1. Rosen $1.1 \# 5$, pg. 13

Use the well-ordering principle to show that $\sqrt{3}$ is irrational.
2. Rosen $1.1 \# 11$, pg. 13

What is the value of $[x]+[-x]$ where x is a real number?
3. Rosen $1.3 \# 8$, pg. 27

Use induction to prove that $\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ for every positive integer n.
4. Rosen $1.4 \# 7$, pg. 33

Find and prove a simple formula for the sum of the first n Fibonacci numbers with odd indices when n is a positive integer. That is, find a simple formula for $f_{1}+f_{3}+\cdots+f_{2 n-1}$.
5. Rosen $1.5 \# 36$, pg. 41

Show that if a is an integer, then 3 divides $a^{3}-a$.
6. Rosen $1.5 \# 46$, pg. 42

Show that the n-th Fibonacci number f_{n} is divisible by 4 if and only if n is divisible by 6 .

