, 2010)

$$
\mathbf{p}_{r} \mathbf{s}_{\mu}^{(k)}=\sum_{w}(-1)^{\operatorname{asc}(w)} \mathbf{s}_{w \mu \mu}^{(k)}
$$

where the sum is over all words in the affine nilCoxeter algebra satisfying

- (size) $\operatorname{len}(w)=r$
- (containment) $w \cdot \mu \neq 0$
- (connectedness) w is a k-connected word
- (ribbon condition) w is a hook word

Comparison between characterizations

Characterize the image of the map $(w \rightarrow w \cdot \mu=\lambda)$: conditions on words: conditions on shapes:

- (size)
$|\lambda / \mu|=r$

Comparison between characterizations

Characterize the image of the map $(w \rightarrow w \cdot \mu=\lambda)$:
conditions on words:

- (size)
$\operatorname{len}(w)=r$
- (containment)

$$
w \cdot \mu \neq 0
$$

conditions on shapes:

- (size)
$|\lambda / \mu|=r$
- (containment)
$\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$

Comparison between characterizations

Characterize the image of the map $(w \rightarrow w \cdot \mu=\lambda)$:
conditions on words:

- (size)
$\operatorname{len}(w)=r$
- (containment)
$w \cdot \mu \neq 0$
- (connectedness)
w is a k-connected word
conditions on shapes:
- (size)
$|\lambda / \mu|=r$
- (containment)
$\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
- (connectedness) $\mathfrak{c}(\lambda) / \mathfrak{c}(\mu)$ is k-connected

Comparison between characterizations

Characterize the image of the map $(w \rightarrow w \cdot \mu=\lambda)$:
conditions on words:

- (size)
$\operatorname{len}(w)=r$
- (containment)
$w \cdot \mu \neq 0$
- (connectedness)
w is a k-connected word
- (ribbon condition) w is a hook word
conditions on shapes:
- (size)
$|\lambda / \mu|=r$
- (containment)
$\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
- (connectedness) $\mathfrak{c}(\lambda) / \mathfrak{c}(\mu)$ is k-connected
- (first ribbon condition) $\operatorname{ht}(\lambda / \mu)+\operatorname{ht}\left(\lambda^{(k)} / \mu^{(k)}\right)=r-1$
- (second ribbon condition) $\mathfrak{c}(\lambda) / \mathfrak{c}(\mu)$ is a ribbon

Iteration

Iterating the rule

$$
p_{r} s_{\lambda}^{(k)}=\sum_{\mu}(-1)^{\mathrm{ht}(\mu / \lambda)} s_{\mu}^{(k)}
$$

gives

$$
p_{\lambda}=\sum_{T}(-1)^{\mathrm{ht}(T)} s_{s h(T)}^{(k)}=\sum_{\mu} \bar{\chi}_{\lambda}^{(k)}(\mu) s_{\mu}^{(k)}
$$

where the sum is over all k-ribbon tableaux, defined analogously to the classical case.

Duality

In the classical case, the inner product immediately gives

$$
p_{\lambda}=\sum_{\mu} \chi_{\lambda}(\mu) s_{\mu} \Longleftrightarrow s_{\mu}=\sum_{\lambda} \frac{1}{z_{\lambda}} \chi_{\lambda}(\mu) p_{\lambda}
$$

In the affine case we have

$$
p_{\lambda}=\sum_{\mu} \bar{\chi}_{\lambda}^{(k)}(\mu) s_{\mu}^{(k)} \Longleftrightarrow \mathfrak{S}_{\mu}^{(k)}=\sum_{\lambda} \frac{1}{z_{\lambda}} \bar{\chi}_{\lambda}^{(k)} p_{\lambda}
$$

Duality

In the classical case, the inner product immediately gives

$$
p_{\lambda}=\sum_{\mu} \chi_{\lambda}(\mu) s_{\mu} \Longleftrightarrow s_{\mu}=\sum_{\lambda} \frac{1}{z_{\lambda}} \chi_{\lambda}(\mu) p_{\lambda}
$$

In the affine case we have

$$
p_{\lambda}=\sum_{\mu} \bar{\chi}_{\lambda}^{(k)}(\mu) s_{\mu}^{(k)} \Longleftrightarrow \mathfrak{S}_{\mu}^{(k)}=\sum_{\lambda} \frac{1}{z_{\lambda}} \bar{\chi}_{\lambda}^{(k)} p_{\lambda}
$$

We would like the inverse matrix

$$
s_{\lambda}^{(k)}=\sum_{\mu} \frac{1}{z_{\mu}} \chi_{\lambda}^{(k)}(\mu) p_{\mu}
$$

