Homework 9

due December 4, 2015

1. Rosen $7.3 \# 11,13$, pg. 267

Let n be a positive integer. We say that n is deficient if $\sigma(n)<2 n$ and we say that n is abundant if $\sigma(n)>2 n$.
(a) Show that there are infinitely many deficient numbers.
(b) Show that there are infinitely many odd abundant numbers. (Hint: Look at integers of the form $n=3^{k} \cdot 5 \cdot 7$).

2. Rosen $8.5 \# 2$, pg. 336

Show that if $a_{1}, a_{2}, \ldots, a_{n}$ is a super-increasing sequence, then $a_{j} \geq 2^{j-1}$ for $j=1,2, \ldots, n$.

3. Rosen $8.5 \# 3$, pg. 336

Show that the sequence $a_{1}, a_{2}, \ldots, a_{n}$ is super-increasing if $a_{j+1}>2 a_{j}$ for $j=1,2, \ldots, n-1$.

4. Rosen $8.5 \# 10,12$, pg. 337

A multiplicative knapsack problem is a problem of the following type: Given positive integers $a_{1}, a_{2}, \ldots, a_{n}$ and a positive integer P, find the subset, or subsets, of these integers with product P. Or equivalently, find all solutions of

$$
P=a_{1}^{x_{1}} a_{2}^{x_{2}} \cdots a_{n}^{x_{n}}
$$

where $x_{j}=0$ or 1 for $j=1,2, \ldots, n$.
(a) Find all products of subsets of the integers $2,3,5,6,10$ equal to 60.
(b) Show that if the integers $a_{1}, a_{2}, \ldots, a_{n}$ are pairwise relatively prime, then the multiplicative knapsack problem $P=a_{1}^{x_{1}} a_{2}^{x_{2}} \cdots a_{n}^{x_{n}}$, $x_{j}=0$ or 1 for $j=1,2, \ldots, n$ is easily solved from the prime factorizations of the integers $P, a_{1}, a_{2}, \ldots, a_{n}$, and show that if there is a solution, then it is unique.
5. Prove that for $n \in \mathbb{N}$ with $n>1$

$$
(n-1)!\equiv\left\{\begin{array}{ll}
-1 & \text { if } n \text { is prime } \\
2 & \text { if } n=4 \\
0 & \text { otherwise }
\end{array} \quad(\bmod n)\right.
$$

