Homework 2
due Friday April 18, 2014 in class

1. Stanley, Chapter 2.1
(a) Start with n coins heads up. Choose a coin at random (each equally likely) and turn it over. Do this a total of ℓ times. What is the probability that all coins will have heads up? (Don't solve this from scratch; rather use some previous results!)
(b) Same as (a), except now compute the probability that all coins have tails up.
(c) Same as (a), but now we turn over two coins at a time.

Hint: You can use a homework problem from HW 1!
2. Stanley, Chapter 2.6

Let \tilde{C}_{n} be the graph obtained from the n-cube graph C_{n} by adding an edge between every vertex v and its antipode (the vertex which differs from v in all n coordinates). Find the number of closed walks in \tilde{C}_{n} of length ℓ which begin (and hence end) at the origin $\mathbf{0}=(0,0, \ldots, 0)$.
3. Stanley, Chapter 3.2(a)

Let G be a finite graph (allowing loops and multiple edges). Suppose that there is some integer $\ell>0$ such that the number of walks of length ℓ from any vertex u to any fixed vertex v is independent of u and v. Show that G has the same number k of edges between any two vertices (including k loops at each vertex).

