Homework 1

due Friday April 11, 2014 in class

1. Stanley, Chapter 1.2

Suppose that the graph G has 15 vertices and that the number of closed walks of length ℓ in G is $8^{\ell}+2 \cdot 3^{\ell}+3 \cdot(-1)^{\ell}+(-6)^{\ell}+5$ for all $\ell \geq 1$. Let G^{\prime} be the graph obtained from G by adding a loop at each vertex (in addition to whatever loops are already there). How many closed walks of length ℓ are there in G^{\prime} ?
2. Stanley, Chapter 1.4

Let $r, s \geq 1$. The complete bipartite graph $K_{r, s}$ has vertices $u_{1}, u_{2}, \ldots, u_{r}, v_{1}, \ldots, v_{s}$ with one edge between each u_{i} and v_{j} (so $r s$ edges in all).
(a) By purely combinatorial reasoning, compute the number of closed walks of length ℓ in $K_{r, s}$.
(b) Deduce from (a) the eigenvalues of $K_{r, s}$.
3. Stanley, Chapter 2.4

Let G be the graph with vertex set \mathbb{Z}_{2}^{n} (the same as the n-cube), and with edge set defined as follows: $\{u, v\}$ is an edge of G if u and v differ in exactly two coordinates (i.e., if $\omega(u, v)=2$). What are the eigenvalues of G ?

