Homework 4

due October 23, 2015 in class

Read: Artin 2.7-2.10

1. Let S be a set of groups. Prove that the relation $G \sim H$ if G is isomorphic to H is an equivalence relation on S.
2. Let H be a subgroup of a group G. Prove that the relation defined by the rule $a \sim b$ if $b^{-1} a \in H$ is an equivalence relation on G.
3. Determine the index $[\mathbb{Z}: n \mathbb{Z}]$.
4. Let H, K be subgroups of a group G of orders 3,5 respectively. Prove that $H \cap K=\{1\}$.
5. Artin 2.8.2 (pg. 72)

In the additive group \mathbb{R}^{m} of vectors, let W be the set of solutions of a system of homogeneous linear equations $A x=0$. Show that the set of solutions of an inhomogeneous system $A x=b$ is either empty, or else forms a coset of W.
6. (a) Prove that every subgroup of index 2 is normal.
(b) Give an example of a subgroup of index 3 which is not normal.
7. Let G and G^{\prime} be groups. What is the order of the group $G \times G^{\prime}$?
8. Is the symmetric group S_{3} a direct product of nontrivial groups?
9. Recall that the dihedral group D_{n} is generated by the counterclockwise rotation x and a reflection y :

$$
D_{n}=\left\langle x, y \mid x^{n}=y^{2}=1, x y=y x^{n-1}\right\rangle
$$

Use the generators and relations for D_{n} to show that every element of D_{n}, which is not a power of x has order 2 . Deduce that D_{n} is generated by the two elements y and $y x$, both of which have order 2 .

