Homework 4

due Friday May 2, 2014 in class

1. Stanley, Chapter 4.4

Let q be a prime power, and let \mathbb{F}_{q} denote the finite field with q elements. Let $V=V_{n}(q)=\mathbb{F}_{q}^{n}$, the n-dimensional vector space over \mathbb{F}_{q} of n-tuples of elements in \mathbb{F}_{q}. Let $B_{n}(q)$ denote the poset of all subspaces of V, ordered by inclusion. It is easy to see that $B_{n}(q)$ is graded of rank n, the rank of the subspace of V being its dimension.
(a) Draw the Hasse diagram of $B_{3}(2)$. (It has 16 elements).
(b) Show that the number of elements in $B_{n}(q)$ of rank k is given by the q-binomial coefficient

$$
\binom{n}{k}_{q}=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)} .
$$

(c) Show that $B_{n}(q)$ is rank-symmetric.
(d) Show that every element $x \in B_{n}(q)_{k}$ covers $(k)_{q}=1+q+\cdots+q^{k-1}$ elements and is covered by $(n-k)_{q}=1+q+\cdots+q^{n-k-1}$ elements.
(e) Define operators $U_{i}: \mathbb{R} B_{n}(q)_{i} \rightarrow \mathbb{R} B_{n}(q)_{i+1}$ and $D_{i}: \mathbb{R} B_{n}(q)_{i} \rightarrow \mathbb{R} B_{n}(q)_{i-1}$ by

$$
\begin{aligned}
U_{i}(x) & =\sum_{\substack{y \in B_{n}(q)_{i+1} \\
y>x}} y, \\
D_{i}(x) & =\sum_{\substack{\left.z \in B_{n}(q)\right)_{i-1} \\
z<x}} z .
\end{aligned}
$$

Show that

$$
D_{i+1} U_{i}-U_{i-1} D_{i}=\left((n-i)_{q}-(i)_{q}\right) I_{i} .
$$

(f) Deduce that $B_{n}(q)$ is rank-unimodal and Sperner.

