Read: Artin 5.1, 6.1, 6.2

1. Artin 5.1.1(a) pg. 150

What is the matrix of the three-dimensional rotation through the angle θ about the axis e_{2} ?
2. (a) Prove that O_{n} and $S O_{n}$ are subgroups of $G L_{n}(\mathbb{R})$, and determine the index of $S O_{n}$ in O_{n}.
(b) Artin 5.1.3 pg. 150

Is O_{2} isomorphic to the product group $S_{2} \times\{ \pm I\}$? Is O_{3} isomorphic to $\mathrm{SO}_{3} \times\{ \pm I\}$?
3. Let A be a matrix in O_{3} whose determinant is -1 . Prove that -1 is an eigenvalue of A.
4. Prove that an isometry, as defined by Artin (6.2.1), is bijective.
5. Artin 6.1.1 pg. 188

List all symmetries of the following figures.
(a) (6.1.4) (b) (6.1.5) (c) (6.1.6) (d) (6.1.7)
6. Let G be a finite group of rotations of the plane about the origin. Prove that G is cyclic.

