Homework 6 due November 21, 2014 in class

Read: Artin 5.1, 6.1, 6.2

1. **Artin 5.1.1(a)** pg. 150

What is the matrix of the three-dimensional rotation through the angle θ about the axis e_2 ?

- 2. (a) Prove that O_n and SO_n are subgroups of $GL_n(\mathbb{R})$, and determine the index of SO_n in O_n .
 - (b) Artin 5.1.3 pg. 150 Is O_2 isomorphic to the product group $SO_2 \times \{\pm I\}$? Is O_3 isomorphic to $SO_3 \times \{\pm I\}$?
- 3. Let A be a matrix in O_3 whose determinant is -1. Prove that -1 is an eigenvalue of A.
- 4. Prove that an isometry, as defined by Artin (6.2.1), is bijective.

5. **Artin 6.1.1** pg. 188

List all symmetries of the following figures.

- (a) (6.1.4) (b) (6.1.5) (c) (6.1.6) (d) (6.1.7)
- 6. Let G be a finite group of rotations of the plane about the origin. Prove that G is cyclic.