Homework 8

due Friday June 6, 2014 in class

1. Stanley, Chapter 8.10

In how many ways can we begin with the empty partition \emptyset, then add $2 n$ squares one at a time (always keeping a partition), then remove n squares one at a time, then add n squares one at a time, and finally remove $2 n$ squares one at a time, ending up at \emptyset ?
2. Stanley, Chapter 8.23

Let w be a balanced word in U and D, i.e., the same number of U 's as D 's. For instance, $U U D U D D D U$ is balanced. Regard U and D as linear transformations on $\mathbb{R} Y$ in the usual way. A balanced word thus takes the space $\mathbb{R} Y_{n}$ to itself, where Y_{n} is the nth level of Young's lattice Y. Show that the element $E_{n}=\sum_{\lambda \vdash n} f^{\lambda} \lambda \in \mathbb{R} Y_{n}$ is an eigenvector for w, and find the eigenvalue.
3. Stanley, Chapter 8.27(a)

An increasing subsequence of a permutation $a_{1} a_{2} \cdots a_{n} \in S_{n}$ is a subsequence $a_{i_{1}} a_{i_{2}} \cdots a_{i_{j}}$ such that $a_{i_{1}}<a_{i_{2}}<\cdots<a_{i_{j}}$. For instance, 2367 is an increasing subsequence of the permutation 52386417 . Suppose that the permutation $w \in S_{n}$ is sent to a SYT of shape $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ under the RSK algorithm. Show that λ_{1} is the length of the longest increasing subsequence of w.

