Homework 4

due October 31, 2014 in class

Read: Artin 2.7-2.10

- 1. Let S be a set of groups. Prove that the relation $G \sim H$ if G is isomorphic to H is an equivalence relation on S.
- 2. Let H be a subgroup of a group G. Prove that the relation defined by the rule $a \sim b$ if $b^{-1}a \in H$ is an equivalence relation on G.
- 3. Determine the index $[\mathbb{Z} : n\mathbb{Z}]$.
- 4. Let H, K be subgroups of a group G of orders 3, 5 respectively. Prove that $H \cap K = \{1\}$.
- 5. Artin 2.8.2 (pg. 72) In the additive group \mathbb{R}^m of vectors, let W be the set of solutions of a system of homogeneous linear equations Ax = 0. Show that the set of solutions of an inhomogeneous system Ax = b is either empty, or else forms a coset of W.
- 6. (a) Prove that every subgroup of index 2 is normal.
 - (b) Give an example of a subgroup of index 3 which is not normal.
- 7. Let G and G' be groups. What is the order of the group $G \times G'$?
- 8. Is the symmetric group S_3 a direct product of nontrivial groups?
- 9. Recall that the dihedral group D_n is generated by the counterclockwise rotation x and a reflection y:

$$D_n = \langle x, y \mid x^n = y^2 = 1, xy = yx^{n-1} \rangle.$$

Use the generators and relations for D_n to show that every element of D_n , which is not a power of x has order 2. Deduce that D_n is generated by the two elements y and yx, both of which have order 2.