Homework 2

due April 18, 2014 in class

1. Give an example showing that division with remainder need not be unique in a Euclidean domain.
2. Prove that in a principle ideal domain R, every pair a, b of elements, not both zero, has a greatest common divisor d, with these properties:
(i) $d=a r+b s$ for some $r, s \in R$;
(ii) d divides a and b;
(iii) if $e \in R$ divides a and b, it also divides d.

Moreover, d is determined up to unit factor.
(This problem basically asks for a detailed proof of Proposition 12.2.8 in Artin).
3. If a, b are integers and a divides b in the ring of Gauss integers, then a divides b in \mathbb{Z}.
4. Prove that the factorizations $2=(1+i)(1-i)$ and $5=(2+i)(2-i)$ are prime factorizations of 2 and 5 in $\mathbb{Z}[i]$, respectively.
5. (Artin 12.3.2) Prove that two integer polynomials are relatively prime elements of $\mathbb{Q}[x]$ if and only if the ideal they generate in $\mathbb{Z}[x]$ contains a nonzero integer.
6. We showed already that $(2, x)$ is not a principal ideal in $\mathbb{Z}[x]$. This shows that $\mathbb{Z}[x]$ is not a PID.
(i) Show that $(2, x)$ is principal in $\mathbb{Q}[x]$. Which element generates $(2, x)$ in $\mathbb{Q}[x]$?
(ii) What is $(2, x)$ in $(\mathbb{Z} / p \mathbb{Z})[x]$ where p is prime? For which p is $(2, x)$ maximal?
7.
(i) Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x]$. Suppose $r / s \in \mathbb{Q}$ is a root of $p(x)$ where r and s are coprime. Then $r \mid a_{0}$ and $s \mid a_{n}$.
(ii) Use part (i) to show that $x^{3}-3 x-1$ is irreducible in $\mathbb{Z}[x]$.

