
MAT 245 University of California Fall 2014

Homeworks

Problem 1. As discussed in class for positive integers k and n, let

Sk,n = {(X1, . . . , Xk) ⊆ [n]k | X1 ∩ · · · ∩Xk = ∅}

and
Tk,n = {(Z1, . . . , Zn) | Zi ⊆ [k], Zi 6= [k]} .

Show that
θ : Tk,n → Sk,n

where i ∈ Xj if and only if j ∈ Zi is a bijection.

Problem 2. Find a combinatorial proof of

2n =
∑
k≥0

(
n

k

)
(1)

0 =
∑
k≥0

(−1)k
(
n

k

)
.(2)

Problem 3. Find the number of solutions to x1 + · · · + xk ≤ n into non-
negative integers.

Problem 4. How many paths are there in the plane from (0, 0) to (m,n) ∈
N × N, if each step in the path is of the form (1, 0) or (0, 1) (i.e. unit
distance due east or due north)? Give a combinatorial proof. State a higher
dimensional generalization. This problem is an archetypical result in the
vast subject of lattice-path counting.

Problem 5. Let m,n ∈ N. Give a combinatorial proof of the identity((
n
m

))
=
((

m+1
n−1

))
.

Problem 6.

(a) We defined the multinomial coefficient(
n

a1, . . . , am

)
,

where a1+· · ·+am = n, to be the number of ways of assigning each
element of an n-set to categories C1, . . . , Cm such that category Ci
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contains ai elements. Show that(
n

a1, . . . , am

)
=

n!

a1! · · · am!
.

(b) Show that
(

n
a1,...,am

)
is the coefficient of xa11 · · ·xamm in the expansion

of (x1 + · · ·+ xm)
n.

Problem 7. Read the third proof of Proposition 1.3.7 on page 27/28 of
Stanley’s book and fill in the details for the bijection.

Problem 8. Prove the convolution formula for the binomial coefficients∑
j

(
m

j

)(
n

k − j

)
=

(
m+ n

k

)
in two ways:

(1) with generating functions;
(2) directly combinatorially.

Problem 9. Prove that the q-binomial coefficients satisfy the initial condi-
tion

[
0
k

]
= δk,0 for k ≥ 0 and the recursion relation for 0 ≤ k ≤ n[

n

k

]
=

[
n− 1

k

]
+ qn−k

[
n− 1

k − 1

]
.

Problem 10. Show that
1

(q)∞
=
∞∑
k=0

qk
2

(q)2k

using partitions. (Hint: Use the Durfee square of a partition λ which is the
largest square (ii) contained in λ).

Problem 11. Let p(O, n) be the number of partitions of n into odd parts
and let p(D, n) be the number of partitions of n into distinct parts. Prove
that p(O, n) = p(D, n).

Problem 12. Give a combinatorial proof of the following q-analog of the
convolution formula for binomial coefficients[

m+ n

k

]
=
∑
i+j=k

q(m−i)j
[
m

i

][
n

j

]
.
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Problem 13.

(1) Prove the q-binomial theorem
m−1∏
i=0

(1 + xqi) =
m∑
j=0

[
m

j

]
q(

j
2)xj,

where m is a nonnegative integer and x is an indeterminate.
(2) Deduce from this

s∏
i=1

(1 + x−1qi)
t−1∏
i=0

(1 + xqi) =
t∑

j=−s

[
s+ t

s+ j

]
q(

j
2)xj.

(3) By letting s and t tend to infinity, prove Jacobi’s triple product iden-
tity:∑
j∈Z

(−1)jq(
j
2)xj =

∏
i≥0

(1− xqi)(1− x−1qi+1)(1− qi+1).

Problem 14. From the formula for pe(D, n)− po(D, n), prove Euler’s pen-
tagonal number theorem

∞∏
n=1

(1− qn) =
∞∑

m=−∞

(−1)mq
1
2
m(3m−1) .

Problem 15. The famous first Rogers–Ramanujan identity is given by
∞∑
n=0

qn
2

(q)n
=
∞∏
j=0

1

(1− q5j+1)(1− q5j+4)
,

where (q)n = (1− q)(1− q2) · · · (1− qn) for n > 0 and (q)0 = 1.

(1) Show that the right-hand side is the generating function of partitions
with parts congruent 1 or 4 modulo 5.

(2) Consider L+1 points on a line labeled by i = 0, 1, 2, . . . , L. Assign
to each point a height variable σi which takes on the values 0 or 1.
In addition the height variables satisfy the restrictions σ0 = σL = 0
and σiσi+1 = 0. An allowed configuration of height variables for a
given length L is called a path of length L. One can illustrate a path
graphically by drawing all points (i, σi) and connecting adjacent
points by straight lines. An example for a path with L = 9 is given
in figure 1. The condition σiσi+1 = 0 requires that the paths consist
of a certain number of non-overlapping triangles. To each path p
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FIGURE 1. A path of length 9

one may assign an energy E(p) by summing up the positions of the
peaks, that is

E(p) =
L∑

j=1

jσj.

Define the function

F (L) =
∑
p

qE(p)

where the sum is over all paths of length L. Show that F (L) satisfies
the initial condition F (0) = F (1) = 1 and recursion relation

F (L) = F (L− 1) + qL−1F (L− 2).

(3) Prove that

F (L) =
∞∑
n=0

qn
2

[
L− n
n

]
.

(4) Show that limL→∞ F (L) yields the left-hand side of the Rogers–
Ramanujan identity.

(5) Use the path interpretation to show that the left-hand side of the
Rogers–Ramanujan identity is the generating function of partitions
for which the difference between any two parts is at least two.

