Homework 3
due Friday April 25, 2014 in class

1. Stanley, Chapter 3.1

Let G be a (finite) graph with vertices v_{1}, \ldots, v_{p}. Assume that some power of the probability matrix $M(G)$ has positive entries. (It is not hard to see that this is equivalent to G being connected and containing at least one cycle of odd length, but you do not have to show this). Let d_{k} denote the degree of vertex v_{k}. Let $D=d_{1}+d_{2}+\cdots+d_{p}=2 q-r$, where G has q edges and r loops. Start at any vertex of G and do a random walk on the vertices of G as defined in the text. Let $p_{k}(\ell)$ denote the probability of ending up at vertex v_{k} after ℓ steps. Assuming the Perron-Frobenius theorem, show that

$$
\lim _{\ell \rightarrow \infty} p_{k}(\ell)=d_{k} / D
$$

The limiting probability distribution on the set of vertices of G is called the stationary distribution of the random walk.
2. Stanley, Chapter 4.1

Draw Hasse diagrams of the 16 nonisomorphic four-element posets. (For a more interesting challenge, draw the 63 five-element posets - this part is not mandatory!).

3. Stanley, Chapter 4.2

(a) Let P be a finite poset and $f: P \rightarrow P$ an order-preserving bijection, i.e., f is a bijection (one-to-one and onto), and if $x \leq y$ in P then $f(x) \leq f(y)$. Show that f is an automorphism of P, that is, f^{-1} is order-preserving.
(b) Show that the result of (a) need not be true of P is infinite.