Conceptual reasons

Λ ring of symmetric functions
\mathcal{P}^{k} set of partitions $\left\{\lambda \mid \lambda_{1} \leq k\right\}$

$$
\begin{aligned}
& \Lambda_{(k)}:=\mathbb{C}\left\langle h_{\lambda} \mid \lambda \in \mathcal{P}^{k}\right\rangle=\mathbb{C}\left\langle e_{\lambda} \mid \lambda \in \mathcal{P}^{k}\right\rangle=\mathbb{C}\left\langle p_{\lambda} \mid \lambda \in \mathcal{P}^{k}\right\rangle \\
& \Lambda^{(k)}:=\mathbb{C}\left\langle m_{\lambda} \mid \lambda \in \mathcal{P}^{k}\right\rangle
\end{aligned}
$$

Conceptual reasons

Λ ring of symmetric functions
\mathcal{P}^{k} set of partitions $\left\{\lambda \mid \lambda_{1} \leq k\right\}$

$$
\begin{aligned}
& \Lambda_{(k)}:=\mathbb{C}\left\langle h_{\lambda} \mid \lambda \in \mathcal{P}^{k}\right\rangle=\mathbb{C}\left\langle e_{\lambda} \mid \lambda \in \mathcal{P}^{k}\right\rangle=\mathbb{C}\left\langle p_{\lambda} \mid \lambda \in \mathcal{P}^{k}\right\rangle \\
& \Lambda^{(k)}:=\mathbb{C}\left\langle m_{\lambda} \mid \lambda \in \mathcal{P}^{k}\right\rangle
\end{aligned}
$$

Hall inner product $\langle\cdot, \cdot\rangle$:
for $f \in \Lambda_{(k)}$ and $g \in \Lambda^{(k)}$ define $\langle f, g\rangle$ as the usual Hall inner product in Λ
$\left\{h_{\lambda}\right\}$ and $\left\{m_{\lambda}\right\}$ with $\lambda \in \mathcal{P}^{k}$ form dual bases of $\Lambda_{(k)}$ and $\Lambda^{(k)}$
$\Lambda_{(k)}$ is a subalgebra
$\Lambda^{(k)}$ is not closed under multiplication, but comultiplication

Conceptual reasons

Λ ring of symmetric functions
\mathcal{P}^{k} set of partitions $\left\{\lambda \mid \lambda_{1} \leq k\right\}$

$$
\begin{aligned}
& \Lambda_{(k)}:=\mathbb{C}\left\langle h_{\lambda} \mid \lambda \in \mathcal{P}^{k}\right\rangle=\mathbb{C}\left\langle e_{\lambda} \mid \lambda \in \mathcal{P}^{k}\right\rangle=\mathbb{C}\left\langle p_{\lambda} \mid \lambda \in \mathcal{P}^{k}\right\rangle \\
& \Lambda^{(k)}:=\mathbb{C}\left\langle m_{\lambda} \mid \lambda \in \mathcal{P}^{k}\right\rangle
\end{aligned}
$$

k-Schur functions $\left\{s_{\lambda}^{(k)} \mid \lambda \in \mathcal{P}^{k}\right\}$ form basis of $\Lambda_{(k)}$
(Schubert class of cohomology of affine Grassmannian $H_{*}(\mathrm{Gr})$)
dual k-Schur functions $\left\{\mathfrak{S}_{\lambda}^{(k)} \mid \lambda \in \mathcal{P}^{k}\right\}$ form basis of $\Lambda^{(k)}$ (Schubert class of homology of affine Grassmannian $H^{*}(G r)$)

Back to Frobenius

For V any S_{n} representation, we can find the decomposition into irreducible submodules with

$$
\sum_{\mu} \frac{1}{z_{\mu}} \chi V(\mu) p_{\mu}=\sum_{\lambda} c_{\lambda} s_{\lambda}
$$

So finding

$$
s_{\lambda}^{(k)}=\sum_{\mu} \frac{1}{z_{\mu}} \chi_{\lambda}^{(k)}(\mu) p_{\mu}
$$

would potentially allow one to verify that a
 given representation had a character equal to k-Schur functions.

Back to Frobenius

For V any S_{n} representation, we can find the decomposition into irreducible submodules with

$$
\sum_{\mu} \frac{1}{z_{\mu}} \chi V(\mu) p_{\mu}=\sum_{\lambda} c_{\lambda} s_{\lambda}
$$

So finding

$$
s_{\lambda}^{(k)}=\sum_{\mu} \frac{1}{z_{\mu}} \chi_{\lambda}^{(k)}(\mu) p_{\mu}
$$

would potentially allow one to verify that a
 given representation had a character equal to k-Schur functions.

Full paper available at arXiv:1004.8886

