Homework 5

due November 6, 2015 in class

Read: Artin 2.11-2.12
(1) Artin 2.11 .6 (pg. 74)

Let G be a group containing normal subgroups of orders 3 and 5 , respectively. Prove that G contains an element of order 15.
(2) Let G be a finite group whose order is a product of two integers: $n=a b$. Let H, K be subgroups of G of orders a and b respectively. Assume that $H \cap K=\{1\}$. Prove that $H K=G$. Is G isomorphic to the product group $H \times K$?
(3) (a) Prove 2 has no inverse modulo 6.
(b) Determine all integers n such that 2 has an inverse modulo n.
(4) Prove that the subset H of $G=G L_{n}(\mathbb{R})$ of matrices whose determinant is positive forms a normal subgroup, and describe the quotient group G / H.
(5) Prove that the subset $G \times 1$ of the product group $G \times G^{\prime}$ is a normal subgroup isomorphic to G and that $\left(G \times G^{\prime}\right) /(G \times 1)$ is isomorphic to G^{\prime}.
(6) Artin 2.M.2(a) (pg. 75)

Prove that a group of even order contains an element of order 2.
(7) Let $K \subset H \subset G$ be subgroups of a finite group G. Prove $[G: K]=[G: H][H: K]$.

