Homework 5
due Friday May 16, 2014 in class

1. Stanley, Chapter 5.1

1. Let $G=\{\mathrm{id}, \pi\}$ be a group of order two with id the identity element. Let G act on $\{1,2,3,4\}$ by $\pi \cdot 1=2, \pi \cdot 2=1, \pi \cdot 3=3, \pi \cdot 4=4$. Draw the Hasse diagram of the quotient poset B_{4} / G.
2. Do the same for the action $\pi \cdot 1=2, \pi \cdot 2=1, \pi \cdot 3=4, \pi \cdot 4=3$.
3. Stanley, Chapter 5.11

In Example 5.4(b) the Hasse diagram of B_{5} / G is drawn, where G is generated by the cycle $(1,2,3,4,5)$ of order 5 . Using the vertex labels shown in this figure, compute explicitly $\hat{U}_{2}(12)$ and $\hat{U}_{2}(13)$ as linear combinations of 123 and 124, where \hat{U}_{2} is defined as in the proof of Theorem 5.8. What is the matrix of \hat{U}_{2} with respect to the bases $\left(B_{5} / G\right)_{2}$ and $\left(B_{5} / G\right)_{3}$?
3. Stanley, Chapter 6.1(a)

Let $A(m, n)$ denote the adjacency matrix (over \mathbb{R}) of the Hasse diagram of $L(m, n)$. Show that if $A(m, n)$ is nonsingular, then $\binom{m+n}{m}$ is even.