(6) Conclude that the Rogers–Ramanujan identity implies that the num-
ber of partitions of an integer N into parts in which the difference
between any two parts is at least 2 is the same as the number of par-
titions of N into parts congruent to 1 or 4 modulo 5.
Verify this statement for N = 6.

Problem 16. Show that the number s(n) of partitions of n that are self-
conjugate (λ = λt) is equal to the number of partitions of n into distinct
odd parts. What is the generating function F (x) =

∑
n≥0 s(n)x

n?

4



245 HW

Problem 17. Let f(n) be the number of partitions of 2n whose Ferrers
diagram can be covered by n edges, each connecting two adjacent dots. For
instance, (4, 3, 3, 3, 1) can be covered as follows:

tt t tt t tt t tt t t t

Show that ∑
n≥0

f(n)xn =
∏
i≥1

1

(1− xi)2
.

(Hint: This can be shown combinatorially. Do you recognize the right-hand
side? Can you find a bijection with the left?)

Problem 18. Give a simple “balls into boxes” proof that the total number
of parts of all compositions of n is equal to (n + 1)2n−2. (The simplest
argument expresses the answer as a sum of two terms.)

Problem 19. (difficult) Prove the Rogers–Ramanujan identity
∞∑
n=0

qn
2

(q)n
=
∞∏
j=0

1

(1− q5j+1)(1− q5j+4)
,

where (q)n = (1− q)(1− q2) · · · (1− qn) for n > 0 and (q)0 = 1.

Problem 20. Let S = {P1, . . . , Pn} be a set of properties, and let fk (resp.
f≥k) denote the number of objects in a finite set A that have exactly k (resp.
at least k of the) properties. Show that

fk =
n∑

i=k

(−1)i−k
(
i

k

)
gi,

and

f≥k =
n∑

i=k

(−1)i−k
(
i− 1

k − 1

)
gi,

where
gi =

∑
T⊆S,|T |=i

f≥(T ).
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Problem 21. Recall that D(n) is the number of derangement in Sn. Give a
direct combinatorial proof of the recursion

D(n) = nD(n− 1) + (−1)n.

Problem 22. Give a sieve-theoretic proof of the pentagonal number formula

1 =
1∏∞

n=1(1− qn)

∞∑
m=−∞

(−1)mq
1
2
m(3m−1) .

Your sieve should start with all partitions of n ≥ 0 and sieve out all but the
empty partition of 0.

Problem 23. Let P be a locally finite poset and I(P ) the incidence algebra
of P over C. Define η ∈ I(P ) as

η(x, y) =

{
1 if y covers x
0 else

for all x ≤ y. Show that (1 − η)−1(x, y) is equal to the total number of
maximal chains in [x, y].

Problem 24. Recall that Dn is the set of all positive integral divisors of n
with the order that r ≤ s in Dn if s is divisible by r, denoted r | s.

(1) Derive a formula for the Möbius function µ(r, s) for the poset Dn.
(2) Show that

∑
d|n µ(1, d) = 0.

Problem 25. Let f(n) be the number of ways a 2 × n chessboard can be
partitioned into copies of the following two pieces:

Any rotation or reflection of the pieces is allowed. For example, f(0) = 1,
f(1) = 1, f(2) = 2, f(3) = 5. Find an explicit expression for F (x) =∑

n≥0 f(n)x
n.
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Problem 26. Show that the Catalan number Cn is equal to the number of
standard Young tableaux of shape (n, n).

Problem 27. Consider words w consisting of n+1 L’s and n R’s beginning
with L, so that the number of such words is

(
2n
n

)
. A rotation of w is a word

of the form Y X where w = XY .

(1) Prove that the 2n + 1 rotations of each word w as above are all
distinct.

(2) Prove that among the n + 1 rotations of w starting with L exactly
one is of the form LX , where X is a Dyck path. This gives a com-
binatorial interpretation of the formula for Cn.

Problem 28. Show that the Catalan number Cn is the number of all peaks
of height one in all Dyck paths from (0, 0) to (2n, 0).

Problem 29. Let f and g be functions on a finite lattice L satisfying

(3) f(x) =
∑
y

x∧y=0̂

g(y).

Show that if µ(0̂, x) 6= 0 for all x ∈ L, then (3) can be inverted to yield

g(x) =
∑
y

α(x, y)f(y),

where

α(x, y) =
∑
t

µ(x, t)µ(y, t)

µ(0̂, t)
.

Problem 30. Prove that the sliding definition of promotion ∂ on a finite
poset due to Schützenberger is equivalent to the definition

∂ = τ1τ2 · · · τn−1
acting on the right (i.e. τ1 acts first, then τ2 etc). Here τi acts on a poset
P by interchanging i and i + 1 if i and i + 1 are incomparable in P and
otherwise acts as the identity.

Problem 31. Prove that the order of the promotion operator on rectangular
standard tableaux with n boxes divides n.

Problem 32. Tile R2 by lines with slope 1 and−1 through the integer points
(n, 0) on the x-axis. The area of a Dyck path is defined to be the number of
full squares in this tiling under the Dyck path and above the x-axis. Define
the bounce path of a Dyck path of length 2n by starting at point (2n, 0) and
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following the Dyck path up from right to left. Whenever the Dyck path goes
down from right to left, the bounce path will also go down all the way to
the x-axis and then move back up until it hits the Dyck path again, follow
it up, until the Dyck path turns down again. At this point the bounce path
also turns down and continues to go down until it hits the x-axis etc. The
bounce statistic of a Dyck path is the sum of the positions where the bounce
path meets the x-axis. Give a bijection on Dyck paths Dn of length 2n to
Dn which interchanges the area and bounce statistic.
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