MAT 146

Homework 5 due Friday May 16, 2014 in class

1. Stanley, Chapter 5.1

- 1. Let $G = \{id, \pi\}$ be a group of order two with id the identity element. Let G act on $\{1, 2, 3, 4\}$ by $\pi \cdot 1 = 2, \pi \cdot 2 = 1, \pi \cdot 3 = 3, \pi \cdot 4 = 4$. Draw the Hasse diagram of the quotient poset B_4/G .
- 2. Do the same for the action $\pi \cdot 1 = 2, \pi \cdot 2 = 1, \pi \cdot 3 = 4, \pi \cdot 4 = 3$.
- 2. Stanley, Chapter 5.11

In Example 5.4(b) the Hasse diagram of B_5/G is drawn, where G is generated by the cycle (1, 2, 3, 4, 5) of order 5. Using the vertex labels shown in this figure, compute explicitly $\hat{U}_2(12)$ and $\hat{U}_2(13)$ as linear combinations of 123 and 124, where \hat{U}_2 is defined as in the proof of Theorem 5.8. What is the matrix of \hat{U}_2 with respect to the bases $(B_5/G)_2$ and $(B_5/G)_3$?

3. Stanley, Chapter 6.1(a)

Let A(m,n) denote the adjacency matrix (over \mathbb{R}) of the Hasse diagram of L(m,n). Show that if A(m,n) is nonsingular, then $\binom{m+n}{m}$ is even.